
 

 

Abstract—In this paper discrete time nonlinear Bayesian filter 

using Gram Charlier Series Mixture (GCSM) model has been 

developed. Optimal nonlinear sequential state estimation can be 

described in a unified way by recursive Bayes’ formula. The most 

important quantity of interest in Bayesian recursive formulation 

is state probability distribution of the system conditioned on 

available measurements. Exact optimal solution to Bayesian 

filtering problem is intractable as it requires an infinite 

dimensional process. Bayes’ probability distribution can be 

approximated by orthogonal expansion of probability density 

function in terms of higher order moments of the distribution. In 

general, better series approximations to Bayes’ distribution can 

be achieved by using higher order moment terms and Hermite 

polynomials termed as Gram Charlier Series (GCS). Sequential 

Monte Carlo (SMC) method has been adopted for approximating 

state predictive and filtering distributions parameterized as 

GCSM. GCSM based parametric bootstrap particle filters are 

derived for flexible use depending on inference problems under 

sparse measurement environment. Application of these 

sequential filters for satellite orbit determination using radar 

measurements is presented. The results have shown 

better/comparable performances over other SMC filtering 

methods such as Particle Filter and Gaussian Mixture Particle 

Filter (GMPF) under sparse measurement availability. 

 
Index Terms— Hermite polynomials; Gram Charlier Series; 

Gram Charlier Series Mixture Model; Monte Carlo; Bayes’ 

estimation; Satellite orbit determination; Bootstrap filters; 

 

I. INTRODUCTION 

fficient algorithms for real time filtering of nonlinear 

dynamic systems based on Gaussian assumption of state 

prior and posterior Probability Density Function (PDF) 

includes the Extended Kalman Filter (EKF), Iterated Extended 

Kalman filter (IEKF) and variations such as H∞EKF [1][2][3]. 

These methods may perform suboptimal for estimation of 

certain nonlinear problems with multi-modal or heavy tailed 

posterior PDFs [4]. The Gaussian Sum Filter (GSF) [5] 

considers this issue by approximating the posterior PDF with a 

Gaussian Mixture Model (GMM) which is essentially 

interpreted as a parallel bank of EKFs. However, due to the  
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use of the EKF as a cardinal building block, it also suffers 

from similar shortcomings as the EKF. Significant 

improvements in approximations of posterior statistics using 

sigma points as in Sigma Point Filters Family (SPFF) were 

developed which provides better results and serves as efficient 

alternatives to EKF [6][7]. These algorithms are based on 

Gaussian assumption of the nonlinear system equations and 

commonly known as Unscented Kalman Filter (UKF) [6]. An 

efficient improvement to UKF based on an adaptive technique 

to overcome measurement and dynamic model mismatch is 

presented in [7]. The use of orthogonal series i.e., Hermite 

polynomials for correction to a Gaussian PDF was first 

presented by [8][9] known as Gram Charlier Series (GCS) or 

Edgeworth series. Edgeworth series has slight variations in 

ordering of Hermite polynomials terms [10]. Culver developed 

nonlinear filter based on GCS for continuous-discrete filtering 

paradigm [11]. Minimum Mean Square Estimates (MMSE) 

which is minimum variance solution of the state is developed 

by approximating Bayesian posterior PDF as Gaussian density 

multiplied with multidimensional Hermite polynomials [12]. 

Closed form analytical MMSE solutions for nonlinear filtering 

problem using third order GCS were derived. Numerical 

techniques like Gauss Hermite Quadrature [13] has also been 

used extensively to solve GCS based PDFs inside Bayesian 

integrals owing to their convenient form [14][15][16][17]. In 

method employing GCS developed by Challa [15] higher 

order moments were propagated using ito differential rule to 

compute coefficients of the series [18] and Bayes formula was 

solved using Gauss Hermite Quadrature using EKF or IEKF 

generated quadrature points. Edgeworth filters were developed 

by Horwood employing Gauss Hermite Quadrature based 

solution of Bayesian integrals for space surveillance and 

tracking [16]. Most of the dynamical systems in various 

applications such as satellite tracking and navigation systems 

are nonlinear [18][19]. This poses a substantial challenge to 

aerospace engineers and scientists to find efficient algorithms 

for real time estimation and prediction of such dynamical 

systems from the sequential observations [19][20]. Tightly 

coupled Global Positioning System (GPS) Pseudo-Range / 

Inertial Measurement Unit (IMU) and Precise Point Position 

(PPP)/IMU navigation systems employed in aerospace 

systems show nonlinearity during large IMU misalignments 

and GPS outages. To keep the advantages of the nonlinear 

filtering methods in dealing with such nonlinear systems, a 

Cubature Kalman Filter (CKF) [21] + EKF hybrid filtering 
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method based on dual estimation framework is proposed by 

[20]. CKF is a nonlinear filtering method based on the 

spherical-radial Cubature rule. Being a deterministic sampling 

filtering method, CKF needs 2n (n=states/parameters of the 

system) Cubature points to propagate the state and covariance 

matrix, which shows a relatively smaller computational load 

than the UKF, as UKF mostly needs 2n+1 sigma points for the 

nonlinear states’ propagation [20]. A class of filtering methods 

based on the Sequential Monte Carlo (SMC) approach had 

been surfaced in the literature known as Bootstrap Particle 

Filtering (PF) [22]. SMC can be approximately defined as a 

collection of methods that employs a Monte Carlo simulation 

scheme in order to resolve on line estimation and prediction 

requirements. The SMC technique achieves filtering by 

producing ensemble of weighted samples of the state variables 

or parameters in a recursive manner. Discrete samples are 

used to represent a complicated probability distribution. 

Importance sampling and weighted resampling are performed 

to complete the online filtering. There have also been many 

efficient modifications and improvements on these methods 

[23][24][25][26]. In this paper GCS Mixture (GCSM) model 

[27] is proposed for approximating state prior and posterior 

PDF to augment and improve the standard PF.  

II. OPTIMAL BAYESIAN DISCRETE FILTERING 

In filtering applications the problem is to recursively 

estimate posterior PDF for the states as one receives the 

observations. Consider the nonlinear Stochastic Discrete State 

Space Model (DSSM) [4]: 

 

𝐱𝑘 = 𝐟(𝐱𝑘−1) + 𝚪𝑘𝐰𝑘 

𝐲𝑘 = 𝐡(𝐱𝑘, 𝑘) + 𝐯𝑘  

(1) 

(2) 

 

where, 𝐱𝑘 ∈ ℝ𝑑 is the d-dimensional state vector to be 

estimated, denoted with discrete time subscript “k”, 𝐟(. ) ∈
ℝ𝑑×1 is a nonlinear function which evolves the state from 

(𝑘 − 1) to 𝑘 discrete instant of time, 𝚪𝑘 ∈ ℝ𝑑×𝑚 is a 

dispersion matrix, 𝐲
𝑘

∈ ℝ𝑞 is a q-dimensional measurement 

vector, 𝐡(. ) ∈ ℝ𝑞×1 is nonlinear measurement function of 

evolved state, 𝐰𝑘 ∈ ℝ𝑚 and 𝐯𝑘 ∈ ℝ𝑞 is the m-dimensional 

and q-dimensional mutually independent additive white 

Gaussian process and measurement noise variables, 

respectively. The whiteness of noise variables is equivalent to 

requiring the state and measurement sequences to be Markov 

processes (the development of filtering algorithm is restricted 

here to such processes only). The state variable 𝐱𝑘 is usually 

considered as hidden variable, being measured only through 

𝐲
𝑘
 at discrete time instants. The estimation problem is termed 

nonlinear if at least one of the Equations: 1 or 2 is the 

nonlinear function of the state. In a Bayesian framework 

posterior PDF of the state 𝑝(𝐱𝑘|𝐲1:𝑘) given all the 

observations 𝐲1:𝑘 = {𝐲𝟏, 𝐲2, … , 𝐲𝑘} constitutes the complete 

solution to the probabilistic inference problem and allows to 

compute any function of the state 𝑔(𝐱𝑘).  The nonlinear state 

space model given in Equation: 1 specify conditional 

transition PDF, 𝑝(𝐱𝑘|𝐱𝑘−1, 𝐲1:𝑘−1) of the current state given 

the previous state and complete history of previous 

observations. Equation: 2 specify the likelihood of current 

observation 𝑝(𝐲𝑘|𝐱𝑘) given the current state. The predictive 

conditional PDF 𝑝(𝐱𝑘|𝐲1:𝑘−1) is defined through Chapman-

Kolmogorov Equation (CKE) expressed as [1][19]: 

 

𝑝(𝐱𝑘|𝐲1:𝑘−1)

= ∫ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝐲1:𝑘−1)𝑝(𝐱𝑘−1|𝐲1:𝑘−1)𝑑𝐱𝑘−1

+∞

−∞
 

(3) 

 

Here the previous posterior PDF at 𝑘 − 1 instant is defined as 

𝑝(𝐱𝑘−1|𝐲1:𝑘−1) which has become prior PDF for the 𝑘 step. 

The correction or measurement update step generates the 

posterior PDF function of the form: 

 

𝑝(𝐱𝑘|𝐲1:𝑘) = 𝐶𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐲1:𝑘−1) 
(4) 

where, C is the normalization constant given by 

 

𝐶 ≜ 𝑝(𝐲𝑘|𝐲𝑘−1)

= (∫ 𝑝(𝐲𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐲1:𝑘−1)𝑑𝐱𝑘

+∞

−∞

)

−1

 

(5) 

 

The filtering problem is to estimate in recursive manner 

moments of 𝐱𝑘 given 𝐲1:𝑘. For any distribution 𝑝(𝐱𝑘|𝐲1:𝑘) this 

involves recursive estimation of the expected value of any 

function of 𝐱𝑘 i.e., 𝐸[𝑔(𝐱𝑘)] utilizing posterior PDF obtained 

from Equation: 4, which requires computations of integrals of 

the form: 

 

𝐸[𝑔(𝐱𝑘)] = ∫ 𝑔(𝐱𝑘)𝑝(𝐱𝑘|𝐲1:𝑘)
+∞

−∞

𝑑𝐱𝑘  

(6) 

For example, an optimal estimate of the state 𝑔(𝐱𝑘) = 𝐱𝑘 in 

terms of Minimum Mean Square Error (MMSE) [1][4] 

estimation criterion would be: 

 

 
𝐸[𝑔(𝐱𝑘)] ≜ �̂�𝑘 = ∫ 𝐱𝑘𝑝(𝐱𝑘|𝐲1:𝑘)𝑑𝐱𝑘

+∞

−∞

 

 

 

(7) 

 

where, 𝐸[. ] is the expectation operator. 

III. GRAM CHARLIER SERIES AND ITS MIXTURE MODEL 

A. Univariate Gram Charlier Series 

Univariate GCS expansion of the PDF around its best 

Gaussian estimate 𝑝𝑔(𝑥𝑘 , μ, σ2) with mean µ and variance σ2 

is given by [27]: 

 

𝑝
𝑔𝑐𝑠

(𝑥𝑘) ≈ 𝑝
𝑔
(𝑥𝑘, μ, σ2) × 

[1 +
1

3!
𝜅3ℎ3(𝑥𝑘, μ, σ2) +

1

4!
𝜅4ℎ4(𝑥𝑘, μ, σ2) + ⋯ ] 

 

(8) 



 

 

where, 

 𝜅𝑖 is 𝑖𝑡ℎ standardized cumulant (𝜅𝑖 =
𝜅𝑖

𝜎𝑖 ) and ℎ𝑖 is the 

univariate Hermite polynomial of order i. The standard 

Hermite polynomials obtained by putting μ = 0 and σ2 = 1 

are defined as [10]: 

 

ℎ1(𝑧) = 𝑧, ℎ2(𝑧) = 𝑧2 − 1 

ℎ3(𝑧) = 𝑧3 − 3𝑧, ℎ4(𝑧) = 𝑧4 − 6𝑧2 + 3 

 

 

 

 

 

 

(9) 

where,  

 

𝑧 =
(𝑥 − μ)

𝜎
 

B. Multivariate GCS  

If all the moments of a d-dimensional random vector 𝐱𝑘 

are finite, then any probability density 𝑝(𝐱𝑘) can be 

represented by a Gaussian density 𝑝
𝑔
(𝐱𝑘, 𝛍

𝑘
, 𝐏𝑘) with mean 

𝛍
𝑘
and 𝐏𝑘 covariance matrix multiplied by an infinite series 

of Hermite polynomials as [10]: 

 

𝑝𝑔𝑐𝑠(𝐱𝑘) ≈ 𝑝𝑔(𝐱𝑘, 𝛍𝑘, 𝐏𝑘) 

× [1 + ∑
𝜅𝑖,𝑗,𝑙

3!
ℎ𝑖𝑗𝑙(𝐱𝑘, 𝛍𝑘, 𝐏𝑘)

𝑖,𝑗,𝑙

+ ⋯ ] 

(10) 

 

where,  

function ℎ𝑖𝑗𝑙(𝐱𝑘, 𝛍𝑘, 𝐏𝑘) is multidimensional Hermite 

polynomials, with corresponding input dimensions 𝑖, 𝑗, 𝑙 ∈
{1, … 𝑑}, and 𝜅𝑖,𝑗,𝑙 is the corresponding third cumulant over 

input dimensions 𝑖, 𝑗, 𝑙, and sum over all input dimensions 

𝑖, 𝑗, 𝑙 is considered. Hermite polynomials can be obtained by 

differentiating 𝑝
𝑔
(𝐱𝑘, 𝛍

𝑘
, 𝐏𝑘)  and defined in [10]: 

 

ℎ𝑖(𝐱𝑘, 𝛍
𝑘
, 𝐏𝑘) = P𝑖𝑗

−1 (𝑥𝑗 − μ
𝑗
) 

ℎ𝑖𝑗(𝐱𝑘, 𝛍
𝑘
, 𝐏𝑘) = ℎ𝑖ℎ𝑗 − P𝑖𝑗

−1 

ℎ𝑖𝑗𝑙(𝐱𝑘, 𝛍
𝑘
, 𝐏𝑘) = ℎ𝑖ℎ𝑗ℎ𝑙 − ℎ𝑖P𝑗𝑙

−1{3} 

 

 

 

 

 

(11) 

 

where, 

P𝑖𝑗
−1 and similar forms indicate 𝑖𝑗𝑡ℎ component of inverse of 

covariance matrix, 𝑥𝑗 and μ
𝑗
 indicate 𝑗𝑡ℎ variable and its mean 

respectively. The subscripts implicitly imply summation over 

indices. The connection between cumulants and multivariate 

central moments is defined as [10]: 

 

 

𝜅𝑖,𝑗 = P𝑖𝑗 

𝜅𝑖,𝑗,𝑙 = P𝑖𝑗𝑙

(3)
 

 

 

 

(12) 

 

where, 

 P𝑖𝑗𝑙
(3)

 and similar forms indicate 𝑖𝑗𝑙𝑡ℎ component of third order  

(co-skewness) tensor. The bracket notations used in Equation: 

11 is sum over combinations of indices. For example: 

 

 

P𝑖𝑗P𝑙𝑚{3} = P𝑖𝑗P𝑙𝑚 + P𝑖𝑙P𝑗𝑚 + P𝑖𝑚P𝑗𝑙 

 

C. Gram Charlier Series Mixture Model 

GCS expansions do not estimate well near the centroid of 

the PDF also it does not always result in positive definite 

approximations [28]. To improve density estimation accuracy 

one can increase the order of these expansions, but 

unfortunately it renders the estimate more sensitive to outliers. 

Rather than increasing the order of the GCS, it was suggested 

by [27] to use mixtures of GCS expanded Gaussian kernels of 

moderate order.  

 

1) Univariate GCSM Model 

Considering Univariate GCS expressed in Equation: 8, a 

mixture of such PDF (expanded until order four of Hermite 

polynomials) can be formulated as: 

 

𝑝
𝑔𝑐𝑠𝑚

(𝑥𝑘) ≈ ∑ 𝛼𝑘

(𝑔)
𝑝

𝑔
(𝑥𝑘, 𝜇

𝑘

(𝑔)
, σ𝑘

2(𝑔)
)

𝐺

𝑔=1

 

× [1 +
1

3!
𝜅3

(𝑔)
ℎ3(𝑥𝑘, 𝜇

𝑘

(𝑔)
, σ𝑘

2(𝑔)
)

+
1

4!
𝜅4

(𝑔)
ℎ4(𝑥𝑘, 𝜇

𝑘

(𝑔)
, σ𝑘

2(𝑔)
) + ⋯ ] 

 

(13) 

 

where “G” are the number of mixands of  the mixture model. 

The parameters of above PDF can be estimated using 

statistical Expectation Maximization (EM) Algorithm 

provided in ReBEL Matlab Toolkit [29][30][31]: 

 

𝛼(𝑔) =
1

𝑁
∑ 𝜏𝑗

(𝑔)

𝑁

𝑗

, 𝜇1
(𝑔)

=
1

𝑁
∑

𝜏𝑗
(𝑔)

𝑥𝑗

𝛼(𝑔)

𝑁

𝑗

 

𝜇2
(𝑔)

=
1

𝑁
∑

𝜏𝑗
(𝑔)

(𝑥𝑗 − 𝜇1
(𝑔)

)
2

𝛼(𝑔)

𝑁

𝑗

 

𝜇3
(𝑔)

=
1

𝑁
∑

𝜏𝑗
(𝑔)

(𝑥𝑗 − 𝜇1
(𝑔)

)
3

𝛼(𝑔)

𝑁

𝑗

 

 

 

(14) 

where “N” are the number of data particles, 𝜏𝑗
(𝑔)

 is Gaussian 

posterior probabilities and 𝜇
1
, 𝜇

2
, 𝜇

3
 are mean, second, and 

third order moments respectively. Likewise, higher order 

moments can be computed. The standardized third cumulant 

is: 

 



 

𝜅3
(𝑔)

=
𝜇3

(𝑔)

√𝜇2
(𝑔)

𝜇2
(𝑔)

𝜇2
(𝑔)

 

 

 

(15) 

2) Multivariate GCSM Model 

 

The Multivariate GCSM model expansion up to order 

three about its Gaussian estimates is given by [10]: 

 

𝑝
𝑔𝑐𝑠𝑚

(𝐱𝑘) ≈ ∑ 𝛼𝑘

(𝑔)
𝑝

𝑔
(𝐱𝑘, 𝛍

𝑘

(𝑔)
, 𝐏𝑘

(𝑔)
) 

𝐺

𝑔=1

 

× [1 + ∑
𝜅𝑖,𝑗,𝑙

(𝑔)

3!
ℎ𝑖𝑗𝑙(𝐱𝑘, 𝛍

𝑘

(𝑔)
, 𝐏𝑘

(𝑔)
) + ⋯

𝑖,𝑗,𝑙

] 

(16) 

The parameters of above PDF, moments and cumulants can 

also be estimated using EM Algorithm [29][30][31] using 

following equations: 

𝛼(𝑔) =
1

𝑁
∑ 𝜏𝑗

(𝑔)

𝑁

𝑗

 

𝛍(𝑔) =
1

𝑁
∑

𝜏𝑗
(𝑔)

𝐱𝑗

𝛼(𝑔)

𝑁

𝑗

 

𝐏(𝑔) =
1

𝑁
∑

𝜏𝑗
(𝑔)

(𝐱𝑗 − 𝛍(𝑔))(𝐱𝑗 − 𝛍(𝑔))
T

𝛼(𝑔)

𝑁

𝑗

 

𝐏(𝟑)(𝑔)

=
1

𝑁
∑

𝜏𝑗
(𝑔)

(𝐱𝑗 − 𝛍(𝑔))(𝐱𝑗 − 𝛍(𝑔))
T

⊗ (𝐱𝑗 − 𝛍(𝑔))
T

𝛼(𝑔)

𝑁

𝑗

 

 

 

 

(17) 

 

where, time subscript “k” has been omitted for clarity and 

replaced with dimension variable “j” and ⊗ denotes 

Kronecker product.  

 

IV. GAUSSIAN COPULA RANDOM NUMBER GENERATION 

One of the most vital components of GCS based Particle 

filtering algorithms is the random number generator. Gaussian 

Copula is used to generate correlated multivariate random 

numbers with GCS marginal PDFs [32][33]. For example the 

Bi-variate Gaussian Copula function could be written as: 

 

 

𝐶(u, v) = 𝒩𝜌(𝜙−1(u), 𝜙−1(v)) 

=
1

2𝜋√1 − 𝜌2
∫ ∫ 𝑒

−(
𝑠2−2𝜌𝑠𝑡+𝑡2

2(1−𝜌2)
)

𝜙−1(v)

−∞

𝑑𝑠𝑑𝑡
𝜙−1(u)

−∞

 

 

 

 

 

 

 

 

 

 

 

(18) 

 

where, 

 

 u, v and 𝜌 are marginal probability distributions for Bi-variate 

random numbers and correlation coefficient respectively. We 

chose GCS as marginal distribution for each dimension in 

multivariate distributions and select 𝜌 with Gaussian Copula 

to generate correlations. The following steps are used to 

generate Gaussian Copula based random numbers with GCS 

marginals up to order three: 

 

 Step 1. Consider 𝐱𝑘 is d-dimensional vector random 

variable. Compute mean µ, variance σ2, skew μ3 for 

each dimension separately. 

 Step 2. Compute linear correlation 𝜌 or rank 

correlation 𝜏 [33] to construct dependency. For 

example the multivariate linear correlation is 

expressed as 

𝜌𝑖𝑗 =
P𝑖𝑗

√P𝑖𝑖P𝑗𝑗

 

where, 

P𝑖𝑗 , 𝑖𝑗 component of covariance matrix 𝐏 

 Step 3. Establish grid for each dimension. 

 Step 4. Convert statistics from Step 1 to standardized 

Cumulants 𝜅𝑖 =
𝜅𝑖

𝜎𝑖 where 𝜅𝑖 are cumulants expressed 

in terms of central moments (only first four are 

shown): 

𝜅2 = 𝜎2 = μ2 

𝜅3 = μ3 

𝜅4 = μ4 − 3μ2
2 

 Step 5. Compute Cumulative Distribution Function 

(CDF) for Gram Charlier Marginals for each 

dimension as: 

 

CDF = ∫ 𝑝𝐺(𝑡𝑖 , μ, σ) [1 +
1

3!
𝜅3ℎ3(𝑡𝑖, μ, σ) + ⋯ ]

x𝑖

−∞

𝑑𝑡𝑖 

 

 Step 6. Compute inverse CDF 𝜙−1(𝑢𝑖) for each 

dimension from step (5) by inverting the function.  

 Step 7. Generate Gaussian Copula Uniform random 

variables with dependency structure as in Step 2 by 

writing a Matlab function copularnd. 

Generate vector random variables 𝐱𝑘 by table look up 

method of probabilities from above mentioned Step 3 and Step 

6 with structure provided by Step 7. 

V. GCSM PARTICLE FILTERING 

A. Particle Filtering 

Particle filtering is based on MC simulations to obtain 

approximation of PDFs given in Equations: 3 to 7. The main 

objective is to sequentially sample and resample particles from 

a particular choice of PDF known as proposal PDF, 

considered by the filter as approximation of Bayes’ posterior 



 

PDF. The choice of proposal PDF is a major issue for the 

different variants of PF [19][23][24]. PFs employ MC 

integration scheme to compute integrals. Expectations for 

functions of states (Equation: 1) are computed from particles 

drawn from proposal PDF. The conditional transition PDF 

specified by nonlinear state space model given in Equation: 1, 

𝑝(𝐱𝑘|𝐱𝑘−1, 𝐲1:𝑘−1) is choice of proposal PDF for generic PF 

also known as Sequential Importance Sampling-Resampling 

(SIS-R) PF [22]. 

B. GCSM Particle Filtering 

Based on improved fidelity of GCSM model demonstrated 

in ref [27][28], truncated GCS up to order three in a mixture 

model configuration is used in nonlinear SMC filtering. The 

Bayes’ posterior and noise PDF in this filter are considered as 

GCSM. However, one may consider additive Gaussian noise 

also. The compact form of GCSM can be expressed as:  

 

𝑝𝑔𝑐𝑠𝑚(𝐱𝑘) = ∑ 𝛼𝑘
(𝑔)

𝑝𝑔𝑐𝑠(𝐱𝑘, 𝛍𝑘
(𝑔)

, 𝐏𝑘
(𝑔)

, 𝐏𝑘
(𝟑)(𝑔)

)

𝐺

𝑔=1

 

 

(19) 

 
An important point to note is the ability of the GCSMPF to 

incorporate (additive) highly non-Gaussian process noise 

expressed compactly as: 

 

 

𝑝𝑔𝑐𝑠𝑚(𝐰𝑘) = ∑ 𝛽𝑘
(𝑖)

𝑝𝑔𝑐𝑠(𝐰𝑘 , 𝛍𝐰,𝑘
(𝑖)

, 𝐐𝑘
(𝑖)

, 𝐐𝑘
𝟑(𝑖)

)

𝐼

𝑖=1

 

(20) 

 

During the time update, firstly the samples from the PDF 

expressed in Equations: 19 and 20 are drawn as per weights 

𝛼𝑘

(𝑔)
 and 𝛽

𝑘
(𝑖). One may use the Sequential Importance 

Resampling (SIR) or Residual Resample (RR) as explained in 

Ref [4][31]. These samples are propagated through the 

nonlinear dynamical system 𝐟(. ) (Equation: 1). By 

approximating the propagated distribution as GCSM one 

employs EM to obtain time updated “G” component state 

predictive GCSM PDF. The proposal PDF in this filter is 

considered as state predictive PDF available from the time 

update. In measurement update the samples are redrawn from 

state predictive GCSM PDF and the weights for “M” particles 

of each mixand are computed using the observation likelihood 

𝑝(𝐲𝑘|𝐱𝑘 = 𝒙𝑘
(𝑖)

) considered Gaussian as in Ref [23][24][31]. 

The weighted updates of parameters for each mixand are 

computed as: 

 

𝛍𝑘
(𝑔)

=
∑ 𝑤𝑘

(𝑗)(𝑔)
𝒙𝑘

(𝑗)(𝑔)𝑀
𝑗=1

∑ 𝑤𝑘
(𝑗)(𝑔)𝑀

𝑗=1

, 

𝐏𝑘
(𝑔)

=
∑ 𝑤𝑘

(𝑗)(𝑔)(A)(A)T𝑀
𝑗=1

∑ 𝑤𝑘
(𝑗)(𝑔)𝑀

𝑗=1

 

𝐏𝑘
(𝟑)(𝑔)

=
∑ 𝑤𝑘

(𝑗)(𝑔)(A)(A)T ⊗ (A)T𝑀
𝑗=1

∑ 𝑤𝑘
(𝑗)(𝑔)𝑀

𝑗=1

 

 

 

(21) 

where, 

 A =  𝒙𝑘
(𝑗)(𝑔)

− 𝛍𝑘
(𝑔)

. The Pseudo-code for the filter is 

presented in Table: 1. 

 

 

TABLE I.  PSEUDO-CODE GCSM PARTICLE FILTER 

 

Time Update 

1. For 𝑔 = 1, … 𝐺, obtain samples as per the weights 𝛼𝑘−1
(𝑔)

 

{𝐱(𝑘−1)
(𝑗)

}
𝑗=1

𝑀
~𝑝𝑔𝑐𝑠𝑚(𝐱𝑘−1|𝐲1:𝑘−1)

= ∑ 𝛼𝑘−1
(𝑔)

𝑝𝑔𝑐𝑠 (𝐱𝑘−1, 𝛍𝑘−1
(𝑔)

, 𝐏𝑘−1
(𝑔)

, 𝐏𝑘−1
(𝟑)(𝑔)

)

𝐺

𝑔=1

 

2. For 𝑖 = 1, … , 𝐼, obtain samples {𝐰(𝑘−1)
(𝑗)

}
𝑗=1

𝑀

 from 

𝑝𝑔𝑐𝑠𝑚(𝐰𝑘−1) as per weights 𝛽𝑘−1
(𝑖)

  

3. Propagate particles {𝐱(𝑘−1)
(𝑗)

}
𝑗=1

𝑀

 through nonlinear function 

Equation:  1 from time instants 𝑘 − 1 → 𝑘 to get {𝐱(𝑘)
(𝑗)

}
𝑗=1

𝑀

  

4. Add particles from 2 and 3 above. 

5. Perform EM step on propagated on particles from 4 above 
to extract “G” component GCSM time updated predictive 
PDF: 

𝑝𝑔𝑐𝑠𝑚(𝐱𝑘|𝐲1:𝑘−1) = ∑ 𝛼𝑘
(𝑔)

𝑝𝑔𝑐𝑠(𝐱𝑘, 𝛍𝑘
(𝑔)

, 𝐏𝑘
(𝑔)

, 𝐏𝑘
(𝟑)(𝑔)

)

𝐺

𝑔=1

 

 

 

Measurement Update 

 

1. For 𝑔 = 1, … 𝐺, obtain samples from 𝑝𝑔𝑐𝑠
(𝑔) (𝐱𝑘) and denote 

them as {𝐱𝑘
(𝑗)(𝑔)

}
𝑗=1

𝑀

. 

2. For 𝑔 = 1, … 𝐺 each j = 1,…,M, compute weights , 

𝑤𝑘
(𝑗)(𝑔)

= 𝑝 (𝐲𝑘|𝐱𝑘 = 𝒙𝑘
(𝑗)(𝑔)

) 

3. For 𝑔 = 1, … 𝐺, Compute mean, covariance and tensor 

components 𝐏𝑘
(𝟑)(𝑔)

: (see Equation: 21) 

𝛍𝑘
(𝑔)

=
∑ 𝑤𝑘

(𝑗)(𝑔)
𝒙𝑘

(𝑗)(𝑔)𝑀
𝑗=1

∑ 𝑤𝑘
(𝑗)(𝑔)𝑀

𝑗=1

, 

𝐏𝑘
(𝑔)

=
∑ 𝑤𝑘

(𝑗)(𝑔)
(𝒙𝑘

(𝑗)(𝑔)
− 𝛍𝑘

(𝑔)
)(𝒙𝑘

(𝑗)(𝑔)
− 𝛍𝑘

(𝑔)
)

T
𝑀
𝑗=1

∑ 𝑤𝑘
(𝑗)(𝑔)𝑀

𝑗=1

 

4. Update weights 𝛼𝑘
(𝑔)

= 𝛼𝑘−1
(𝑔) ∑ 𝑤𝑘

(𝑗)𝑔𝑀
𝑗=1

∑ ∑ 𝑤𝑘
(𝑗)𝑔𝑀

𝑗=1
𝐺
𝑔

, 𝛼𝑘
(𝑔)

=
𝛼𝑘

(𝑔)

∑ 𝛼𝑘
(𝑔)𝐺

𝑔

 

 



 

 

Inference 

 

The conditional mean state estimate �̂�𝑘 = 𝐸[𝐱𝑘|𝐲1:𝑘] and 

Covariance can be estimated by: 

�̂�𝑘 = ∑ 𝛼𝑘
(𝑔)

𝛍𝑘
(𝑔)

𝐺

𝑔=1

, 

 �̂�𝑘 = ∑ 𝛼𝑘
(𝑔)

(𝐏𝑘
(𝑔)

𝐺

𝑔=1

+ (𝛍𝑘
(𝑔)

− �̂�𝑘) (𝛍𝑘
(𝑔)

− �̂�𝑘)
T

) 

Optional Step: Residual Resampling applied on mixture 

weights to avoid use of insignificant weights in next time step 

 

 

 

 

The pictorial form of time and measurement update for 

GCSMPF pseudo-code is described in Figure: 1 and 2 

respectively. The use of (-) superscript in 𝐱𝑘
− indicates time 

updated estimates of state variable. 

 

 

 

 

 

 
 

Fig. 1. Time update GCSMPF. 

 

 
 

Fig. 2. Measurement Update GCSMPF. 

VI. TRACKING OF A SATELLITE USING                                     

RADAR MEASUREMENTS 

 

In this section algorithms discussed for GCSMPF would now 

be implemented for tracking of a satellite using ground based 

radars. We shall compare GSCMPF with SIS-R PF and GSPF. 

The equations of motion for true model used in this 

experiment are given as: 

 

 

�̇� = 𝐯 

 

�̇� = −
𝜇𝐸

𝑟3
𝒓 + 𝒂𝐺  

 

 

(22) 

 

where, 𝒓 = [𝑋, 𝑌, 𝑍]T, 𝐯 = [𝑋,̇ �̇�, �̇�]T are position and velocity 

of a space object in ECI coordinates, v =  |𝐯|, 𝑟 = |𝒓|, 𝒂𝐺 = 

perturbation acceleration due to zonal gravitational harmonic 

up to J4.  

Given some specific initial conditions 𝐱0 = [𝒓0 𝐯0]T these 

equations (Equation: 22) are integrated using numerical 

method such as Runge-Kutta (RK-4) to get time history of 

position and velocity in ECI reference frame termed here as 

true trajectory. The true trajectory is being measured by a 

radar system fixed at some location on Earth. Now we 

describe the radar measurement system (see Figure: 3). The 

ECI position vector of satellite is related to radar range vector 

and radar site vector through following equation [19][34]: 

 

 

 𝒓 = 𝑹𝑠 + 𝝆 (23) 

 

where, 

 

 𝒓 = ECI coordinates of satellite, 

 𝑹𝑠 = ECI coordinates of radar site, and 

 𝝆 = range vector from radar site to satellite.  

 



 

The range vector 𝝆  from the radar site to satellite is described 

in Topocentric coordinate system (see Figure: 3 for 

illustration) in terms of the “zenith”, “east” and “north” as: 

 

 

 𝝆 = 𝜌𝑢�̂� + 𝜌𝑒�̂� + 𝜌𝑛�̂� (24) 

 

 
 

Fig. 3. Topocentric Coordinate System for RADAR Observations 

The range can be obtained as:  

 

 

 

 𝜌 = √𝜌𝑢
2 + 𝜌𝑒

2 + 𝜌𝑛
2

 
(25) 

 

 

 

The azimuth (az) and elevation (el) angles of a radar antenna 

are expressed by: 

 

 

𝑎𝑧 = tan−1 (
𝜌𝑒

𝜌𝑛

) 

 

 

𝑒𝑙 = tan−1 (
𝜌𝑢

√𝜌𝑒
2 + 𝜌𝑛

2
) 

(26) 

 

 

The east, north, and zenith unit vectors in Topocentric 

coordinate system is given by [34]: 

 

 

�̂� = (
− sin 𝜆 

cos 𝜆
0

) , �̂� = (

− sin  𝜑 cos 𝜆
− sin 𝜑 sin 𝜆

cos φ
) , �̂� = (

cos 𝜑 cos 𝜆
cos 𝜑 sin 𝜆

sin φ
)  

(27) 

where, 

𝜑 and 𝜆 are geographical latitude and longitude of radar site 

respectively. By defining the orthogonal transformation as: 

 

 
𝕹 = (𝒆 ̂�̂� �̂� )T  (28) 

The satellite’s Topocentric coordinates in terms of radar site 

latitude and longitude may be obtained through following 

transformation [34]: 

 

 𝝆 = (

𝜌𝑒

𝜌𝑛

𝜌𝑢

) = 𝕹(ℛ𝐳(Θ)𝒓 − 𝑹𝑠)  
(29) 

 

where, ℛ𝐳(. ) stands for rotation about z-axis and  Θ = 

Greenwich Mean Sidereal Time (GMST) [34][35]. GMST is 

also termed as Greenwich hour angle which denotes the angle 

between the mean vernal equinox of date and the Greenwich 

meridian. It is a direct measure of Earth’s rotation and 

expressed in angular units as well as time. For example 360 

degrees (2𝜋) correspond to 24 hours. Time calculations for 

satellite orbit predictions and determination are usually carried 

out in Julian Date (JD) [34] due to its continuous nature. A 

Julian Date (JD) is the number of days since noon 1 January, 

4713 BC including the fraction of day. Presently, the JD 

numbers are already quite large therefore a Modified Julian 

Date is defined as: MJD = JD − 2400000.5. Eglin US Air 

Force Base (AFB) is selected as radar site with 𝜑 =
30.2316 deg and 𝜆 = 86.2147 deg W. Each measurement 

consists of range, azimuth and elevation angles and the 

measurement errors were considered to be Gaussian distributed 

with following variances (adapted from reference [19]): 

𝜎range = 25 m, 𝜎azimuth = 0.015 deg 

𝜎elevation = 0.015 deg   

Initial conditions in terms of classical orbital elements [34] of 

a satellite to generate true trajectory are: 

 

𝑎 = 6981.0425 km 

𝑒 = 7.5629 × 10−4 

𝐼 = 51.6041 deg 

Ω = 25.0038 deg 

𝜔 = 339.4915 deg 

𝑀 = 56.8164 deg   

(30) 

 

where,  

a = semi-major axis, e = eccentricity, I = inclination,  = right 

ascension of ascending node, 𝜔 = argument of perigee and M 

= mean anomaly. The orbital period of this satellite is 96 min 

45 sec (approx). 

 



 

VII. COMPARISON OF NON LINEAR FILTERS 

Satellite initial estimates could be extremely uncertain 

especially in case of a sparsely tracked object. Therefore, we 

would observe filtering performance with uncertainty in 

position variances as 105 m2 and velocity variances as  

500 m2. s−2: 

 

�̂�0 = diag([105 105 105 500 500 500]) 

 

�̂�0
(3)

= 0 

�̂�0 = 𝐱0 + [√105 √105 √105 √500 √500 √500]
T

  

 

 

 

where, 

 𝐱0 = true initial conditions in ECI coordinates. (�̂�0) = Initial 

estimates in ECI coordinates. The position and velocity 

deviation of our initial estimate (�̂�0) from true initial state 

(𝐱0) is 316.22 m and 22.36 m. s−1 respectively. The filter 

trajectory for estimation is obtained using two body 

gravitational acceleration term perturbed by zonal harmonic 

J2. Firstly, we would consider frequency of measurements by 

the radar as 0.1 Hz for 2 min. The time history of Root Mean 

Square Error (RMSE) for position and velocity are shown in 

Figures: 4 to 9. These errors have been obtained by averaging 

over 100 runs for each filter. Two mixand mixture models are 

considered for GCSMPF and GSPF filters respectively. These 

figures indicate comparable filtering performance. After the 

first set of observations the second set of observations is taken 

once the satellite completes one orbital period. Again the 

observations are taken as 0.1 Hz for 2 min. The time history of 

Root Mean Square Error (RMSE) for position and velocity are 

shown in Figures: 10 to 15. These errors have been obtained 

after averaging 50 runs for each filter. Gaussian process noise 

is considered for these simulations. 

 
Fig. 4. Time history of position RMSE in ECI (X-Axis). 

 

 
Fig. 5. Time history of position RMSE in ECI (Y-Axis). 

 

 

 

 

Fig. 6. Time history of velocity RMSE in ECI (Z-Axis). 

 
 

Fig. 7. Time history of velocity RMSE in ECI (X-Axis) 

 



 

 

Fig. 8. Time history of velocity RMSE in ECI (Y-Axis) 

 

 

 

Fig. 9. Time history of velocity RMSE in ECI (Z-Axis) 

 

 

Fig. 10. Time history of position RMSE in ECI (X-Axis) after one orbital 

period. 

 

 

Fig. 11. Time history of position RMSE in ECI (Y-Axis) after one orbital 

period. 

 

Fig. 12. Time history of position RMSE in ECI (Z-Axis) after one orbital 

period. 

 

 
 

Fig. 13. Time history of velocity RMSE in ECI (X-Axis) after one orbital 

period 

 

 



 

 

Fig. 14. Time history of velocity RMSE in ECI (Y-Axis) after one orbital 

period. 

Fig. 15. Time history of velocity RMSE in ECI (Z-Axis) after one orbital 

period. 

VIII. CONCLUSION 

In this paper filtering algorithm based on SMC method 

using GCSM has been described. The algorithm has been 

compared with PF, GSPF for nonlinear orbit determination 

through radar measurements. The results show 

improvements/comparable performance in RMSE for ECI 

coordinates. GCS and its mixtures can be considered as better 

choice for replacement of Gaussian PDF in nonlinear filtering 

applications especially for improvement in particle filtering. 

An important aspect of filters based on higher order GCS and 

its mixture is computational complexity associated with 

generation of random numbers. Gaussian copula based 

methods are used which may not be always optimal. 

Therefore, there is a need for development of better random 

number generator for GCS. In order to implement discrete-

time filtering the continuous-time nonlinear dynamical 

systems used in the experiments are discretized using a fixed 

time step of numerical integration method (RK-4). In general 

high fidelity numerical solution is obtained by keeping a very 

short time step (order of millisecond). This significantly 

affects the speed of execution in real time particle filtering for 

satellite which owes to high dimensionality and more number 

of particles used for such problems. However, GCSMPF can 

be implemented in parallel processing using high speed Very 

Large Scale Integrated Circuit (VLSI) based implementation 

for real time filtering. 
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