Journal of the Punjab University Historical Society
Volume: 34, No. 01, January - June 2021

Naveed Jhamat ™
Zeeshan Arshad ™
Ghulam Mustafa ™"

Historical Perspective of Software Refactoring Tools
towards Future Solution

Abstract

The present study will explore that for the adaptation of software system, we need
crucial changes and essential enhancements both at structural and behavioural
level. It would also discuss that software refactoring deals with structural
refinements in sofiware but keeping its behaviour intact for better understanding,
hitch less maintenance and for stifle future changes. For automatic software
refactoring numeral approaches and various prototyping tools have been
proposed and developed in last couple of decades. Our purpose is to propose an
automated software Refactoring tools for future community after critically analyse
existing refactoring tools developed in recent and history. At first, we would
discuss a Systematic Literature Review to compare scope, methodology and results
of various semi and fully automated Refactoring tools proposed in literature for
various languages since 2000. Later, as a solution, we would propose a
methodological tool based on our findings. In addition to this, we would
experiment refactoring tools on open-source software to compare them from
different perspective and find out their performance, precision, and recall. It
would highlight many opportunities that research community should be familiar
with before adding any such complementary automated refactoring tool to list.
Our SLR not only underline disparity in the base and outcome of existing tools but
also lightens lacking that needs to be eradicated before suggesting any new tools
for professional practice.

Introduction

In the late 1980s, (researchers from two distinct Universities: University of
Illinois: Bill Opdyke and Ralph Johnson, and from the University of Washington:
William G and David Notkin invented Software refactoring approach!. Later on, in
the early *90s, as a concept, software refactoring was presented by Opdyke in his
Ph.D. thesis 2.

* Dr. Naveed Jhamat, Assistant Professor, Department of Information Technology,
University of the Punjab, Gujranwala ~ Campus, Pakistan, Email:
naveed.jhamat@pugc.edu.pk.

** Zeeshan Arshad, Lecturer, Department of Information Technology, University of the

Punjab, Gujranwala Campus, Pakistan. Email: zeeshan.arshad@pugc.edu.pk

“* Dr. Ghulam Mustafa, Assistant Professor, Department of Information Technology,

University of the Punjab, Gujranwala Campus, Pakistan. Email: gmustafa@pugc.edu.pk.

173

JPUHS, Vol. 34, No. 01, January — June 2021

Software refactoring is defined as the branch of software engineering that deals
with internal complexity, maintenance, and other quality attributes of a software.
Software refactoring is an approach to transform a written program to enrich its
inner structure, design, naivety, understandability, and other characteristics
without modifying its external behavior. Software refactoring is one of those
troubles that require numerous quality goals to be convinced. The initiative behind
software refactoring is to identify variables, methods, and classes to assist future
implementations, extensions, and compressive enhancement. Further, this
identification is utilized to enrich several software quality aspects such as
reusability, maintainability etc.

By the time, the software is developed, enriched, reformed, and added to new
prerequisites, the code of the software becomes more complex and quits its
original state that results in low-quality software®. That is why a significant
amount of development funds is devoted to software maintenance. In this regard,
better software development approaches and tools are useless to resolve this issue,
they are utilized to fulfill more and more requirements of end-users, surrounded by
the same time frame they increase the complexity of software.

To tackle this high tendency of complexity, there are such techniques are highly
recommended and demanded that cut down the software complexity via
incremental enhancement of the internal structure of a software. The domain of
research that deals with this subject are indicated as Software Restructuring or,
particularly in the object-oriented development setting, Refactoring’.

Literature Review:

Refactoring Tools 1997 — 2018: In 1997, researchers from the University of
Illinois, Don Roberts ET presented a study in which they addressed the Smalltalk
Refactoring browser that performs three main refactorings: (1) Class Variable
refactoring, (2) Class refactoring, and (3) method refactoring, automatically and
improves internal structure of Smalltalk programs. Later on, in 1999, Shengbing
Ren discussed a prototype tool that provides different twenty-four refactoring for
the use of case models and visual effects for sketching and showing case models.
Since early 2001, IntelliJ IDEA, a refactoring tool supports, a wide array of
refactoring for java and only two refactoring implementations: rename and move
for other languages. Another Refactoring Tool developed for Java programs
Refactor IT, is a commercial tool that detects code smells and performs up to
twelve distinct refactoring. It works as a Plugin for the Sun ONE Studio, Eclipse,
Oracle, JBuilder, NetBeans IDEs. In 2008, Dmitry Jemerov presented an overview
of software refactoring implementation in IntelliJ IDEA and imparted the synopsis
of core architectural components of this tool. IntelliJ IDEA is figured among the
elementary Java IDEs that crossed the Refactoring Rubicon by Martin Fowler and
it provides the multi-lingual refactoring®. Another refactoring tool, Deodorant is an
Eclipse plugin used to detect Type-Checking bad smells automatically in java
source codes and refactors them by the means of implementation of “Replace
Conditional with Polymorphism™ or “Replace Type Code with state/Strategy”
refactoring’. In 2010, Miryung Kim presented a study on Ref-Finder, an Eclipse
plugin that is based on a template-based refactoring method and performs both
atomic as well as composite refactoring automatically. Cristopher Brown focused

174

Historical Perspective of Software Refactoring Tools towards Future Solution

on Haskell Refactored known as HaRe and described several new refactoring
techniques for the Haskell 98 programs, particularly, discussed structural and data-
type refactoring. A study on BeneFactor, an Eclipse plugin, states that Benefactor
works with two main components: refactoring detection which runs in the
background, and code improvement that modifies existing code to its enhanced
form. The BeneFactor refactors Java source codes and is considered among
automatic refactoring tools. Katsuhisa Maruyama and Takayuki Omori presented a
security-aware software refactoring tool called JSart that is built as a plugin of
Eclipse®. This tool assists developers to flexibly detect the adverse impact of code
modification on the security vulnerabilities and facilitates them to accept or reject
implemented refactorings. Iman Hemati Moghadam and Mel O Cinnéide
discussed Code-Imp, an automated refactoring tool, in their study and their area of
focus is the implementation of Code-Imp and the summarization of three major
functioning research standards concerning with Code-Imp: “refactoring for
testability, metrics exploration, and multi-level design improvements.

From the array of software refactoring tools, True Refactor is an automated
refactoring tool that extensively enhances the clarity of legacy object-oriented
systems and increases the maintainability, reusability, and comprehensibility of
legacy software®. Asger et al proposed a framework for the specification and
implementation of JavaScript refactoring on the utilization of the groundwork of
pointer analysis and the key insight of their framework implies that despite the
dynamic behavior of JavaScript programming, it is possible to have ultimate
appropriateness of JavaScript refactoring utilizing a few queries in the groundwork
of pointer analysis.

In 2012, Kwankamol Nongpong introduced a novel semi-automated refactoring
tool called JCodeCanine that detects bad smells using software metrics within the
Java source code and recommends an array of refactoring that assists to enhance
the internal attributes of the program!®. Andreas Thies and Eric Bodden proposed
an automated novel and more protective method for the reflective java programs in
their study using dynamic program analysis, called RefaFlex and they
implemented this tool as an open-source Eclipse plugin!!. Hyrum presented the
real-world application of a refactoring tool to refactor large C++ codebases called
ClangMR by combining the framework of the Clang compiler and the Map-
Reduce parallel processor. Vitor Sales proposed a novel approach for the
recommendation of move method refactoring that evaluates the likeliness of
dependencies determined by the source method along with the dependencies
determined by other methods in objective classes!?. Wim Mkaouer proposed a
novel recommender tool called DINAR for software refactoring that adopts
refactoring with dynamism and recommends refactoring to programmers
interactively according to their feedback and initiated code modifications'. Their
approach uses NSGA-II to enhance software quality, increase semantic coherence
and reduce the number of refactoring, then finds an upfront set of non-dominated
refactoring solutions ',

Thus, the literature review of refactoring reveals a lot of opportunities for the
researchers, on the ground of which my motivation and proposed work in based!’.
After critically analyzing literature of Software Refactoring tools, we found that:

175

JPUHS, Vol. 34, No. 01, January — June 2021

1. Accuracy & Performance Issue prevails in many of these refactoring tools.
2. Most tool were tested on smaller and proprietary applications.

3. Most of the tools are language dependent i.e., they refactor software of a
single Language only.

4. All available Refactoring opportunities are not supported in any tool.

5. None of the tool deals with the refactoring of all kind of Code Smells. (Mostly
tools refactor 4-5 Code Smells out of 22+ known source code Smells).

; Destan T - ‘
¥ tetm [ewpdnlome) M | e SRR s Bl Ty bl mDe) [T e | TSk
H (Lanzmg) o) Pieziwaf) (Aecunagy)

FFarz - m e i}

Cadaley = = A B

Duatee E: tm e i

‘o eethod o chjstbouedary

sy

71 R

drremicgrogna il

i
>-.

Table: List of Software Refactoring Tools

Proposed Methodological Tool

Since 1997 to 2018, plenty of software refactoring tools has been developed.
There are several studies available on software refactoring tools that demonstrate
different software refactoring tools, approaches and detection methods of code
smells (the initial step towards software refactoring!’. Despite these developments
and research since last 2 decades, there is still a list of limitations such as accuracy
issue, lack of community trust towards automated refactoring tools'®. Thus, further
enhancements in this field are inevitable and there should be a refactoring tool that
improves human trust and facilitate automated refactoring with required
accuracy'.

Refactoring is essentially a step ahead from code smells detection towards their
eradication?®. In our previous work, we after critically analyzing literature,
highlighted the limitations of code smells detection tools and techniques. Later on,

176

Historical Perspective of Software Refactoring Tools towards Future Solution

we proposed a lightweight code smell detection approach — which is based on the
combination of Regex based source code parsing technique and software metrics?'.
Based on that approach we build a prototyping tool “Generic Code Smell Detector
- GCSD” which is an (Sparx System) Enterprise Architecture Plug-in and have
ability to detect all 22 code smells identified by fowler from multiple languages??.
After the successful detection of different code smells from the source code of
multiple languages, now refactoring of these smelled areas (detected by GCSD) is
obligatory?’.

Conclusion

Refactoring is a process of refining and maintaining software code without
disturbing its functionality. Literature review on refactoring reveals that a lot of
work on refactoring concepts, approaches, tools, and techniques has been done in
the past twenty years. Our critical literature review highlighted several limitations
in software refactoring tools and we found that accurate software Refactoring is
heavily based on the appropriate detection of code bad smells. To cope up with
limitations in existing software refactoring tools we will extend our prototyping
tool i.e., Generic Code Smell Detection (GCSD) which is based on code smell
detection. GCSD tool will have the ability to not only detect code smells from
multiple languages but also suggest and apply the suitable refactoring to
automatically correct these smells from the source code. We will test our tool on
various projects developed in multiple languages such as Java, Python, C# to
measure its effectiveness and accuracy for the community.

177

JPUHS, Vol. 34, No. 01, January — June 2021

Notes & References

! Dig, M., Griswold Danny, William G., Emerson Murphy-Hill, and Schifer. 2014. “The
Future of Refactoring (Dagstuhl Seminar 14211.” Drops. Dagstuhl. De 4: 40-67,

2 Opdyke, W. F. (1992). Refactoring object-oriented frameworks.

3 Abebe, M., and C. Yoo. 2014. “Classification and Summarization of Software Refactoring
Research: A Literature Review Approach.”

4 Murphy-Hill, Emerson. 2006. “Improving Usability of Refactoring Tools.” In Companion
to the 21st ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications - OOPSLA *06. New York, New York, USA: ACM Press.

5 Mkaouer, Mohamed Wiem, Marouane Kessentini, Slim Bechikh, Mel 6} Cinnéide, and
Kalyanmoy Deb. 2016. “On the Use of Many Quality Attributes for Software Refactoring:
A Many-Objective Search-Based Software Engineering Approach.” Empirical Software
Engineer 21, no. 6: 2503-45.

6 Mens, T., and T. Tourwe. 2004. “A Survey of Software Refactoring.” IEEE Transactions
on Software Engineering 30, no. 2: 126-39.

7 Lientz, B. P., and E. B. Swanson. 1980. “Software Maintenance Management: A Study of
the Maintenance of Computer Application Software in 487 Data Processing Organizations.”
Softw. Maint. Manag. a Study Maint. Comput. Appl. Softw 4: 294,

8 Guimaraes, Tor. 1983. “Managing Application Program Maintenance Expenditures.”
Communications of the ACM 26, no. 10: 739-46.

9 Coleman, D., D. Ash, B. Lowther, and P. Oman. 1994. “Using Metrics to Evaluate
Software System Maintainability.” Computer 27, no. 8: 44—49.

10 Glass, R. L. 1998. “Maintenance: Less Is Not More.” IEEE Software 15, no. 4: 67—68.

I Griswold, William G., and David Notkin. 1993. “Automated Assistance for Program
Restructuring.” ACM Transactions on Software Engineering and Methodology 2, no. 3:
228-69.

12 Arnold, R. S. 1986. “An Introduction to Software Restructuring.” Tutor. Softw. Restrict.

13 Fowler, M. 1999. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley.

14 Opdyke, W. F. 1992. “Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks.”

15 Rasool, Ghulam, and Zeeshan Arshad. 2015. “A Review of Code Smell Mining
Techniques: Code Smell Mining Techniques.” Journal of Software (Malden, MA) 27, no.
11: 867-95.

16 Roberts, Don, John Brant, and Ralph Johnson. 1997. “A Refactoring Tool for Smalltalk.”
Theory and Practice of Object Systems 3, no. 4: 253—-63.

7 Ren, S., G. Butler, K. Rui, J. Xu, W. Yu, and R. Luo. 1999. “A Prototype Tool for Use
Case Refactoring.” Inf. Syst, 173-178,

18 Jemerov, Dmitry. 2008. “Implementing Refactorings in IntelliJ IDEA.” In Proceedings of
the 2nd Workshop on Refactoring Tools - WRT ’08. New York, New York, USA: ACM
Press.

19 Nongpong, K., and J. T. Boyland. 2012. “Integrating ‘Code Smells’ Detection with
Refactoring Tool Support.”

178

Historical Perspective of Software Refactoring Tools towards Future Solution

20 Gil, Yossi, and Matteo Orru. 2017. “The Spartanizer: Massive Automatic Refactoring.”
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE.

2Mealy, E., and P. Strooper. 2006. “Evaluating Software Refactoring Tool Support.” In
Australian Software Engineering Conference (ASWEC’06). IEEE.

22 Mumtaz, Haris, Mohammad Alshayeb, Sajjad Mahmood, and Mahmood Niazi. 2018.
“An Empirical Study to Improve Software Security through the Application of Code
Refactoring.” Information and Software Technology 96: 112-25.

23 Tsantalis, Nikolaos, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2008.
“JDeodorant: Identification and Removal of Type-Checking Bad Smells.” In 2008 12th
European Conference on Software Maintenance and Reengineering. IEEE.

179

