
 

Abstract— Propagation properties of electromagnetic (EM) 

waves in the dense medium of neutron star are studied. It is 

observed that EM waves develop a longitudinal component when 

they propagate in such a dense medium. Renormalization scheme 

of quantum electrodynamics (QED) is used to investigate the 

behavior of EM waves in transverse and longitudinal directions. 

Medium response to EM waves indicates that the electromagnetic 

properties of the dense material are modified as a result of the 

interaction of EM waves with the matter. Using QED, expressions 

for the electromagnetic properties such as electric permittivity, 

magnetic permeability and the refractive index of dense matter are 

obtained. The results are applied to a neutron star for illustration. 
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I. INTRODUCTION 

Neutron stars are unique example of extremely dense objects 

in the universe and they contain most of the matter in the form 

of neutrons. Material in these stars is in the highly degenerate 

form and density is comparable to atomic nuclei. Fermi 

temperature in these stars is very high and particles have ultra-

relativistic energies. The quantum interactions along with ultra-

relativistic particle dynamics make such a material very 

complex. Pulsars are also believed to be rotating neutron stars 

which have very large magnetic fields of the order of 1012G 

and emit radiation in a wide spectrum ranging from radio waves 

to x-rays. Statistical properties of the material in these objects 

are completely different from ordinary matter encountered on 

Earth. Neutron stars may have small percentage of electrons 

and protons which have not been combined to produce neutrons 

due to lack of energy [1, 2]. 

 
Aim of this work is to understand the propagation 

characteristics of electromagnetic waves and response of the 

medium in which electrons are expected to have large chemical 

potential. For this purpose renormalization scheme of quantum 

electrodynamics (QED) is invoked.  

 

Perturbation techniques of QED are employed to calculate the 

vacuum polarization tensor of QED. Medium properties are 

modified significantly due to the interaction of longitudinal 

component of the electromagnetic signals with hot and dense 

matter of neutron star having large chemical potential. The 

electromagnetic properties of the medium turn out to be a 

function of temperature (T) and chemical potential of electrons 

(𝜇𝑒). 

In 2017 [3] a theoretical model based on QED was presented to 

evaluate polarization tensor of photons in a hypothetical system 

in which electron temperature was assumed to be much larger 

than the background. Matter in such a state is believed to exist 

in super dense stars. 

 

This theoretical model is useful to investigate the behavior of 

subatomic particles as a source for magnetic fields. 

Electromagnetic (EM) characteristics of the stellar medium are 

investigated in terms of electric permittivity (ϵ), magnetic 

permeability (μ) and refractive index (n) of the medium. We use 

some of the already existing results of QED [3] in an extremely 

hot and dense medium and estimate the important physical 

parameters numerically.  

 

II. CALCULATION SCHEME 

Here we present the theoretical results [4] based on QED 

renormalization and apply the results to neutron star medium 

at high temperature and density. The vacuum propagator is 

replaced with the hot and dense propagators modified by the 

Bose-Einstein distribution for bosons and Fermi-Dirac 

distribution for fermions. Following this procedure, the most 

general form of the vacuum polarization tensor can be written 

as [5, 6] 

 

 𝜋𝜇𝜈(𝐾, 𝜇𝑒) = 𝜄𝑒2 ∫
𝑑4𝑝

(4𝜋)4 𝑇𝑟{𝛾𝜇(𝛾𝛼𝑝𝛼 + 𝛾𝛼𝐾𝛼 + 𝑚)𝛾𝜐(𝛾𝛼𝑝𝛼 +

𝑚)} [
1

(𝑝+𝐾)2 −𝑚2 + Γ𝐹(𝑝 + 𝐾, 𝜇𝑒)]     [
1

𝑝2−𝑚2 +

Γ𝐹(𝑝, 𝜇𝑒)] ,  𝜋𝜇𝜈(𝐾, 𝜇𝑒) = 𝜄𝑒2 ∫
𝑑4𝑝

(4𝜋)4 𝑇𝑟{𝛾𝜇(𝛾𝛼𝑝𝛼 + 𝛾𝛼𝐾𝛼 +

𝑚)𝛾𝜐(𝛾𝛼𝑝𝛼 + 𝑚)} [
1

(𝑝+𝐾)2 −𝑚2 + Γ𝐹(𝑝 + 𝐾, 𝜇𝑒)]     [
1

𝑝2−𝑚2 +

Γ𝐹(𝑝, 𝜇𝑒)],                                                                            (1) 

Here [7], 

Γ𝐹(𝑝, 𝜇𝑒) = 2𝜋𝜄𝛿(𝑝2 − 𝑚2) [𝜃(𝑝0)𝑛𝑓(𝑝, 𝜇𝑒) +

𝜃(−𝑝0)𝑛𝑓(𝑝, −𝜇𝑒)]      (2)    

 

                                                         
Here, K the 4-Momentum of photon is satisfying the 

expressions, 

𝐾2 = 𝜔2 − 𝑘2.                                                                                                                     

where 

      𝜔 = 𝐾𝛼𝑢𝛼      and,  𝑢𝛼 = (1,0,0,0)                                  (3)                                         
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The polarization tensor has two parts, 

𝜋𝜇𝜈(𝐾) = 𝜋𝜇𝜈
𝑇=0(𝐾) + 𝜋𝜇𝜈

𝛽 (𝐾, 𝜇𝑒).                                       (4)                                

where 𝜋𝜇𝜈
𝛽

(𝐾, 𝜇𝑒) denotes the medium contribution and the 

other tensor 𝜋𝜇𝜈
𝑇=0(𝐾) denotes vacuum contribution. The 

medium contribution is given as follows, 

 

𝜋𝜇𝜈
𝛽 (𝐾, 𝜇𝑒) = −

2𝜋𝑒2

2
∫

𝑑4𝑝

(4𝜋)4 𝑇𝜏{𝛾𝜇(𝛾𝛼𝑝𝛼 + 𝛾𝛼𝐾𝛼 +

𝑚)𝛾𝜇(𝛾𝛼𝑝𝛼 + 𝑚)}[
𝛿[(𝑝+𝐾)2 −𝑚2]

𝑝2−𝑚2 {𝑛𝑓(𝑝 + 𝐾, 𝜇𝑒) + 𝑛𝑓(𝑝 +

𝐾, −𝜇𝑒)} +
𝛿[(𝑝−𝑚)2 ]

(𝑝+𝐾)2 −𝑚2{𝑛𝑓(𝑝, 𝜇𝑒) + 𝑛𝑓(𝑝, −𝜇𝑒)}],  (5)                                                                                          

The medium contribution term 𝜋𝜇𝜈
𝛽

(K, 𝜇𝑒) contains both 

transverse component 𝜋𝑇(𝑘, ⍵) and longitudinal component 

𝜋𝐿(𝑘, ⍵) as,, 

 

𝜋𝜇𝜈(𝐾, 𝜇𝑒) = 𝑃𝜇𝜈𝜋𝑇(𝐾, 𝜇𝑒) + 𝑄𝜇𝜈𝜋𝐿(𝐾, 𝜇𝑒).                   (6) 

Where the transverse part of the vacuum polarization tensor is, 

𝑃𝜇𝜈 = ͠𝑔𝜇𝜈 +
͠𝐾𝜇𝐾͠𝜈

𝑘2  .                                       (7a) 

And the longitudinal component is given as, 

𝑄𝜇𝜈 = −
1

𝐾2𝑘2 (𝑘2𝑢𝜇 + 𝜔𝐾𝜇͠)(𝑘2𝑢𝜈 + 𝜔𝐾͠𝜈) .       (7b)                

Also, 

͠𝑔𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈                                                  (7c)                                                                                                                                                 

Here, 

𝐾𝜇͠ = 𝐾𝜇 − 𝜔𝑢𝜇                                                      (7d)                                                                                                                                                       

So that they meet the conditions of, 

 

 

𝑃𝜐
𝜇

𝑃𝛼
𝜇

= 𝑃𝛼
𝜇

 .         (8a)                                                                                                                                                

𝑄𝛼
𝜇

= 𝑄𝜈
𝜇

𝑄𝛼
𝜐 .              (8b)                                                                                                                                                 

𝐾𝜇𝑃𝜈
𝜇

= 0 .                 (8c)                                                                                                                                                       

𝐾𝜇𝑄𝜈
𝜇

= 0.                  (8d)                                                                                                                                                         

 

We use the well-known calculated results of longitudinal and 

transverse components of the vacuum polarization tensors for 

different ranges of chemical potential and temperature.  We 

have the super dense medium of neutron star so we use the limit 

of (T<< 𝜇𝑒), Where, T is the temperature and 𝜇𝑒 is the chemical 

potential. 

In the limit (T<<𝜇𝑒), we have 

𝜋𝐿(𝐾, 𝑇, 𝜇𝑒) ≅
𝑒2

2𝜋2𝑘
(1 −

𝜔2

𝑘2)[(𝑘 − 2𝜔 ln
𝜔−𝑘

𝜔+𝑘
) 𝐽1 − 2𝐴1𝐽2 −

1

2
𝐴2𝐽3 .                                                                     (9a) 

 

And, 

𝜋𝑇(𝐾, 𝑇, 𝜇𝑒) ≅
𝑒2

2𝜋2𝑘
[{

𝜔2

𝑘
+ 𝜔 (1 −

𝜔2

𝑘2 ) ln
𝜔+𝑘

𝜔−𝑘
} 𝐽1 +

{
𝑘𝐾2+𝑘𝑚2

2
+ 𝐴1 (1 −

𝜔2

𝑘2 )} 𝐽2 + {
𝑘3

12
+

𝐾2𝑘

24𝑚2
(3𝜔2 + 𝑘2)} +

(1 −
𝜔2

𝑘2)
𝐴2

4𝑚2 −
𝑚2(5𝜔2−3𝑘2)

8𝑘
𝐽0]                                 (9b)                                                                                                                          

 

where 𝜋𝐿(𝐾, 𝑇, 𝜇𝑒) represents the longitudinal component and 

𝜋𝑇(𝐾, 𝑇, 𝜇𝑒) represents the transverse component of the 

polarization tensors. Expressions for  𝐴1, 𝐴2 ,  𝐽2 and   𝐽3 are 

as follows, 
. 

𝐴1 =
𝑘3

12
+

𝜔2𝑘

2
+

𝑚2𝑘

𝐾2
(𝜔2 + 𝑘2) +

𝑘𝐾2

2
− 𝜔2𝑘[

2𝑚2

𝑘2 − 1]. (10a)     

 𝐴2 =
1

4
[
𝑚2

𝐾4
{4𝑚2𝑘3(4𝜔2 + 𝑘2)

− 𝐾2(3𝑘𝜔4 + 12𝜔2𝑘3 + 𝑘5)}

+ 𝑘 [𝜔4 + 20𝜔2𝑘2 + 2𝑘4 +
𝑚4

2
] 

                                        +
𝐾2𝑘]

6
(3𝜔2 + 𝑘2)]                     (10b)                                               

  𝐽1 =
1

2
[

𝜇𝑒
2

2
[1 −

𝑚2

𝜇𝑒
2] +

1

𝛽
{𝛼(𝑚𝛽, 𝜇𝑒) − 𝛼`(𝑚𝛽, 𝜇𝑒)} −

1

𝛽2
{𝑐(𝑚𝛽, 𝜇𝑒) + 𝑐`(𝑚𝛽, 𝜇𝑒)}] .                                    (11a)          

           

𝐽2 =  
1

2
[ln

µ𝑒

𝑚
+ 𝑏(𝑚𝛽, 𝜇𝑒) − 𝑏`(𝑚𝛽, 𝜇𝑒)].                   (11b)                                                                                           

𝐽3 =
1

2
[

1

2𝑚2 [1 −
𝑚2

𝜇𝑒
2] −

1

4𝜇𝑒
2 +

1

𝑚2 {𝑛𝑓(𝜇𝑒 + 𝑚) + 𝑛𝑓(𝜇𝑒 −

𝑚)} +
𝛽

𝑚
{

𝑒−𝛽(𝜇𝑒+𝑚)

[1+𝑒𝛽(𝜇𝑒+𝑚)]
2 +

𝑒−𝛽(𝜇𝑒−𝑚)

[1+𝑒−𝛽(𝜇𝑒−𝑚)]
2} + 𝑑(𝑚𝛽, 𝜇𝑒) +

𝑑`(𝑚𝛽, 𝜇𝑒)].                                             (11c)                                                                                                           

The nonzero terms in the longitudinal component show that the 

waves acquire dynamically generated mass which modifies   the 

electromagnetic properties of the dense medium. We analyze 

these calculations in the limit (⍵>>k), where 𝐾2 = 𝜔2, the 

other parameters are given as follows, 

 

𝐴1 =
−2𝑚2𝜔2

𝑘
  and 𝐴2 =

3𝜔4𝑘

8
 (12),                                                                                       

𝑗1 =
1

2
[

𝜇𝑒
2

2
−

𝑚2

2
] .                     (13a) 

𝑗2 =
1

2
ln

𝜇𝑒

𝑚
 .                              (13b) 

𝑗3 =
1

4𝑚2 .                                  (13c) 

 

By inserting the values of 𝑗1, 𝑗2 and 𝑗3, the electric permittivity 

of the medium turns out to be, 

 

𝜀𝐸(𝑘, 𝜇𝑒 , 𝑇) = 1 −
2𝛼

𝜋𝑘𝐾2 [[𝑘 − 2𝜔 ln
𝜔−𝑘

𝜔+𝑘
] 𝑗1 − 2𝐴1𝑗2 +

1

2
𝐴2𝑗3] [1 −

𝜔2

𝑘2].                          (14a)                               

 

The magnetic permeability becomes, 
1

𝜇𝐵(𝑘,𝜇𝑒,𝑇)
 ≅ 1 +

2𝛼

𝜋𝑘3𝐾2 [[
𝑘2

2
+ 𝜔2] [1 −

𝜔2

𝑘2 ] {2𝜔 ln
𝜔−𝑘

𝜔+𝑘
𝑗1 −

2𝐴1𝑗2 −
1

2
𝐴2𝑗3} −

𝑘3𝐾2+𝑘4𝑚

4
𝑗2 −

𝑚2

2
{

𝑘5

12
+

(3𝜔2+𝑘2)𝑘3𝐾2

24𝑚2 +

𝑚2𝑘2(5𝜔2−3𝑘2)

8𝑘
} 𝑗3.                         (14b)                                                                                               

 

The expression for the velocity of propagation of 

electromagnetic waves in medium is written as, 

𝜐𝑝𝑟𝑜𝑝 = √
1

𝜀(𝑘)𝜇(𝑘)
 .                          (15) 

 

In vacuum, Eq. (15) reduces to, 



 

𝜐𝑝𝑟𝑜𝑝 = 𝑐 = √
1

𝜀(0)𝜇(0)
 .        (16) 

 

Here  𝜀(0),𝜇(0) are values of electric permittivity and magnetic 

permeability in vacuum. 

 

The index of refraction of the medium is calculated using, 

𝑛 =
𝑐

𝜐𝑝𝑟𝑜𝑝
 .                           (17) 

 

Equation (16) and (17) yields, 

 

𝑛 = √
𝜀(𝑘)𝜇(𝑘)

𝜀(0)𝜇(0)
.                       (18) 

Or, 

 

𝑛 = √𝜀𝑅𝜇𝑅 .                        (19)    

 

The modifications in the parameters of electromagnetic 

properties of the medium of neutron star are analyzed 

numerically in the next section. 

 

III. NUMERICAL CALCULATIONS 

We have investigated the dependence of electric permittivity 

(𝜖𝑅), magnetic permeability (𝜇𝐵) and refractive index (n) on the 

energy and momentum of the photon for large values of electron 

chemical potential (𝜇𝑒) in neutron star for the case ⍵ >>k. We 

cannot predict the exact value of chemical potential at any 

particular value of ⍵ because the exact measurement of these 

parameters in such a dense medium is not possible. The current 

existing models and observational data lead to the maximum 

value of chemical potential to be around 250MeV in neutron 

star [2]. The variation in electric permittivity and magnetic 

permeability as a function of 𝜇𝑒, ⍵ and k, indicate the 

distribution of matter in star and hence using the present 

approach, understanding of the structure of neutron star can be 

improved. All of these parameters are given in units of electron 

mass me = 0.51 MeV. We have plotted graphs corresponding to 

large values of 𝜇𝑒 from (100-250) MeV. 

 

The Fig. (1) shows the relative permittivity as a function of 

omega ⍵ (the energy of the photon), for fixed k = 0.5 me (~0.25 

MeV). Electric permittivity does not seem to change much with 

respect to the chemical potential but increases significantly with 

increasing values of omega. In particular, the permittivity of the 

medium tends to increase as the energy of photons increases 

beyond 20 MeV that is for ⍵ > 20 MeV. For lower energies of 

photon, permittivity increases slowly with ⍵. The dependence 

of relative permittivity on omega remains almost the same for 

different values of chemical potential.  
. 

 
Fig. 1. Relative permittivity ϵR is plotted versus omega ⍵ in units of electron 

mass me for constant k 
 

The relative permeability on the other hand has opposite 

trend as shown in Fig. (2) as compared to Fig. This figure gives 

a plot of relative permeability as a function of omega at fixed 

k= (0.25 MeV) for different values of (𝜇𝑒). It is obvious in the 

plot that relative permeability rapidly drops down at lower 

energy values and becomes constant beyond 1 MeV. The 

relative permeability has higher values for low energy photons 

and falls rapidly until the value reaches closer to a few MeV. 

The overall behavior of relative permeability is the same at all 

chemical potentials but at lower energies, the relative 

permeability is larger for low chemical potential (see for 

example 𝜇𝑒=100 MeV) in comparison with high chemical 

potential (for instance 𝜇𝑒=250 MeV). 

 
Fig. 2. Relative permeability μB is plotted versus omega ⍵ in units of electron 

mass me for constant k 

 

The relative permittivity has a different trend when plotted as 

a function of k (the momentum of the photon) at fixed omega = 

10me (5 MeV) as can be seen in Fig.3.  We plot the relative 

permittivity for different values of k in the limit (k<<⍵). It 

shows that the permittivity is high at regions having smaller 

values of momentum and as the momentum increases the 

permittivity decreases and becomes almost constant beyond 0.5 

MeV. The relative permittivity shows the dependence on 

chemical potential only at lower k values. Above 0.5 MeV the 

permittivity is almost constant for all values of(𝜇𝑒).  



 

 
Fig. 3. Relative permittivity ϵR is plotted versus k in units of electron mass me 

for constant ⍵ 

 

The relative permeability is plotted in Fig.4 as a function of 

k (the momentum of photon) at constant omega = 10me (5 

MeV). It shows that the magnetic permeability increases with 

the increase in photon momentum. The permeability is around 

zero at lower momenta of around 0.15 MeV but increases 

afterwards depending on the chemical potential. The relative 

permeability of the medium increases at lower values of 

chemical potential say about 100MeV. 

 

 
Fig. 4. Relative permeability μB is plotted versus k in units of electron 

mass me  for constant ⍵ 
 

 

We further explore the properties of the medium by studying 

the behavior of the refractive index n as a function of ⍵, k and 

𝜇𝑒. In Figure 5 we have plotted the refractive index as a function 

of omega (the energy of the photon) at k=0.25 MeV for 

different values of chemical potentials. It shows higher value of 

n corresponding to lower energy photons and decreases as 

energy of photons increases. It decreases steeply with 

increasing ⍵ and at about 10MeV it becomes constant.  

 

. 

 
Fig. 5.  Index of refraction is plotted versus omega (⍵) in units of electron 

mass me for constant k 

 

Refractive index shows a different behavior when plotted 

against the momentum (k) of photon at omega =10 me (⍵ =5 

MeV) for different values of chemical potentials as can be seen 

in Fig. 6. It is clear in this figure that the refractive index 

increases with momentum (k). Thus, it is clear that as 

momentum of photons increases, the light travels slowly. 

Also the refractive index is independent of the chemical 

potential and increases for all values of 𝜇𝑒. 

 

 

 
Fig. 6.  Index of refraction is plotted versus k in units of electron mass me for 

constant ⍵ 
 

IV. SUMMARY 

The propagation of electromagnetic waves in the dense 

matter of neutron star has been studied with the help of the 

renormalization scheme of quantum electrodynamics (QED).It 

has been pointed out that under the extreme conditions of 

macroscopic quantities; temperature, density and magnetic field 

in neutron stars,  the electromagnetic properties of the matter 

become function of the chemical potential 𝜇𝑒. We have found 

that the relative permittivity increases with the increase in 

photon energy (⍵). On the other hand the relative permittivity 

decreases with increase in photon momentum (k).  The relative 

permeability seems to vanish as the photon energy increases 

beyond 2.5MeV. On the other hand, relative permeability tends 

to increase with (k). 
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