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Abstract 

 

This paper addresses the testing for cointegrating vectors and the estimation 

of cointegrating relations using Partial Least Squares. Together with Harris 

(1997) and Bossaerts (1988), the PLS approach relies on a method of 

multivariate statistics and thus does not require identifying restrictions on 

the cointegrating vectors or of a full specification of the short-run dynamics 

of the process. The PLS estimator for the cointegrating vectors is found to be 

super consistent and robust to heavy-tailed innovations. A test is provided for 

the rank of cointegration which is assessed by means of Monte Carlo 

simulation. A brief application to Mexican inflation data is also provided. 

 

Key Words: Partial Least Squares, non-stationarity, Cointegration analysis, 

Asymptotics. 

 

1. Introduction 

 

The procedures for estimation and testing of cointegrating vectors, that 

have been widely studied since the concept was first laid out in Granger 

(1983), are usually thought of as falling into one of the two categories. The 

first category requires the cointegrating vectors to be fully identified and so 
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is founded upon parametric restrictions. The other category does not impose 

identifying restrictions and deals instead with estimating a basis for the 

cointegrating space leaving the test for any particular restriction to be a 

subsequent step in the analysis. Ordinary Least Squares (OLS) regression and 

Nonlinear Least Squares is representative of the first type of procedure, 

whereas Johansen’s approach to maximum likelihood in a fully specified 

error correction model is the most prominent in the second category. 

  

The main advantage of the first type of tests is that the short–run 

dynamics of the process do not need to be fully parameterized, so that a great 

deal of data generating processes fall within their reach. On the other hand, 

the use of identifying restrictions from the start may be disadvantageous in 

some scenarios. In an attempt to test for cointegration without either 

imposing identifying restrictions or fully specifying the short–run dynamics 

of the process, Harris (1997) proposes the use of Principal Component 

Analysis (PCA) and the properties of these estimators are further studied by 

Snell (1999).  

 

 PCA may be thought as procedure alongside that of Bossaerts (1988), 

based on Canonical Correlation Analysis (CCA), as yet a third category in 

testing of cointegration. This category is based on methods of multivariate 

analysis and as such relies either on a decomposition of the column space of 

the data or on some sort of variance decomposition for it. More explicitly, 

express Xt for the cointegrated process with a Vector Error Correction Model 

(VECM) representation 

,=
1=

1 tjtj

k

j

tt XXX εβα +Γ+′∆ −− ∑
 

 

where XtɛR
p, the matrices αɛM(p×r)and ßɛM(p×r)are of full rank and ß┴ is 

the orthogonal complement of ß. As is well known, there are two dominant 

directions to the process, namely ß'Xt, the stationary direction and ß┴,Xt, the 

nonstationary direction. PCA of Cointegrating relations as explained in 

Harris (1997) or Snell (1999) depend directly on these two directions and 

works because in the space generated by the stochastic trends, the process 

has a “higher” variance (roughly of the same order as the sample size) 
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whereas in the space generated by the stationary process ß'Xt variances are 

significantly smaller. On the other hand, CCA of Cointegrating relations as 

explained in Bossaerts (1988) rests on the fact that the components ß'Xt and 

ß┴,Xt  are orthogonal and correlation is maximized in the direction of ß┴,Xt. 

 

 This paper examines the performance of another method of multivariate 

statistics to perform cointegration analysis, namely Partial Least Squares 

(PLS) which has become a very useful tool in several research fields such as 

psychology, chemistry, medicine or economics to mention only a few. Rather 

than standing for a specific method, PLS comprises a whole class of 

techniques whose aim is to model the association between two given blocks 

of observed variables by recursively constructing a set of latent variables 

(orthogonal score vectors). PLS is a nonparametric approach to regression 

and serves very well the tasks of classification and reduction of 

dimensionality. A survey of diverse PLS methods can be found in Wegelin 

(2000), where some interesting comparisons are given among the different 

techniques. The reader is also referred to Rosipal and Krämer (2006) for an 

overview of PLS. 

 

The motivation to use PLS for cointegration analysis is twofold. On the 

one hand, we know that as a method in multivariate statistics, PLS is akin to 

CCA. Actually, Wegelin (2000) argues that CCA is but a way of performing 

PLS, so that we can read PLS as a generalization of CCA. On the other hand, 

decomposition of the space induced by the structure of cointegrating system 

as described earlier and the proven success of PCA and CCA suggest that in 

looking for latent variables (score vectors), PLS will be forced into 

estimating the stochastic trends first (since the latent variables ß┴,Xt drive the 

process in the directions of higher variance) and then the cointegrating 

relations (the relevant latent variables orthogonal to the ones already 

estimated).  

 

 PLS begins with a data matrix X, of dimensions T×p, where T stands for 

the number of observations and p for the dimensionality of each observation 

which will be used to either explain or predict the variables contained in 

another matrix Y of dimensions T×p. Almost needless to say, the aim is to 

relate the p variables contained in X with the k variables stored inY. Writing 
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X and Y for such variables, the CCA approach is to find µ  a p–dimensional 

vector and v a k–dimensional one, such as to maximize the correlation 

between the transformed variables u'X and v'Y. We state the convention that 

u' stands for transposition in the remaining sections of the paper. In compact 

terms, we can say that the objective function of CCA is  

 

max(Corr(u'X, v'Y))  

 

Alternatively, PLS will attempt to maximize the covariance, rather than 

the correlation, with the additional restriction of using only unit vectors to 

transform the data, that is, find u and v such that |u||=||v||=1 and for which  

 

max(Cov(u'X, v'Y))  

 

is attainted in some sense1. The sense in which this happens is precisely the 

division line among the many algorithms included within PLS. We refer to 

Braak and De Jong (1998) for a presentation of the objective functions 

related to PLS. 2 

 

One interesting aspect of this attempt is that PLS is more of a structural 

than a parametric approach, i.e., it rests much more heavily on there being an 

implicit decomposition of the column space of data than on the precise 

parametric structure of the VECM or the VAR process itself.  

 

By not imposing identifying restrictions and by not being based on the 

explicit and fully specified VECM representation, the PLS approach to 

cointegration analysis may be useful for a wide variety of data generating 

processes and may not need extra–hypothesis of normally distributed 

disturbances or even square–integrable ones. Thus, PLS is likely to provide a 

rather flexible tool for cointegration analysis. 

 

The paper is structured as follows. In Section 2 we introduce the PLS 

algorithm and state some of its main properties. Section 3 is devoted to relate 

                                                           
1  We now intuitively see that working with centered and standardized data, PLS is just CCA. 
2 PLS has also been related to regression analysis and Garthwaite (1994) is an excellent 
introduction to this subject matter. 
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the workings of PLS with the structure of cointegrating systems. We prove 

that PLS produces super consistent estimators of (an orthonormal basis for) 

the stochastic trends and the cointegrating space. The decomposition 

provided by PLS is used in section 4 to test for cointegration taking 

advantage of the fact that PLS will always estimate the I(1) processes ß┴,Xt  

before estimating the basis for the cointegrating space. A procedure based on 

PLS and KPSS is studied with Monte Carlo simulations and its particular 

advantages are shown. Finally, in section 5 we apply the PLS-KPSS test to 

four variables relevant for forecasting inflation, namely the consumer price 

index, the monetary base, the equilibrium interest rate at 28 days and the 

industrial production index. We use Mexican data in a period containing T = 

144 observations and find one cointegrating relation. 

 

2. The PLS Algorithm 

 

As mentioned earlier, PLS stands for a handful of methods or algorithms. 

In the present paper, we will be dealing with what has come to be known as 

PLS2, see Wegelin (2000). We present the algorithm as is given by 

Höskuldsson (1998): Before the algorithm starts the matrices X and Y may 

be centered or scaled which suggests subtracting mean values or working 

with correlations. The algorithm is as follows   

 

    Step 1: Set µ  to the first column of Y,  

    Step 2: w = X'u/(u'u) 

    Step 3: Scale w to be of length one  

    Step 4: t = X'w 

    Step 5: c = Y't/(t't) 

    Step 6: Scale c to be of length one  

    Step 7: u=Y c/(c'c) 

    If convergence then 8, else 2  

    Step 8: X–loadings: p = X't/(t't); Y-loadings q = Y'u/(u'u) 

    Step 9: Regression (u upon t): b = u't/(u'u) 

    Step 10: Residual matrices: X → X – tp' and Y → Y-btc' 

 

We then start over iteratively with these new X and Y matrices which 

result from the previous iteration. Iterations may continue until a stopping 
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criterion is met or X becomes the zero matrix. As shown in Höskuldsson 

(1998), in convergence, the vectors w and c satisfy  

 

X'YY'Xw= λ1w 

X'YY'Xc= λ1c    (1) 

 

 where λ1  is the greatest eigenvalue of the matrix Y'XX'Y. Furthermore, the 

score vectors ti are mutually orthogonal and the pair (wi, ci) satisfies the 

maximization  

 

    (Cov(t, u))2= max(Cov(Xd, Ye))2, ||d|| = ||e|| = 1  (2) 

 

The components t and µ may be interpreted as orthogonal components in 

the X and Y space respectively that have maximal covariance among all 

components in those spaces at each iteration. 

 

3. Estimating the Cointegrating Relations with PLS 

 

We now consider a cointegrated system in Rp given in VECM 

representation as  

 
titi

k

i

tt XXX εβα +∆Γ+′∆ −− ∑
1=

1=   (3) 

 

and assume that ɛt  is a white noise sequence with mean 0  and covariance 

matrix Ω. The matrices α and ß  are rp ×  of full rank and the cointegrating 

relations are given by ß  so that  ß'Xt  is an (0)I  process. Together with these 

matrices, we consider α┴  and ß┴  orthogonal complements so that ß' ß┴  = 

α'α┴  = 0 and assume that 

 

0=
1=

/







Γ+′−−− ⊥⊥′ ∑ ββαα i

k

i

pI

 
 

As is proven in Johansen (1995) among others, this implies that  Xt 

admits the Granger representation  



A PLS Based Approach to Cointegration Analysis 

183 

                                          
.)(= 1

1=
ti

t

i

t LCCX εε +∑
                 

  (4) 

 

The process C1(L)ɛt   is I(0) and the the matrix C is given by  

 

 

  

and is of rank p-r . Furthermore, it is also known that the matrix (ß┴, ß) is a 

p×p  with full rank, meaning that the space of the process Xt  is effectively 

divided into two orthogonal components, sp(ß┴) and sp(ß). This allows us to 

write  

 

                      
ttt XPXPX ββ +

⊥
=    (5) 

 

 where Pß = ß(ß'ß)
-
1ß' is the projection matrix on the column space of ß  and 

similarly for 
⊥βP . Equation (5) hints at us that using multivariate methods 

for space decomposition may be a very good way to estimate the 

cointegrating relations, since the very structure of the process is already 

decomposed. Two such approaches are the use of PCA and CCA in Stock 

and Watson (1988), Harris (1997), Snell (1999) and Bossaerts (1988).  

 

A natural, but yet unexplored, extension of such results is the use of PLS 

to estimate the cointegrating relations. One of the advantages of doing this is 

that the dimensionality of the process Xt  need not be smaller than the sample 

size for the estimation to produce meaningful results. Another advantage 

which we read in Höskuldsson (1998) is the stability of the predictors 

derived from the method.  

 

We begin our exposition intuitively, thinking of the VECM model (3). 

Granger’s representation (4) suggests that, in accordance with the underlying 

assumption of all PLS methods, the process is driven by a set of latent 

variables, namely the stochastic trends α┴,Xt,   and the stationary component 

C1(L)ɛt. Representation (5) also suggests that there are two sets of latent 

⊥′

−

⊥⊥′⊥ 















Γ+′−− ∑ αββααβ

1

1=

= i

k

i

pIC
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variables: The first set drives the process in the direction of the columns of 

ß┴  while the second does so in the column space of ß. As a matter of fact, 

Johansen (1995) shows that the process  ß┴,Xt  is a possible representation 

for the stochastic trends in that it is an (1)I  process wich does not 

cointegrate. Observe that this partition of the space in two complementary 

subspaces is not only orthogonal, but also puts apart the random walk 

component from the stationary component which is, itself, a variance 

decomposition. 

 

In order to use PLS, we define the natural data matrices as: 

 

Y = (XT', XT-1',…X2') and X = (XT-1', XT-2',…X1') 

 

The main point to be made from the preceeding explanation here is that 

at any iteration of the PLS method, the vectors w  and c  of steps 1 through 7 

of the algorithm are bound to be either in sp(ß┴) or in sp(ß) . To work out our 

intuition on how PLS works with I(1)  variables, assume that a cointegration 

relation exists and that we pick 1w  and 1c  in the first iteration of PLS. If 

)(1 ⊥∈ βspw  and )(1 βspc ∈ , then the covariance between tXc '1  and 

11 ' −tXw  will equal zero, while if both lie on the same space the squared 

covariance is strictly possitive. Thus, at each step of the algorithm, PLS will 

pick w  and c  both lying either on the cointegrating space )(βsp  or on its 

orthogonal complement in the light of (2). 

 

Now, the question is: Which space will PLS follow in its first step? To 

answer this question, observe that in the direction of ß┴, the process Xt  is a 

random walk. Writing ƞt  for the noise sequence generating it and Yt  for the 

projection over the span of ß┴ of Xt, it is observed that:  

 

[ ]( ) .1)(==),(
1

1=1=
1 vtuvuYvYuCov j

t

j

i

t

i

tt ηηηη ′−′







′′′ ∑∑

−

− EE

 
 

 Maximizing with the constraint that |u||=||v||=1  we have got u=v as the 

eigenvector corresponding to the maximum eigenvalue λ1  of the matrix 
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E[ƞƞ'] and a covariance of (t-1)λ1, which shows that this covariance increases 

in the same order as the sample size does. Now, in the direction of ß, the 

process Xt  is stationary, so that the variance and covariances are bounded. 

This means that by choosing w1 in sp(ß┴), and thus also c1, the covariance is 

most likely to be maximized. Actually, the way to go is taking  w1= c1  which 

provides two perfectly correlated processes  w1'Xt-1 and c1'Xt. Maximum 

correlation implies maximum squared covariance, so that this has to be the 

first PLS component. The situation is alike that of using CCA and a similar 

explanation was issued by Bossaerts (1988) as to how CCA selects its 

components. 

 

Observe the relation established also with PCA which chooses the 

components with maximum covariance in decreasing order. Evidently, given 

there exists a stochastic trend and since its variance increases as the sample 

size does, PCA will select this as a first component. As a consequence, under 

the hypothesis of r cointegrating relations, the first p-r principal components 

will be random walks and the last r will provide a good estimation of the 

cointegrating space which is what Harris (1997) and Snell (1999) both prove 

by different means. Back to PLS, observe that the foregoing argument 

depends only on the existence of a stochastic trend. Since the PLS 

components are orthogonal, as is shown in Höskuldsson (1998), the space 

spanned by ß┴ will be estimated first with p-r=dim(sp(ß┴))  components and 

then the last r components will be forced to choose the vectors u and c  from 

the cointegrating space. This parallelism with PCA is not just a coincidence 

as the following Lemma shows. 

 

Lemma 3.1  Let Xt  be a cointegrated system with exactly 0<r<p 

cointegrating relations and VECM representation  

 

titi

k

i

tt XXX εβα +∆Γ+′∆ −− ∑
1=

1=
 

 

Then, the first PLS component coincides with the first Principal Component.  
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Proof. As was noted earlier, the first PLS component will correspond to u  

and v solving  

 

max(Cov(u'Xt-1, v'Xt)), subject to |u||=||v||=1 

 

Let  

'=
~

,'=
~

1
1=

101
1=

01 tt

T

t

tt

T

t

XXSXXS −− ∑∑
 

 

A standard argument shows that u  and v  are the eigenvectors associated 

with the maximum eigenvalue of 0110

~~
SS  and 1001

~~
SS  respectively. Since 

the eigenvalues of 01

~
S  are unchanged upon multiplication by a scalar, we 

may as well consider the normalized matrices 01
3/2

01

~
= STS −  and 

10
3/2

10

~
= STS

−
. Using Granger’s Representation (4), we know that tX  can 

be expressed as a sum of an (1)I  component, tI  and a stationary component 

tS  which implies that  

( )







+++
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−
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−

−
−

∑∑
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As shown in Appendix B.7 of Johansen (1995), the last term in the RHS 

converges to 0  in probability but the first term does not tend to zero and is 

asymptotically equivalent to '11
3/2

−−
− ∑ tt XXT . Therefore, we have shown 

that 

 

S10 = S11 + op(1) 

 

 where '= 11
3/2

11 −−
− ∑ tt XXTS . This immediately gives  
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S10S01= S11S11'= op(1) 

 

Observe that S11  is the covariance matrix of Xt-1  multiplied by T
-1/2

, 

which implies that the eigenvectors of S10  are, asymptotically, the Principal 

Components of Xt-1. To complete the proof, simply observe that the matrix   

S11 is symmetric so that its Singluar Value Decomposition can be written as 

S11= UɅU' which tells us that the columns in U  are eigenvectors of S11 S11'   

corresponding to the eigenvalues in Ʌ2.  

  

Remark 3.1 The former Lemma only applies to the first component of the 

PLS algorithm we are focusing on, since the next iterations depend on 

deflated data matrices. Nonetheless, the method known as Orthogonal PLS 

relies on the first eigenvectors of S01S10 which makes it equivalent to PCA. 

See Worsley et al. (1997) for a brief description of this method. Also, the 

reader is referred to Noes and Martens (1985), Helland (1988) and Helland 

(1990) where diverse comprisons between PLS and PCA regression are 

performed.  

  

Corollary 3.1 Let ß┴, i be the columns of the matrix  ß┴ so that the stochastic 

trends are ß┴, i'Xt for i=1, p-r. The first PLS vector w1  is a superconsistent 

estimator of the direction of a stochastic trend  ß┴, i in the cointegrating 

system Xt.  

  

Proof. By Lemma 1 in Harris (1997) the first p-r  Principal Components are 

jointly superconsistent estimates of ß┴  which together with Lemma 3.1 

immediately yields the desired result.  

 

 In order to examine what comes next in PLS, we need to describe the 

deflated process tX
~  after having undergone one PLS iteration. Lemma 3.1 

shows that w1= c1  which in turn implies that  

 

tt XwuXwt '=,'= 11111 −  
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Thus, the loadings p  and q  can be computed as  

 

1
1

11

1

1
1 ==

'

'
= w

w

ww

w
p

λ

λ

XX

XX

′  
 

and similarly 11 = wq . Thus, the new data matrices are given by  

 

X(1)= X-Xw1w1' and Y (1) = Y-Xw1w1' 

 

In terms of the process Xt, we have the deflated processes  

 

1111
(1)

1 '= −−− − ttt XwwXX
 

 

Since w1:ß┴,1 and taking into account the decomposition (5), an 

equivalent expression is  
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where the normalization ß┴,1' ß┴,1 used among others by Snell (1999) has 

been used which entails that ß┴,1' ß┴,1   is just the projective matrix upon the 

space generated by ß┴,1. This almost proves the following 

 

Lemma 3.2  Let Xt  be a cointegrating system with exactly 0<r<p 

cointegrating relations and p-r  stochastic trends. The deflated process 
(1)
tX  

obtained after one iteration of the PLS algorithm contains exactly p-r-1  

stochastic trends and the same r  stationary components.  

  

Proof. By orthogonality of the stochastic components ß┴,i,i=1,2,…,p-r, 
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we may write (5) as  

tt
i

rp

i

t XPXPX ββ +
⊥

−

∑ ,
1=

=
 

 

which, together with the former paragraph shows that  

 

.=
,

2=

(1)
tt

i
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i

t XPXPX ββ +
⊥

−

∑
 

 

The first term of the expression on the RHS adds the 1−− rp  stochastic 

trends and the last one includes r  stationary components.  

  

Remark 3.2 As a consequence of the former and Lemma 3.1, the stochastic 

trends present in (1)
1−tX  are the same as the ones present in 1−tX  except for 

the one with maximum variance; and the cointegrating relations β  are kept 

unchanged.  

 

 We close this section adding up all our results in the following  

 

Theorem 3.1 Let Xt  be a cointegrating system with exactly 0<r<p  

cointegrating relations and p-r  stochastic trends. The first p-r PLS 

components are superconsistent estimators of an orthonormal basis for the 

space spanned by ß┴ and the last r are superconsistent estimators for the 

cointegrating relations ß. 

  

Proof. Assume that p-r=1. Then, by Lemma 3.1, the first PLS component is 

a superconsistent estimate of ß┴. Suppose instead that p-r>1. Then, by 

Lemma 3.1, the first PLS component is a superconsistent estimator of ß┴,1     

and the deflated process (1)
1−tX  contains p-r-1  stochastic trends given by the 

direction vectors ß┴,2,… ß┴,p-r  by Lemma 3.2. After another iteration of PLS, 

we may use again Lemma 3.1 each time obtaining a superconsistent estimate 

for  ß┴,i,i=2,…,p-r. Having depleted the span of ß┴, we know from the 
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orthogonality of the PLS components that all the following r components are 

a basis for the span of ß.  

 

Remark 3.3 In the framework of forecasting, PLS is usually thought of as a 

method of selecting components of X allowing for an accurate prediction of 

the variables stored in Y. Usually, some cross–validation or similar 

procedure is performed to guarantee that the chosen PLS components will 

account for most of the variance in Y  and the last components will be 

dismissed as are only barely useful for forecasting. All the former is 

applicable to I(0) variables and as has been repeatedly proven, it works quite 

well. Nonetheless when dealing with I(1) variables, the first PLS components 

will estimate the random walk components, i.e., the non–predictable ones, 

which means that we should stick to the last latent variables obtainted. This 

seemingly paradoxical conclusion is a consequence of the structural fact that 

the variables to be predicted have themselves a non–predictable component, 

namely ß┴,Xt in the direction of which the PLS covariances are maximized.  

 

4. Testing for Cointegration 

 

From the results in the previous section, it follows that given a 

cointegrating system Xt with r cointegrating relations, the PLS components Ti 

will be divided into two subgroups: {T1,…,Tp}which are all I(1) and {Tp-

r+1,…,Tp} which will all be I(0). Observe the ordering of the components, 

given that Ti is I(1)  it necessarily follows that Ti-1 is also I(1), that is, the 

estimators for the stochastic trends are not scattered, but ordered together.  

 

Observe that the null that Tp, the last PLS component is I(0) is equivalent 

to there being at least one cointegrating relation, whereas the alternative that 

Tp is I(1)  reduce into no cointegrating relations at all. An immediate 

consequence is that in order to test  

 

H0: r > 0 vs. H1: r = 0 

 

it is enough to perform a stationarity test onTp, the last PLS component. The 
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chosen test for the procedure is the KPSS test of Kwiatkowski et al. (1992) 

and the results of its implementation will be detailed. Extending this idea, the 

null hypothesis that 0rpT −  is stationary for a given and fixed value of 0r  is 

equivalent to the null that there are at least r0+1 cointegrating relations while 

the alternative that 0rpT −  is I(1) means that the number of cointegrating 

relations do not exceed 0r . Thus, the component 0rpT −  is instrumental in 

deciding  

 

H0: r > r0 vs. H1: r < r0 

 

by means of the KPSS test. Finally, an estimator of the cointegrating rank 

can be given as  

 

(0)}:{=#ˆ ITTr ii ∈
 

 

which can be decided also on the basis of the KPSS test. We call this testing 

strategy PLS–KPSS here onwards.  

 

4.1 Simulation Results 

 

 We implement the PLS-KPSS testing procedure on simulated data and 

analyze its performance. Beginning with the estimators, we simulate 10000 

paths of length T = 1000 of the cointegrated process  

 

∆Xt = αß'Xt-1+ɛt 

 

with ɛt having a standard multinormal distribution on Rp. Our first example is 

given by choosing ß= (-1/4,1)'. We compare the results with other well–

known methods for estimating ß such as full maximum likelihood in 

Johansen (1995), principal component analysis in Harris (1997), Snell (1999) 

and Stock and Watson (1988) and canonical correlations in Bossaerts (1988).  

We normalize the estimated vector by dividing it by its second coordinate in 
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order to make normalizations homogeneous among the different methods. 

Table 1 shows the accuracy of PLS for estimating the cointegrating relation 

ß. 

 
Table 1 

Estimates of ß with Different Methods in a Two–Dimensional System 
Method β̂   

Johansen 








 −

1

0.2507

                  









0.00011087

0.00044349

 
PCA 








 −

1

0.2475

 
 

CCA 







 −

1

0.2517

   









−

−

0.0003526

0.0014104

 
PLS 








 −

1

0.2506

      









−

−

0.00013414

0.00053657

 
 

We next consider a three dimensional system with ß= (1, 0,-2) and 

perform the same estimations obtaining the results summarized in Table 2.  

 
Table 2 

Estimates of ß with Different Methods in a Three–Dimensional System 
Method β̂  

ββ β
ˆˆ P−

 
Johansen 

    
















− 2.001032

0.00008

1

 
















−

−

0.00009

.00004

0.00018557

 
PCA   

















− 1.98577

0.00722

1

 
















−

−

−

0.0012797

0.0032505

0.0025593

 
CCA 

















−

−

2.01117

0.00215

1

 
















−

−

−

0.0010096

0.00097364

0.0020192

 
PLS 

    
















−

−

2.0045471

0.00242

1

 
















−

−

−

0.00040822

0.0010837

0.00081645
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  In order to assess how well the PLS–KPSS works, we first simulate 10000 

trajectories of lengths T = 150, 250, 500 of the random walk  

Xt=IpXt-1+ɛt 

 

for the different dimensionalities p=2,3,5. Since the PLS–KPSS works in the 

opposite direction than the traditional ML test of Johansen (1995), we can 

only compare these two by testing  

 

H0: r =0 vs. H1: r > 0 

 

with Johansen’s procedure and testing  

 

H'0: r > 0 vs. CH1: r = 0 

 

with the PLS–KPSS test. The comparison can be made by means of the 

proportion of times that the corresponding test provides the “correct” 

decision, that is, leads us into recognizing Xt as a random walk. Observe that 

in Johansen’s case we are just computing the empirical size of the test, 

whereas for the PLS–KPSS test, we are actually assessing the power. The 

comparison is nonetheless relevant in pragmatic terms and is presented in 

Table 3.  

 
Table 3 

Comparison between Johansen’s and PLS–KPSS Tests 
Dimensions Path Size Johansen’s Test PLS test 
 150 0.9479 0.9756 
2 250 0.9474 1 
 500 0.9486 1 
 150 0.9438 0.9975 
3 250 0.9445 0.9998 
 500 0.9459 1 
 150 0.9411 0.9197 
5 250 0.9381 0.9931 
 500 0.9454 1 

 

As can be seen directly, the PLS–KPSS procedure is always a better way 

to go if we intend to detect a random walk. In simple and practical terms, 
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with the traditional Johansen’s test, we will be working something slightly 

above 5 percent of the time with spurious cointegrating relations, while this 

proportion is reduced by the use of PLS–KPSS test.  

 

Also relevant in pragmatic terms is the estimation of the cointegrating 

rank. Given a p–dimensional time series, Lütkepohl’s sequential procedure 

presented in Chapter 8 of Lütkepohl (2005) consists in testing a sequence of 

null hypotheses,  

 

H0: r = 0, H0: r = 1,…, H0: r = p-1 

 

until the null cannot be rejected for the first time and choosing the 

cointegrating rank accordingly. This is a very widely used technique to 

estimate r, the cointegrating rank, which is why comparing it to the PLS–

KPSS estimator discussed in the previous sections is relevant. 
 

Table 4 
Comparison between Johansen’s And PLS–KPSS Tests for Estimating the 

Cointegrating Rank 
Dimensions,  Cointegrating 

Rank 
Path Size Johansen’s Test PLS test 

 
  150 0.9420 0.9860 

2 1 250 0.9510   0.9890 
  500 0.9420   0.9830 
  150 0.9510 0.9210 

3 1 250 0.9480   0.9160 
  500 0.9459   1 

 

The PLS–KPSS procedure for testing for cointegration and estimating 

the cointegrating rank is flexible in admitting heavy tailed noise. As studied 

in Caner (1998), the trace and maximum eigenvalue statistics of Johansen 

(1995) suffer from size distortions when the noise sequence is not square–

integrable. However, the PLS–KPSS procedure rests mainly on the 

asymptotic symmetry of the covariance matrix.  

 

Table 5 shows how well PLS–KPSS works with different heavy–tailed 

noise sequences. 
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Table 5 
Testing for r=0 with Heavy Tailed Noise 

Dimensions Path Size Noise distribution PLS–KPSS 
detection rate 

 150  0.9987 
2 250 Lognormal(0,1) 0.9991 
 500  1 
 150  0.9905 

2 250 Power Law α   =1.5 0.9956 
 500  0.9985 
 150  0.9985 

3 250 Lognormal (0.1) 1 
 500  1 
 150  0.9786 

3 250 Power Law   α   =1.5 0.9938 
 500  0.9977 

 
 

Another situation to which the PLS–KPSS procedure is robust is that of 

near cointegration. The size distortions for Johansen’s statistics were studied 

in Hjalmarsson and Österholm (2010) and some partial remedies were 

suggested by the authors which do not, however, eliminate the problem. 

Their setup is simulating paths of the process  

 

tpt
T

c
IY ε+








+1=

 
 

where the dimensionality p is either 2 or 3; ɛt is a noise sequence and c 

ranges from 0 to-60. We replicate this procedure for our previous sample 

sizes of T=150, 250, 500 and tabulate the proportion of times that the PLS-

KPSS procedure concludes no cointegration relations are present in the data.   

 
Table 6 

Testing for r=0 With Neatly Integrated Variables 
Dimension 2  40= −c   Dimension 2  20= −c   

T=150 T=250 T=500 T=150 T=250 T=500 
0.9810    1 1 0.9740 1 1 
Dimension 3  40= −c  

 Dimension 3 20= −c  
 

T=150 T=250 T=500 T=150 T=250 T=500 
0.9400    0.9930    1 0.9390    0.9980    1 
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To conclude this section we point out that all our results depend on the 

sample size being large enough and that for smaller sample sizes Johansen’s 

method offers a much greater precision. In fact, for sample sizes roughly 

bellow 90 observations, Johansen’s test performs much better than the PLS–

KPSS test, which makes this later method not advisable for small samples. 

 

5. Example with Real Data 

 

We use four indexes built with monthly Mexican data in the time span 

from January 2000 to December 2011, thus a sample size of T=144. The data 

consists of p, the consumer price index, m0, the monetary base, r, and the 

equilibrium interest rate at 28 days and y, the industrial production index. 

The data is depicted in Figure 1. The left–hand axis corresponds to the 

measurements of (log(p), log(r), log(y)) while the right–hand axis measures 

log(m0) .  

 

 The existence of an equilibrium relation between these variables is 

usually thought of as evidence that inflation is, in the long run, a monetary 

phenomenon. 

 

 
Fig1 Time Series for the Mexican Inflation Model 

 

Applying the PLS–KPSS test to the data, we find that there is but one 

cointegrating relation. Normalizing the coefficients of β̂  to the first 



A PLS Based Approach to Cointegration Analysis 

197 

component, the cointegrating relation is 

 

 log(p)-0.3748log(m0) + 0.091log(r)-0.6475log(y)=0 (6) 

 

which is congruent with the economic theory. For example, a reduction in the 

cost of money is thought to be accompanied by an increasing inflation, 

whereas a decrease of inflation is usually paired with a decrease in the 

monetary base. Both these relations are captured by (6) quite neatly. 
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