
Journal of Space Technology, Vol. 8, No. 1, July 2018

12



Abstract—Due to the hostile nature of the space environment,

fault tolerance has become a key part of recent research in

spacecraft mission planning. Spacecraft are complex systems;

mission planning in spacecraft may not just involve text book

Artificial Intelligence based approaches. Requiring additional

fault tolerance capability makes the problem more challenging

and diverse. This paper reviews the relevant tools and methods

from Artificial Intelligence and Control Systems theory for fault

detection and diagnosis. Different types of modeling approaches

have been discussed followed by control and mission planning.

Existing approaches are evaluated and gaps have been identified.

Possible approaches to fill those gaps are discussed.

Index Terms—Spacecraft mission planning, fault tolerance,

timeline based planning, plan database.

I. INTRODUCTION

ISSION planning is a challenging task in general.

Planning is perhaps most challenging for spacecraft

because the spacecraft cannot be modified or repaired once

launched. Further, thermal cycles, radiation, and scattered

debris in the space environment represent substantial hazards to

spacecraft. A spacecraft may not be in continuous contact with

a ground station. This means that if something goes wrong

during the mission, the spacecraft is on its own until

communication with the ground station becomes available. This

motivates the incorporation of fault tolerance into spacecraft

mission planning.

There are two major approaches for achieving fault-tolerance

in spacecraft missions from the literature. One method is to

calculate a preset response for every possible situation while the

second is to perform online planning based on predefined

guidelines [1]. A collection of preset responses for the

spacecraft mission defines a “plan database” where each “plan”

is a sequence of actions that leads to the completion of a specific

goal-achieving or recovery task. Generation of a plan onboard

the spacecraft offers flexibility but can require nontrivial

computational resources. Many techniques have been proposed

to reduce planning complexity. For example, iterative repair

[2] methods focus on improving plan quality as time permits.

Distinction of short and long-term planning facilitated

Submitted on 7th February, 2017, revised on 30th July, 2018.

Ali Nasir is with Electrical Engineering Department, Faculty of Engineering,
at the University of Central Punjab, Lahore, Punjab 54782 Pakistan (e-mail:

a.nasir@ucp.edu.pk).

scheduling in Hubble Space Telescope [3]. Besides planning for

normal situations, planning to manage faults has also been

studied [4][5]. In case of a fault, the current plan of the

spacecraft typically becomes invalid due to change in system

performance and capabilities. A new plan can be formulated via

online deliberation during which the spacecraft is typically

placed in “safe mode” hence causing delay in mission

completion as a minimum and missed opportunities in some

cases, e.g., a fly-by that cannot be repeated. A plan database can

also contain pre-calculated plans to manage each fault

anticipated by system engineers in advance. However, since

spacecraft faults cannot all be anticipated in advance, there is a

limit to having plans ready in the database to be activated when

required.

To-date, no plug-and-play software has been developed for

spacecraft mission planning. However, some tools have been

developed to assist in developing mission plans for multiple

missions. For example, ASPEN [6] and CASPER [2] include

structures that allow for inclusion of activities, states,

constraints, and contingency responses. SPIKE [3] is another

example of an intelligent scheduling framework. Spacecraft

mission planning typically requires information from

astrodynamics, science payload management, spacecraft

kinematics and dynamics, fault diagnosis, fault tolerance, and

constraint satisfaction. Therefore it is important to understand

how all these systems work to develop a consolidated mission

planning framework. For example, consider a spacecraft

mission of collecting scientific data from astronomical objects.

Each object may not be accessible to the spacecraft payload

equipment from every point in the orbit. Therefore mission

planning needs to have information about the orbital dynamics.

Secondly, once an astronomical object of interest is “visible” to

the payload, mission planning has to incorporate constraint such

as sun avoidance, available power, and health of the spacecraft

components. Specifically, if a stable and accurate attitude

pointing is not guaranteed (due to faults in any of the attitude

sensors or actuators) it would be difficult to collect scientific

data. Finally, if multiple astronomical objects are visible at the

same time, spacecraft planner must decide the sequence of data

collection.

This paper provides a review of technical literature relevant

Ella M. Atkins is with the Department of the Aerospace Engineering,

University of Michigan, Ann Arbor, MI 48109, USA (e-mail:
ematkins@umich.edu).

Ilya V. Kolmanovsky is with the Department of Aerospace Engineering,

University of Michigan, Ann Arbor, MI 48109, USA (e-mail:
ilya@umich.edu).

Review of Tools and Methods for Fault

Tolerance in Spacecraft Mission Planning

Ali Nasir, Ella Atkins, Ilya Kolmanovsky

M

mailto:a.nasir@ucp.edu.pk
mailto:ematkins@umich.edu
mailto:ilya@umich.edu

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

13

to fault tolerance in spacecraft mission planning. Section II

presents an overview of the mathematical modeling techniques

used in the spacecraft domain. Section III presents a review of

spacecraft mission planning and motion estimation and control

techniques. Section IV presents references and methods in

hybrid systems or switched control systems that have been

successfully used for fault tolerant control. This section also

presents methods in Markov Decision Processes (MDPs) to

support planning under uncertainty. Section V describes

existing frameworks for fault tolerant attitude planning in

artificial intelligence and in control systems theory.

Representation gaps and possible solutions have also been

discussed in the same section. Concluding remarks and future

directions are discussed in Section VI.

II. SPACECRAFT MODELING

Before moving into the discussion of spacecraft mission

planning, it is important to understand the basic components of

spacecraft. A spacecraft is a complex system with discrete as

well as continuous time behavior. It consists of subsystems such

as attitude and orbital control, telemetry tracking and command,

power generation storage and distribution, thermal control, and

structures subsystem [7]. Interconnections of various

subsystems onboard the spacecraft is depicted in Fig. 1. Various

aspects of the spacecraft are modeled using different

mathematical tools. For example dynamics and kinematics are

modeled using the differential equations whereas discrete

component switching and faults can be modeled as discrete

variables. Like most of the models in real world, spacecraft

models are not exact representation of actual spacecraft

behavior. Inaccuracy in modeling (as well as unpredictable

nature of space environment) causes uncertainty and one of the

ways to model uncertainty is through Bayesian Networks. In the

rest of the section we discuss two aspects of spacecraft

modeling. One is the modeling of the motion of spacecraft and

second is the modeling of processes and events with spacecraft.

Fig. 1: Spacecraft Subsystems

A. Modeling of the Motion of Spacecraft

Motion of the spacecraft is of two types. One is orbital

motion and second is attitude related motion. For most

spacecraft mission, orbital motion is uncontrolled after the

desired orbit is achieved after initial launch. Attitude however

is actively controlled in majority of spacecraft. Attitude motion

is represented by the equations of kinematics and dynamics of

spacecraft. There are multiple ways of representing spacecraft

attitude kinematics [8]. Equations (1a), (1b), and (1c) represent

alternate ways to model the kinematics of the spacecraft as a

rigid body.

𝑞̇ =
1

2
(𝑞4Ω − [Ω × 𝑞])

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

14

𝑞4̇ = −
1

2
(Ω𝑇𝑞)

(1a)

𝑅̇ = [

0 𝜔3 −𝜔2

−𝜔3 0 𝜔1

𝜔2 −𝜔1 0
] 𝑅

 (1b)

[

𝜃1̇
𝜃2̇
𝜃3̇

] = [

𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2
0 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 −𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1
0 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1

] [

𝜔1

𝜔2

𝜔3

]

 (1c)

 In (1a), q is a 3 × 1 vector of the first three elements of

attitude quaternion of the spacecraft with respect to an inertial

frame of reference; q4 is a scalar representing the fourth element

of the quaternion. Ω is a 3 × 1 vector representing spacecraft

angular velocities in a body-fixed frame. In (1b), R is the 3 × 3

rotation matrix for the spacecraft whereas ω1, ω2, and ω3

represent components of Ω. In (1c),  1 2 3

T
   represent

angular velocities in the body-fixed frame and  1 2 3

T
  

represent Euler angles roll, pitch, and yaw, respectively, with

respect to the inertial frame. There are other ways to represent

the attitude, e.g. Euler-Rodriguez parameters [8] [9] not

discussed here. The quaternion representation is common for

spacecraft as it has no singularities and requires only four

continuous-valued quantities in its representation. Euler angles

do have singularities, while rotation matrices have no

singularities but must be represented with nine values.

 The attitude dynamics of a rigid spacecraft are represented

as

𝜔1̇ =
1

𝐽1
[(𝐽2 − 𝐽3)𝜔2𝜔3 + 𝑢1],

𝜔2̇ =
1

𝐽2
[(𝐽3 − 𝐽1)𝜔1𝜔3 + 𝑢2],

𝜔3̇ =
1

𝐽3
[(𝐽1 − 𝐽2)𝜔2𝜔1 + 𝑢3]

(1d)

In (1d), (J1, J2, J3) are diagonal components of 3 × 3 inertia

matrix in a body-fixed frame and (u1, u2, u3) represent control

inputs. Note that the inertia matrix is typically assumed to be

diagonal. There are a number of ways to control spacecraft

attitude [10] even with two control inputs instead of three [11].

In [11] a stabilizing feedback control strategy has been

developed that is discontinuous and can achieve any possible

attitude value. The results presented in [11] show that although

nonlinear control techniques do not apply, a stabilizing control

law can still be constructed that is based on a sequence of

maneuvers. Also, for attitude determination, a number of ways

have been developed to estimate the attitude from the sensor

readings which may or may not provide accurate

measurements, e.g. [12] where Kalman filtering has been used

to estimate the attitude with gyroscopes that have both drift and

bias errors.

B. Modeling of Processes and Events within the Spacecraft

Modeling of the processes and events within the spacecraft

can be done with discrete time variables and logical expressions

(or rules). Each process involves variables that have

dependencies. One way to represent dependencies among the

variables is Bayesian Network. More precisely, Bayes network

[13] is a way of representing dependence relations between

random variables and is used for efficient computation of joint

and conditional probabilities. Bayes nets can be used for

modeling the internal composition of a spacecraft by noting that

failure of any component is a random event and failures of

components within the spacecraft depend upon each other in a

way that can be determined from the interconnection and

interaction of components with one another. A Bayes net

succinctly represents a conditional probability table (CPT).

Bayes nets can intuitively represent CPTs associated with

spacecraft fault diagnosis. For example, consider a one degree

of freedom (1DOF) reaction wheel system where a battery

supplies power to two electronics boards (one of which is

redundant for fault tolerance) that can drive the reaction wheel.

A simple Bayes net model for failure probabilities of this

system is shown in Fig. 2.

Fig. 2: Bayes net example

The above graph indicates failure of the battery affects the

failure of the electronics boards (EB1 and EB2), and the failure

of the electronics boards affects the functionality of the reaction

wheel (RW). Furthermore, failure of the reaction wheel is

conditionally independent of the failure of battery given

definitive knowledge (evidence) of whether both electronics

boards have failed as this evidence “breaks the dependency

link” from the Batt graph node. This type of model can be used

to solve for the probabilities of failure of any components or

subsystems given failure information about any other

component(s) or when no information or evidence is given.

There are several methods for deriving probabilities from Bayes

nets [13] including enumeration, variable elimination, and local

propagation. The computational and memory requirements for

some of the methods are shown in Table 1. In this table, n is the

number of nodes in the Bayes Net, and all nodes are assumed

to be binary, e.g. fail/not-fail. Also note that the local

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

15

propagation method has the lowest computational complexity

but it is only applicable on Bayes nets that have a poly tree

structure (i.e. no cycles or multiple paths connecting one node

to another).

TABLE 1: COMPUTATIONAL COMPLEXITY OF METHODS FOR SOLVING BAYES

NETS [13]

Method Applicability Memory
Requirement

Computational
Cost

Enumeration general O(n) O(n2n)

Variable
Elimination

general O(2n) O(2n)

Local
Propagation

polytrees O(n) O(n)

Clustering general O(2n) O(2n)

Conditioning general O(n) O(2n)

III. SPACECRAFT CONTROL

Once the modeling is completed, next step is to design and

implement control. A spacecraft is controlled at multiple levels.

At a high level, the control is in the form of mission planning

and scheduling tasks. At a low level, the control refers to

specification of the physical motion of spacecraft (e.g., attitude

or pointing sequence).

A. Spacecraft Mission Planning and Scheduling

There are five main ingredients of the classical artificial

intelligence (AI) planning problem: a finite set of discrete

states, a set of state-dependent actions, the specification of

desirable or goal states, the specification of an initial state, and

a search method to determine an optimal sequence of actions

(i.e. the solution) that leads from initial state(s) to goal state(s).

For a given size of the state and action spaces, the

computational complexity of finding the solution depends upon

the search method used. All the planning methods are centered

on the method of search that they use to find a solution. Typical

real-time schedulers see the world as a set of resources and a set

of resource-consuming tasks requiring up to a known worst-

case utilization of each computational resource (e.g., processor

or communication). Schedulers allocate resources to tasks,

assigning each a start time and resource set that guarantee all

deadlines are satisfied, making tradeoffs as needed to degrade

best-effort tasks given resource constraints [14][15]. One of the

basic algorithms used for scheduling is earliest-deadline-first

scheduling [16][17] where tasks are placed in a priority queue.

This means that at the occurrence of a scheduling event, (a task

is finished, a new task is released, etc.) the queue is searched

for the task closest to its deadline. Another basic algorithm for

scheduling is rate-monotonic (RM) scheduling [18][19] where

priority is given to the tasks with shortest period.

 Autonomous spacecraft task planning and scheduling have

been achieved for a limited set of science missions [2][20][21].

Algorithms such as iterative repair [2] have been selected due

to their ability to adapt existing plans without prohibitive

computational overhead. Hence, iterative repair supports

modification (possibly due to occurrence of faults or change in

mission priorities) and updating of a current working plan.

Iterative repair adapts an existing plan by using search-based

algorithms such as backtracking [22]. This results in plan

improvement but optimality in general is not guaranteed by

iterative repair due to the local nature of search in iterative

algorithms. Reference [2] discusses continuous planning on

board the spacecraft using iterative repair to support

autonomous control of spacecraft. This allows for responding

to the anomalies resulting in delays or resource depletion.

Another reference on integrated planning and scheduling is [23]

that present a Heuristic Scheduling Testbed System (HSTS).
HSTS is a framework of representation and problem solving

which provides an integrated planning and programming

vision. HSTS involves the decomposition of continuous time

domain state variables. In this manner, description and

manipulation of complex resources is managed. Resources in

HSTS are modeled in classical programming tasks. Schedules

developed in HSTS implicitly identify a set of behaviors legal

system. This is an important difference from the classical

approaches; however, specify all aspects of the same behavior,

nominal system. In [24], a multi-agent planning system

(MAPS) for autonomous planning is built that is used to

generate feasible action sequence under complex constraints.

The planning model is capable of describing simultaneous

activities with continuous time. The model can also handle

resource and temporal constraints. The architecture of MAPS

includes multiple planning agents (PAs) and a planning

manager agent (PMA). One might consider the subsystems in a

spacecraft as intelligent agents and the goals of the spacecraft

are achieved by combined operation of the agents. Mission

planning system is managed by PMA. It also functions as a

communication medium between PAs. Pas interact with each

other only after they have registered with PMA.

B. Spacecraft Motion Control and Estimation

Attitude control is fundamental for ensuring spacecraft

stability thus requires fault tolerance. Multiple attitude control

schemes are often required for implementing full

reconfigurable control. A careful presentation of spacecraft

attitude control methods is given in [10]. This book treats the

basics of dynamic systems modeling and control. The problem

of attitude stabilization and control for the rigid spacecraft

under the influence of various actuators such as reaction jets,

momentum wheels, and control moment gyros is discussed in

this book. These techniques can provide a good support for our

proposed framework especially when different types of

redundant actuators are used in the spacecraft for fault

tolerance. A number of stabilization and control problems for

three axes stabilized as well as spin stabilized spacecraft are

also treated in [10]. Specifically large-angle attitude maneuvers

are discussed where spacecraft moves about an inertially fixed

axis. The motion has to be as fast as possible but actuator

saturation must be handled. Such maneuvers are fundamental

for science data collection missions where targets of interest can

only be observed by slewing the spacecraft through a sequence

of large-magnitude motions. Advanced problems of spacecraft

attitude control via developing logic based solutions using

CMG reaction jets are treated along with momentum

management for large spacecraft.

 There has also been some interesting work done on

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

16

magnetic control of spacecraft attitude in [25][26][27][28][29].

For example, in [25], a magnetic dipole moment modulation

based reconfigurable attitude control is presented for an earth

pointing satellite. Spacecraft control with two torques has also

been extensively studied e.g. in [11]. Spacecraft control with

two-torques is very useful for implementing fault tolerance.

Robust spacecraft attitude estimation is required for most

missions and requires fault tolerance. Most dynamics-based

fault detectors are based on output estimation. One of the most

useful resources in the literature of spacecraft attitude

estimation is a survey paper by Lefferts et al [12]. This work

presents a summary of experience in the Kalman filtering of

spacecraft attitude and offers two possible implementations of

the Kalman filter for systems with attitude sensors and gyros

with noise terms describable by a first-order Markov process.

The difference in the two schemes is only in the choice of frame

for the update, for example using the complete four-component

quaternion versus using the truncated quaternion where one

component has been eliminated. Crassidis and Markley [30]

present an attitude estimation approach based on minimization

of model error (MME). The approach is designed for three-axis

stabilized spacecraft. Based on the implementation example

included in [30], their algorithm is shown to be robust and

accurate, able to estimate attitude with or without gyro

measurements. Functional form of the optimal estimation

involves a linearization technique and gradient search with a

linear Riccati transformation. This algorithm is demonstrated to

be accurate and computationally efficient for generating state

estimates based on an implementation example. Results

obtained from MME-based approach indicate accurate

estimation of the attitude of spacecraft using only

magnetometer sensor measurements. Crassidis and Markley

have also published their work on spacecraft attitude estimation

using unscented Kalman filter [31] and attitude estimation

using modified Rodriguez parameters [32]. Both these authors

along with Cheng have published a survey on modern attitude

estimation methods [33]. This survey presents a quaternion

estimation filter (QUEST), extended QUEST and reverse-

smoothing extended Kalman filter. In QUEST, a discrete set of

sigma points is propagated and updated instead of using

linearized equations for the mean and covariance.

IV. THEORIES AND TOOLS INVOLVED IN SPACECRAFT

MISSION PLANNING

While the previous section discussed various issues involved

in mission planning, in this section, the relevant theories and

tools for implementing the same are reviewed.

A. Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs) represent a class of

AI planning problems where states belong to specific domains

of values and there are constraints over allowable combinations

of values for subsets of state variables. CSPs can be solved with

algorithms that take advantage of the specific state-space

formulation. A constraint satisfaction problem (CSP) involves

selection of a value from a finite domain that is to be assigned

to each variable in the problem, such that all the restrictions

related to the variables are satisfied. Then a sequence of actions

is selected that allow the achievement of goals by the plan and

which satisfaction of numerical and symbolic constraints.

Many combinatorial problems in operational research, such as

timetabling and scheduling can be formulated as CSPs. In [34],

the authors calculate the number of tree search operations

involved in the solution of binary constraint satisfaction

problems. It is shown experimentally and analytically that there

are two principles that improve backtracking search

performance i.e. placing most likely to fail first and

remembering the past actions to avoid repetitions. In [35],

Dechter identifies easily solvable problem classes, and has

designed algorithms to calculate optimal solutions for such

problems. Other useful references on CSPs by the same author

include [36][37]. Brailsford et al. describe CSPs and solution

techniques in [38], and also show how constraint satisfaction

approach is used in solving various combinatorial optimization

problems. Also the constraint satisfaction approaches of have

been compared with operational research (OR) techniques e.g.

simulated annealing, branch and bound, and integer

programming.

B. Hybrid Systems

Hybrid systems of interest for this work contain two different

types of components: continuous and discrete dynamic

subsystems with interacting dynamics. Hybrid systems theory

has been applied in many areas e.g. communication networks,

manufacturing, engine control automotive, designing autopilot,

chemical processes, and computer synchronization etc. A key

role is played by Hybrid systems in the embedded control

systems. Hybrid systems are also used in developing complex

systems with hierarchical organization of complex systems as

well as in the interaction of scheduling algorithms along with

continuous and discrete intelligent autonomous systems and

control algorithms. A survey on control and modeling of hybrid

systems is presented in [39]. Certain characteristics of hybrid

systems are highlighted in this survey. Modeling approached

within hybrid systems has been illustrated through a simple

three fluid-filled tank system. Further exploration of the

characteristics of hybrid model is done through variations of the

same example. A discussion on the analysis and control

techniques for hybrid systems is also presented in [39]. Model

predictive control (MPC) has also been employed on discrete

time hybrid systems [40]. The cited method builds a “tree of

evolution” to abstract the behavior of the hybrid system.

Reachable states of the system are represented as nodes of the

tree and if a transition between two states exists, the concept of

a branch is utilized. Each node is associated with a cost-function

value which serves as the base value for exploration of the tree.

Other references on hybrid systems include [1][41].

Introduction to the theory of hybrid systems as well as

discussion on its applications is included in [41]. Authors in

[42] discuss the output feedback control of a class of stochastic

hybrid systems.

C. Markov Decision Process (MDP)

A Markov Decision Process is a controlled Markov chain

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

17

[43] that is solved using a discrete stochastic dynamic

programming (SDP) algorithm, e.g. policy iteration or value

iteration [44][13]. In value iteration an expected discounted

reward function is maximized that is of the form

0

0

() (,) | , .Pol t t t

t

V s E R s Pol s s 




 
  

 
 (2)

 Here, st represents state after t actions, and µt is the action

applied in state st according to a policy Pol (st is a random

variable). V is the value function that can also be viewed as

expected discounted reward of the state. The discount factor γ

(γ ϵ (0, 1)), indicates that the future rewards may have lower

value. R is the reward function that is assumed to be finite

valued. The optimal policy can be calculated as

 *() arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V s  


 
  

 


(3)

All states that are connected via any action with nonzero

probability have direct relationship between their

corresponding values. This relationship can be expressed using

the Bellman equation [13]:

1() () max (| ,) () .t i i j k i t j
k

j S

V s R s T s s V s 



 
   

 


(4)

where Vt+1(si) represents value of state si at iteration t+1. R(si)

is the immediate reward of state si. T (sj |μk, si) is the probability

of transitioning from state si to sj by executing action μk.

In terms of the convergence of value iteration algorithm,

number of iterations (Itr) to reach an error bound of ε can be

bounded as:

max2 1

log / log .
(1)

R
Itr

  

    
     

    
 (5)

Here ε is the required tolerance of the solution satisfying

1() () , .t i iV V i      (6)

The inequality (2.3.3-5) is ensured by [13]

1

1
() () .t i t iV V


  




 
   

 
 (7)

Value iteration has computational complexity of the order

O(N2k) where k is the number of actions and N is the number of

states in the MDP. As described in [43], Equation (4) converges

to a unique solution. The solution of Equation (4) achieves its

maximum value of the right hand side in Equation (2). If the

policy is calculated using (3) with solution of (4), it will be

optimal with respect to (2).

The value iteration algorithm used to solve (4) and find an

optimal policy from (3) is shown in Algorithm 1.

Algorithm 1: Value Iteration algorithm [44]

D. Approximate Dynamic Programming

Approximate Dynamic Programming (ADP) is a collection

of methods that are used to decrease the computational

complexity of MDPs. Researchers from three different research

communities have written dedicated books to this topic. From

control systems theory, book by Bertsekas and Tsitsiklis [45]

provides a fundamental theoretical foundation of the field.

Specifically neural network approximations have been used in

this text [45] to overcome the "curse of dimensionality" and the

"curse of modeling". These curses have been bottlenecks to the

practical application of stochastic control and dynamic

programming to complex problems. From the perspective of

artificial intelligence and computer science, book by Sutton and

Barto [46] describe the field of ADP. Starting with intuitive

examples and a definition of reinforcement learning, they

present three fundamental approaches to reinforcement

learning. The operational research (OR) perspective of ADP is

presented by Powell [47]. Where the emphasis is on the high-

dimensional problems that typically arise in OR. In [48], the

authors present an algorithm that dynamically performs

hierarchical decomposition of factored MDPs. Their algorithm

is based on determination of causal relationship between states.

Communication-based decomposition methods for

decentralized MDPs are presented in [49]. A goal-based

decomposition approach (similar to the approach adopted in

this thesis) is presented in [50]. In [50], the decomposition is

based on the additive terms in the reward function that

correspond to different sub-goals. Decomposed MDPs are

assigned sub-goals based on decomposition of the reward

function. Optimal policies are computed for each sub-goal and

finally merged together using a value function heuristic and

best-first search to generate an approximate policy for the

original task.

V. INCORPORATING FAULT TOLERANCE IN SPACECRAFT

MISSION PLANNING

Incorporation of fault tolerance in mission planning of

spacecraft requires nontrivial innovation. On the other hand,

Step 0. Initialization:

 Set V0(s) = 0 for all s ϵ S

 Fix a tolerance parameter ε > 0

 Set t = 1.

Step 1. For each s ϵ S compute:

1

'

() () max () (, , ') (')t t
M

s S

V s R s C T s s V s


   




  
    

  


Step 2. If:

  1 1 / 2 ,t tV V     

calculate:

*

'

() max () (, , ') (')t

s S

P s C T s s V s


  


 
   

 


 else, set t = t + 1 and go to Step 1.

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

18

any of the methods discussed in the previous section can be

employed for realization of fault tolerant mission planning. In

this section we present some classic approaches for fault

tolerant spacecraft motion control and processes control. We

also identify the representation gaps in both types of control. As

evident from discussion in section II, the models of processes

and events differ fundamentally from the models of motion

(kinematics and dynamics).

A number of algorithms for planning and scheduling as well

as plan execution have been proposed in the Artificial

Intelligence (AI) community [22][51][24][13]. A majority of

these algorithms present the state as a set of discrete valued

variables. This enables search-based algorithms to select,

decompose, and sequence appropriate actions given the

specified task-level goal and the observed system state. For

spacecraft for which operations involve nontrivial uncertainty,

reasoning is typically based on Bayesian and/or Markov

Decision Process (MDP) models [52]. The MDP builds optimal

policies that cater for the uncertainty involved in the state

transitions of the spacecraft. Note that the MDP solves a slightly

more general form of the AI planning problem where state

transitions involve uncertainties and possess the Markov

property. The AI literature includes many frameworks for

spacecraft mission planning and execution, but only a few of

them have been successfully deployed. This is mainly due to

their computationally-intensive and often difficult-to-validate

nature. The Remote Agent [22][53][54] offers a good focus for

this paper due to its emphasis on fault tolerance for space

applications. In the following subsection, we describe Remote

Agent in more detail since it is one of the most successful multi-

layer AI architectures implemented and deployed on a

spacecraft. Alternatives to the AI based approaches include

algorithms based on the theory of fault tolerant control

[55][56][57]. Fault tolerant control uses physics based

dynamical models with continuous time state variables as

opposed to discrete valued variable in AI based approaches. On

top of the physics based dynamical model, there is usually

supervisory control logic for fault related decision making.

A. Artificial Intelligence Planning

Researchers from the Jet Propulsion Laboratory (JPL) and

NASA Ames developed the Remote Agent (RA) AI

architecture to enable autonomous onboard mission

management [22][53]. Remote Agent has been tested on the

Deep Space One (DS-1) spacecraft. RA is comprised of five

components: 1) Planning Experts (PE), 2) Mission Manager

(MM), 3) Planner and Scheduler (PS), 4) Smart Executive

(EXEC), and 5) Mode Identification and Reconfiguration

(MIR). Planning Experts (PE) are innovative software modules.

The role of PE is to assist the Planner and Scheduler (PS) in two

possible ways: the PE can either request new goals from PS or

PE can compute planning solutions for PS. For example, in the

navigation domain, PE may request updated engine thrust goals

based on its estimation of the spacecraft orbit, whereas in the

attitude domain PE might provide anticipated duration of

specified turns and resulting resource consumption.

Fig. 3: The original Remote Agent architecture [22]

The role of the mission manager is to initiate PS activities

based on long term mission objectives and current status of

mission execution. The execution layer (EXEC) incorporates

artificial intelligence and is responsible for main mission

execution. EXEC also gathers data from onboard sensors and

monitors to determine the mission execution status which is

sent to the mission manager along with the request for new

plans to be executed. Initial mission objectives are programmed

before launch and later on new objectives can be uploaded from

the ground station. MM works in phases or horizons of time. In

a particular phase, the objectives to be achieved are combined

with the current status of the spacecraft provided by EXEC.

Then constraints are formulated based on the mission objectives

(for current phase) and the spacecraft status to be sent to PS.

The decomposition of mission objectives into short term phases

allows for uninterrupted long term autonomy.

The role of the PS is to perform iterative repair based search

[21] and chronological backtracking in order to calculate the set

of tasks that extends the existing partial plan. PS consists of a

plan database and Heuristic Scheduling Testbed System

(HSTS) [51] that uses the plan database to calculate the

consequences of each activity in the partial plan and to generate

feasible sequences of activities that form a plan. Domain

Description Language (DDL) [58] is used to specify domain

constraints within HSTS. A finite set of symbolic state variables

are used to describe the system state. Special variables

“Tokens” are used to describe action and state literals. PS

incorporates search-based planning and scheduling (in classical

sense) that is implemented efficiently using parallel

programming threads. Although the search mechanism in PS is

classic, it is advanced to handle periodic and accumulative

goals as well as the default goals.

EXEC is the plan execution system that is robust and

multithreaded driven by events occurring inside the spacecraft.

EXEC is a framework for customized control, fault diagnosis,

and fault reconfiguration. It uses spacecraft state and current

mission goals to determine activity to be performed. EXEC can

handle interdependent activities and can request and execute

plans with potentially uncertain outcomes and timings. EXEC

determines primitive commands from the tasks involved in

current mission plan based on the state of the spacecraft. In this

way the planner can reason at higher level where EXEC handles

low level execution. EXEC is also designed to compute fault

responses during various activities. Execution Support

Language (ESL) [20] is used in the development of EXEC

which provides parallel execution, synchronization, error

handling, and property locks [58]. A special submodule known

as Mode Identification (MI) helps EXEC in monitoring of the

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

19

task execution and spacecraft state. When the given plan by

MM is executed by EXEC, it provides MM with the current

state of the spacecraft and requests new plan. In case of any

fault rendering the spacecraft unable to execute the current plan,

EXEC puts the spacecraft in safe mode and requests an alternate

plan from MM. The alternate plan is generated without

intervention from the ground station if within the capabilities of

the MM. A certain level of robustness is achieved by EXEC

through another special submodule called Mode

Reconfiguration (MR) module. MR allows flexibility through

deductive search and calculation of appropriate response to a

given fault so that the MM may not have to be summoned.

Fig. 4: Livingstone architecture [22]

 The Mode Identification and Reconfiguration (MIR)

capability in Remote Agent is provided by a special architecture

known as the Livingstone [59]. Livingstone is a discrete model-

based controller inserted between low level feedback control

layer and high-level feed-forward reasoning in a physical

system. MIR is responsible for calculation of reconfiguration of

the systems (spacecraft) that mitigate or reduce the effect of

faults on the mission goals. MIR has Mode Identification (MI)

for processing sensor values into spacecraft mode of operation.

Also Mode Reconfiguration (MR) in MIR computes the

reconfiguration commands required to mitigate/reduce the

effects of fault. The model of MIR is compositional, stochastic,

and declarative with concurrency support. MI receives input

data from EXEC and spacecraft sensors and combines it with

the built-in model of the spacecraft to determine possible faults.

Specifically, predicted sensor values from the model are

compared to the actual sensor values to determine discrepancy.

If a mismatch is found, then possible fault is searched for which

best explains the mismatch. Fault recovery is handled by MR in

coordination with EXEC. Whenever a fault occurs, MI informs

EXEC and EXEC calls MR for possible actions. In call to MR,

EXEC also conveys the mission goals and resource constraints

so that only feasible reconfiguration is returned. MR solves the

constraint satisfaction problem by performing reactive

deduction and search with the help of unit propagation and

propositional logic. Fig. 4 shows the architecture of Livingstone.

B. Control Systems Theory based Approach

The fault detection and reconfiguration discussed in the

previous subsection is only at a discrete level. The model used

is based on operational modes of the spacecraft and not the

actual physical motion. Continuous time fault detection based

on the model of the motion requires the use of the tools from

control systems theory. Such tools make use of the knowledge

of forces acting on the spacecraft and the resulting behavior. A

lot of research has been done in this regard categorized in the

literature as Fault Tolerant Control System (FTCS). FTCS

typically is a three layered architecture [60][55][57]. The

bottom layer consists of state estimation and control with

additional capability of reconfiguration. Middle layer is usually

a fault detection and diagnosis (FDD) [56] scheme. Top layer

consists of a supervisory logic that manages the whole

operation of the system by manipulating the lower layers in the

light of information obtained from these layers and the high

level system objectives. Fig. 5 shows example fault tolerant

control system architecture. In this figure, x is the state vector

for dynamic system, u is the control input vector, y is the output

vector, F is the vector of fault flags, and M is a scalar indicating

configuration mode of the reconfigurable controller.

Fig. 5: Fault tolerant control architecture [56]

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

20

There are many formulations in terms of adaptation in control

laws in FTCS. Specifically, there are two types of adaptation

schemes i.e. active and passive [55]. The passive schemes rely

on the robustness of the control systems and the design of the

controller. Whereas the active schemes use online recalculation

of the control law that is most appropriate given a certain fault

condition. Sometimes active and passive schemes can be used

in combination where passive serves as the baseline and active

comes into play when inherent robustness is not enough to cater

for the fault at hand. A fundamental tradeoff in fault tolerant

control is between detection sensitivity and robustness. It is

hard to detect a fault in a robust system whereas a non-robust

system is susceptible to even small faults. For quick

reconfiguration, active scheme of fault tolerance may

incorporate pre-computed fault responses [57]. In general,

FTCS can either mitigate the effect of a fault or reduce the same

as much as possible [61].

As shown in Fig. 5, faults (F) are predicted by FDD layer of

FTCS using the information of the input and output of the

systems and built-in model of dynamics [62]. A signal known

as residual signal indicates the deviation of the actual behavior

(x) from the behavior depicted from the model of the dynamics

(f(x, u)). Different values of the residual correspond to different

levels of a fault (or may refer to as different faults). In case of

normal operation, all residual signals automatically turn out to

be zero. Usually state estimation or parameter estimation or a

mixture of both is used to implement FDD. There are two main

types of FDD schemes i.e. data-based FDD approaches and

model-based FDD approaches. Robustness is a key requirement

for any FDD scheme. Specifically model be robust [63]

otherwise a false alarm or a missed detection could occur

rendering the FTCS to a completely devastating response.

Many methods have been developed in order to incorporate

robustness in FDD schemes e.g. averaging, statistical data

processing, adaptive thresholds, and fuzzy decision-making

[63][64]. A daunting challenge in the implementation of FTCS

is to distinguish between disturbances in the system, the noise

in the sensors, and the occurrence of faults. Methods have been

developed in literature to decouple disturbance from the fault

[56]. But the disturbance decoupling may sometimes lead to

missed detection if some faults affect the system in the same

manner as the disturbance does. For a complex system such as

spacecraft, FTCS must be able to detect and diagnose

coexisting multiple faults as well as incipient and abrupt faults.

The logic based supervisory layer is responsible for decisions

of reconfiguration (M) based on its built-in reasoning

algorithms and the information received from FDD. Some

methods for implementation of supervisory logic are presented

in [57][55][57], Some of the techniques are based on Fuzzy

Logic, Intelligent Computing, Genetic algorithms, Neuro-

Computing, and Probabilistic reasoning. Furthermore,

supervisor logic may include failure mode effect analysis. Also

state machines can be used to model various transitions.

C. Representational Gaps

So far two different types of fault tolerance architectures are

discussed. One is MIR in remote agent and the other is FTCS

in control systems community. While both architectures

perform fault tolerance, the major difference is in the under

lying model of the system (spacecraft) that is used for the

purpose. The MIR uses discrete high level model of the

spacecraft that includes operational modes and transitions

between the modes. On the other hand FTCS uses the model of

dynamics and kinematics of the spacecraft that is based on its

physical motion. The sensor data required by MIR may include

current, temperature, and voltage sensor data whereas FTCS

may require data from magnetometers, gyroscopes, and

accelerometers. Control commands in MIR may involve

turning on or off various components and subsystems while

commands in FTCS involve thruster firings, reaction wheel

speed adjustment etc. MIR typically deals with various

components and their interaction within the spacecraft while

being unaware of the motion profile. On the other hand, FTCS

deals with the motion profile while being unaware of the

spacecraft component interactions. Such differences in

reasoning and operation of MIR and FTCS are termed as

representational gaps in these two architectures. It may be

tempting to bridge the representational gaps by extending the

models of either MIR or FTCS. Extending the analytical model

used by MIR to include motion profile requires substantial

increase in state space which may render the response of the

MIR to anomalies be slow and sluggish. On the other hand

incorporating inherently discrete component interaction

dynamics into the continuous time motion profile model adds

substantial complexities to the FTCS model. Therefore it is

advisable to bridge the representational gaps by using both

architectures and an interfacing mechanism [65] rather than

making things complex by extending either of the modeling

approaches.

D. Combining AI with Control Systems

The ultimate solution for fault tolerance in spacecraft mission

planning is to use the combination of control systems and

artificial intelligence. One way to achieve this goal is to use the

famous three-tier architecture [20]. This architecture proposes

the following layers in decision making 1) The controller, 2)

The sequencer, 3) The deliberator. Controller layer uses the

model from control systems theory and is able to handle the

continuous time dynamics of the spacecraft. The sequencer uses

the discrete AI model and makes high level decisions about

mission-related activities. The deliberator is responsible for

resolving conflicts and finding solutions for anomalous

situations using complex computations and extensive search.

Adoption of three-tier for fault tolerance in spacecraft mission

planning is a less discussed area of research. The approach used

in [65] is similar to a three-tier architecture where the focus is

on the design of the deliberator layer. Also the deliberator layer

has been implemented using an MDP which poses the issues of

computational complexity. An approach for reduction in

complexity is proposed in [65] but more rigorous treatment is

required for generalization of the proposed method. Specific

problem in designing a combined approach is to design a robust

and reliable mechanism for highlighted blocks in Fig. 6. With

the existing knowledge base, it is possible to develop dynamics

based and logic based fault diagnosis engines separately. But

the real challenge is to make use of the combined information

from these engines and reach a more reliable conclusion about

the existence and nature of faults. According to maximum

likelihood, combined information from a group of different

sensors (or sources) is at least as reliable as the information

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

21

from the most reliable sensor among the group. A simple

maximum likelihood based approach can be used for combining

information from artificial intelligence based and dynamics

based fault diagnosis. But such scheme would simply be an

underutilization of the potential of information. There is more

to obtain from series of data than just comparing numbers. For

example machine learning can be used to identify trends and

learn from statistics of faults and fault calls from each source.

Incorporation of learning algorithms may increase the online

computational overhead but is worth investigating. It is worth

mentioning here that dynamics based fault diagnosis engines

mostly cover faults in attitude estimation and control related

equipment, e.g., attitude sensors and actuators. On the other

hand, logic based model can cover faults in practically any

component of the system. Therefore, when working on the

combination of artificial intelligence and control systems, scope

of faults is limited. Having said that, there might be components

in the spacecraft which are not attitude sensors or actuators but

their faults affect attitude control, e.g., circuit boards, wiring

connectors, even the structure damage on the spacecraft can

affect attitude control. Therefore it is important to combine

artificial intelligence based diagnosis of whole system with

dynamics based diagnosis of attitude control system in order to

reach to the true cause of anomalous behavior of spacecraft.

Fig. 6: Combined Approach for Fault Tolerance in Spacecraft

VI. CONCLUSION

Theories involved in spacecraft mission control and

incorporation of fault tolerance have been reviewed. The paper

provides a thorough overview of algorithms and key

architectures from the AI and control systems literature. While

there have been many approaches developed for incorporation

of fault tolerance in spacecraft missions, a lot of questions

remain unanswered. For example, what is the most efficient

way of implementing fault tolerance? How can AI and control

systems based models be fused in a way that achieves the pros

of each approach while keeping complexity in check? How can

a spacecraft anticipate faults and execute precautionary

measures to avoid or manage failures should faults be

experienced? The future of research in this regard is in the

hybrid approach where methods from control systems theory

are combined with those of AI to enable reasoning over the

spectrum of discrete and continuous system properties required

to model the spacecraft and its mission.

REFERENCES

[1] S. Chien, M. Johnston, N. Policella, N., Frank, J et al “A generalized

timeline representation, services, and interface for automating space

mission operations” (SpaceOps 2012). Stockholm, Sweden. June 2012.
[2] S. Chien, R. Knight, A. Stechert, R. Sherwood, G. Rabideau, “Using

iterative repair to increase the responsiveness of planning and scheduling

for autonomous spacecraft”. International Joint Conference on Artificial
Intelligence (IJCAI 1999). Stockholm, Sweden. August 1999.

[3] M. D. Johnson, and G. E. Miller, “Spike: intelligent scheduling of hubble

space telescope observations”, edited by M. Zweben and M. Fox,
Intelligent Scheduling, Morgan Kaufmann Publishers, San Francisco, CA,

1994.

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

22

[4] E. Atkins, E. Durfee, and K. Shin, "Planning and resource allocation for

hard real-time, fault-tolerant plan execution." Autonomous Agents and
Multi-Agent Systems 4.1-2 (2001): 57-78.

[5] A. Nasir, and E. Atkins, “Fault tolerance for spacecraft attitude

management,” AIAA Guidance, Navigation, and Control Conference,
Toronto, Ontario, Aug. 2-5, 2010 (AIAA-2010-8301).

[6] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govindjee,

“Iterative repair planning for spacecraft operations in the ASPEN
system”. International Symposium on Artificial Intelligence Robotics and

Automation in Space (ISAIRAS 1999), Noordwijk,

Netherlands. June 1999.
[7] J. R. Wertz, and W. J. Larson, Space Mission Analysis and Design. El

Segundo, California: Microcosm Press, 2003.

[8] M. D. Shuster, “A survey of attitude representations”. Journal of
Astronautical Sciences, Vol 41, No 4, October-December, 1993, pp 439-

517.

[9] P. Hughes, Spacecraft Attitude Dynamics Dover Publications, INC. New
York copyright 1986, 2004.

[10] B. Wie, Space Vehicle Dynamics and Control AIAA Education Series

1998.
[11] H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, “Attutude

stabilization of a rigid spacecraft using two control torques: a nonlinear

control approach based on the spacecraft attitude dynamics”. Automatica,
Vol. 30, No. 12, December, 1994, 1885-1897.

[12] E. J. Lefferts, F. L. Markley, M. D. Shuster, “Kalman filtering for

spacecraft attitude estimation” AIAA 20th Aerospace Science Meeting,
Orlando, Florida, January 11-14, 1982.

[13] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd
Edition, Prentice-Hall, Upper Saddle River, New Jersey 07458, 2005.

[14] R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling,

Dover Publications Inc., 31 East 2nd Street, Mineola, N.Y. 11501, 2003.
[15] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th edition,

Springer Science+Business Media, LLC, 233, Spring Street, New York,

NY, 10013, USA, 2012.
[16] M. Xiong, Q. Wang, and K. Ramamritham, “On earliest deadline first

scheduling for temporal consistency maintenance,” Real-Time Systems,

2008.
[17] Ł. Kruk, J. Lehoczky, S. Shreve, “Earliest-deadline-first service in heavy-

traffic”, The annuals of applied probability, 2004, Vol 14, No. 3, pp.

1306-1352.
[18] A. K. Atlas and A. Bestavros, “Statistical rate monotonic scheduling”,

Proceedings of the 19th IEEE Real-Time Systems Symposium, 1998, pp.

123-132.
[19] J. Zalewski, “What every engineer needs to know about rate monotonic

scheduling: A Tutotial”, IEEE magazine-95/1, IEEE Computer Society

Press, 1995.
[20] E. Gat, "On three-layer architectures." Artificial intelligence and mobile

robots 195 (1998): 210.

[21] N. Muscettola, B. Smith, S. Chien, C. Fry, G. Rabideau, K. Rajan, D. Yan,
“On-board planning for autonomous spacecraft”, in: Proc. 4th

International Symposium on Artificial Intelligence, Robotics. And

Automation for Space (i-SAIRAS), Tokyo, Japan, August 1997.
[22] N. Muscettola, P. P. Nayak, B. Pell, B. C. Williams, “Remote Agent: To

boldly go where no AI system has gone before”. Artificial Intelligence,

103(1-2):5--48, 1998.
[23] N. Muscettola, “HSTS: Integrating planning and scheduling”. In Mark

Fox and Monte Zweben, editors, Intelligent Scheduling. Morgan

Kaufmann, 1994.

[24] R. Xu, P. Yuan-Cui, X. F. Xu, H. T. Cui “Multi-agent planning system

for spacecraft”. Proceedings of the Second International Conference on

Machine Learning and Cybernetics, Xi’an, 2-5 November 2003, pp 1995-
1999.

[25] S. Das, M. Sinha, K. D. Kumar “Reconfigurable magnetic attitude control

of earth pointing satellites”. Proceedings of Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering, 2010 224:1309.

Published by SAGE. DOI: 10.1243/09544100JAERO681.

[26] M. Lovera, and A. Astolfi, “Spacecraft attitude control using magnetic
actuators”. Automatica, 40 (2004) 1405-1414. Copyright 2004 Elsevier

Ltd.

[27] T. Pulecchi, M. Lovera, A. Varga, “Classical vs modern magnetic attitude
control design: a case study”. GNC 2008 7th International ESA

Conference, Tralee, County Kerry, Ireland, 2008.

[28] E. Silani, and M. Lovera, “Magnetic spacecraft attitude control: a survey
and some new results”. Control Engineering Practice, 13 (2005) 357-371.

Copyright Elsevier Ltd.

[29] P. Zentgraf, and D. Reggio, “Magnetic rate damping for satellites in

LEO”. 32nd Annual AAS Guidance and Control Conference, Jan 31 – Feb
4, 2009, Breckenridge, Colorado.

[30] J. L. Crassidis, and F. L. Markley, “A minimum model error approach for

attitude estimation”. AIAA Journal of Guidance Control and Dynamics,
20 (6) (1997) 1241-1247.

[31] J. L. Crassidis, and F. L. Markley, “Unscented filtering for spacecraft

attitude estimation”. AIAA Journal of Guidance Control and Dynamics,
20 (4) (2003) 536-542.

[32] J. L. Crassidis, and F. L. Markley, “Attitude estimation using modified

rodrigues parameters” Proceedings of the Flight Mechanics/Estimation
Theory Symposium, (NASA/CP-1996-3333)NASA-Goddard Space

Flight Center, Greenbelt, MD, 1996, pp. 71–83.

[33] J. L. Crassidis, F. L. Markley, Y. Cheng, “A survey of nonlinear attitude
estimation methods”. AIAA Journal of Guidance, Control, and Dynamics,

30 (1): 12-28, January 2007.

[34] R. M. Haralick, and G. L. Elliott, “Increasing tree search efficiency for
constraint satisfaction problems”. Artificial Intelligence 14 (1980) 263-

313, Copyright © by North-Holland Publishing Company.

[35] R. Dechter, and J. Pearl, “Network based heuristics for constraint
satisfaction problems”. Artificial Intelligence, 34 (1) (1987), pp 1 – 38.

[36] R. Dechter, “Temporal constraint networks”. Artificial Intelligence, 49

(1991) 61-95. Elsevier Science Publishers B.V.
[37] R. Dechter, Constraint Processing, Morgan Kaufmann Publishers an

Imprint of Elsevier Science, San Francisco, California. Copyright 2003

by Elsevier Science (USA).
[38] S. C. Brailsford, C. N. Potts, B. M. Smith “Constraint satisfaction

problems: algorithms and applications”. European Journal of
Operational Research 119 (1999) 557-581.

[39] G. Labinaz, M. M. Bayoumi, K. Rudie, “A survey of modeling and control

of hybrid systems”. International Fedration of Automatic Control 1997,
published in Great Britan, S0066-4138(97)00019-0, Vol 21, pp. 79-92.

[40] B. Potocnik, G. Music, B. Zupancic “Model predictive control of discrete-

time hybrid systems with discrete inputs”. ISA Transactions, 44 (2005),
199-211.

[41] P. J. Antsaklis, “A brief introduction to the theory and applications of

hybrid systems”. Proceedings of the IEEE, Special Issue on Hybrid
Systems: Theory and Applications, Vol. 88, No. 7, pp. 879-887, July 2000.

[42] S. Aberkane, J. C. Ponsart, M. Rodrigues, and D. Sauter, “Output

feedback control of a class of stochastic hybrid systems”, Automatica,
Elsevier 2008.

[43] P. R. Kumar, and P. Varaiya, Stochastic Systems: Estimation,

Identification, and Adaptive Control, Prentice Hall Inc., Englewood
Cliffs, New Jersey 07632, 1986.

[44] M. L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming, © John Wiley and Sons Inc. (1994).
[45] D. Bertsekas, and J. Tsitsiklis, Neuro-dynamic programming, Athena

Scientific, Belmont, MA, 1996.

[46] R. Sutton, and A. Barto, Reinforcement learning, The MIT Press,
Cambridge, Massachusetts, 1998.

[47] W. B. Powell, Approximate Dynamic Programming: Solving the Curses

of Dimensionality. New York: Wiley, 2007.
[48] A. Jonsson, and A. Barto, “A causal approach to hierarchical

decomposition of factored MDPs”, Proceedings of the Twenty Second

International Conference on Machine Learning (ICML 05), 2005.
[49] C. V. Goldman, and S. Zilberstein, “Communication-based

decomposition mechanisms for decentralized MDPs”, Journal of

Artificial Intelligence Research, 32 (2008) 169-202.

[50] C. Boutilier, R. I. Brafman, C. Geib, “Prioritized goal decomposition of

Markov decision processes: toward a synthesis of classical and decision

theoretic planning”, Proc. 15th Intl. Joint Conf. on AI (IJCAI-97),
Nagoya, August, 1997.

[51] M. Zweben, and S. Mark, Fox Intelligent Scheduling (Chapter 6), Morgan

Kaufman Publishers, San Francisco, California, 1994.
[52] C. Boutilier, T. Dean, S. Hanks, “Decision-theoretic planning: structural

assumptions and computational leverage” Journal of Artificial

Intelligence Research 11 (1999) 1-94.
[53] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J.

White, “Formal analysis of the remote agent before and after flight”, In

Proceedings of the 5th NASA Langley Formal Methods Workshop, June
2000.

[54] B. Pell, et al “A hybrid procedural/deductive executive for autonomous

spacecraft”. Autonomous Agents and Multi Agent Systems, 2, 7-22(1999)
Kluwer Academic Publishers, 1999.

Review of Tools and Methods for Fault Tolerance in Spacecraft Mission Planning

23

[55] R. J. Patton, “Fault-tolerant control: The 1997 situation”, In Proceedings

of the 3rd IFAC symposium on fault detection, supervision and safety for
technical processes, (pp. 1033–1055), August, 1997.

[56] Y. Zhang, J. Jiang, “Bibliographical review on reconfigurable fault-

tolerant control systems,” Annual Reviews in Control, Elsevier Ltd,
Volume 32, Issue 2, December 2008, Pages 229-252.

[57] M. Blanke, R. Izadi-Zamanabadi, R. Bogh, and Z. P. Lunau, “Fault

tolerant control systems—A holistic view”, Control Engineering
Practice, 5(5), 693–702, 1997.

[58] T. L. Dean, D. V. McDermott, “Temporal data base management”,

Artificial Intelligence 32 (1987) l-55.
[59] C. B. Williams, and P. P. Nayak, “A model-based approach to reactive

self-configuring systems,” in Proceedings of AAAI-96, pages 971-978,

AAAI, AAAI Press, Cambridge, Mass., 1996.
[60] D. H. Zhou, and P. M. Frank, “Fault diagnostics and fault tolerant

control”. IEEE Transactions on Aerospace and Electronic Systems, Vol.

34, No. 2, April 1998.
[61] Y. M. Zhang, and J. Jiang, “Fault tolerant control system design with

explicit consideration of performance degradation”, IEEE Transactions

on Aerospace and Elctronic Systems, 2003, 37 (3).
[62] A. Chamseddine, H. Noura, M. Ouladsine, “Sensor fault detection,

identification and fault tolerant control: application to active suspension”.

American Control Conference, 2006 2006 Jun 14 (pp. 6-pp). IEEE.
[63] Y. M. Zhang, and J. Jiang, “Integrated active fault tolerant control using

IMM aproach”. IEEE Transactions on Aerospace and Electronic Systems,

IEEE, Vol. 37, No. 4, 1221-1235, October 2001.
[64] L. W. Ho, and G. G. Yen, “Reconfigurable control system design for fault

diagnosis and accommodation”, International Journal of Neural Systems,
12(6), 2002, pp 497–520.

[65] A. Nasir, E. M. Atkins, and I. V. Kolmanovsky, “Conflict resolution

algorithms for fault detection and diagnosis” AIAA Infotech@Aerospace
Conference, St. Louis, Missouri, March. 29-31, 2011 (AIAA-2011-1587).

Ali Nasir received the B.Sc. degree in electrical

engineering from the University of Engineering and
Technology Taxila, Taxila, Pakistan, in 2005, the

first M.Sc. degree in electrical engineering, the

second M.Sc. degree in aerospace engineering, and
the Ph.D. degree in aerospace engineering from the

University of Michigan, Ann Arbor, MI, USA, in

2008, 2011, and 2012, respectively. He is currently
the Head of Electrical Engineering Department,

University of Central Punjab, Lahore, Pakistan. His

current research interests include approximate dynamic programming, Markov

decision processes, fault tolerant control, and optimal control for multiagent
systems. Dr. Nasir was a recipient of the Fulbright Scholarship in 2007.

Ella M. Atkins received the B.S. and M.S. degrees in

aeronautics and astronautics from the Massachusetts
Institute of Technology, Cambridge, MA, USA, and

the M.S. and Ph.D. degrees in computer science and

engineering from the University of Michigan, Ann
Arbor, MI, USA. She served on the Aerospace

Engineering Faculty with the University of Maryland

College Park, College Park, MD, USA. She is a
Professor with the Department of Aerospace

Engineering, University of Michigan, where she is the

Director of the Autonomous Aerospace Systems Laboratory and the Associate
Director of Graduate Programs for the Robotics Institute. She has established a

long-term research program in decision-making and control to assure safe

contingency management in manned, and unmanned aircraft applications. Dr.
Atkins is a past Chair of the AIAA Intelligent Systems Technical Committee,

AIAA Associate Fellow, small Public Airport Owner/Operator (Shamrock

Field, Brooklyn, MI, USA), a Private Pilot (Aircraft Single Engine Land), and
holds a Part 107 UAS certificate. She served on the National Academy’s

Aeronautics and Space Engineering Board from 2011 to 2015, the Institute for

Defense Analysis Defense Science Studies Group, from 2012 to 2013, and an
NRC committee to develop an autonomy research agenda for civil aviation,

from 2013 to 2014.

Ilya Kolmanovsky received the M.S. and Ph.D.
degrees in aerospace engineering, and the M.A.

degree in mathematics from the University of
Michigan, Ann Arbor, MI, USA, in 1993, 1995, and

1995, respectively. He was with Ford Research and

Advanced Engineering, Dearborn, MI, USA, for
close to 15 years. He is currently a Professor with the

Department of Aerospace Engineering, University of

Michigan. His current research interests include
control of systems with constraints, control of

automotive and aerospace propulsion systems, and spacecraft control

applications. In 2011, he was a Summer Faculty Fellow with the Space Vehicles
Directorate of Air Force Research Laboratory, Albuquerque, NM, USA. He has

co-authored over 250 journal and conference articles and is named as an

inventor on 84 U.S. patents and derivative international patents. Dr.
Kolmanovsky was a recipient of the Donald P. Eckman Award of American

Automatic Control Council, the IEEE TRANSACTIONS ON CONTROL SYSTEMS

Technology Outstanding Paper Award, and the several Ford Motor Company
Technical Achievement, Innovation, and Publication awards.

	I. INTRODUCTION
	II. Spacecraft Modeling
	A. Modeling of the Motion of Spacecraft
	B. Modeling of Processes and Events within the Spacecraft

	III. Spacecraft Control
	A. Spacecraft Mission Planning and Scheduling
	B. Spacecraft Motion Control and Estimation

	IV. Theories and Tools Involved in Spacecraft Mission Planning
	A. Constraint Satisfaction Problems
	B. Hybrid Systems
	C. Markov Decision Process (MDP)
	D. Approximate Dynamic Programming

	V. Incorporating Fault Tolerance in Spacecraft Mission Planning
	A. Artificial Intelligence Planning
	B. Control Systems Theory based Approach
	C. Representational Gaps
	D. Combining AI with Control Systems

	VI. Conclusion
	References

