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Abstract—Due to the hostile nature of the space environment, 

fault tolerance has become a key part of recent research in 

spacecraft mission planning. Spacecraft are complex systems; 

mission planning in spacecraft may not just involve text book 

Artificial Intelligence based approaches. Requiring additional 

fault tolerance capability makes the problem more challenging 

and diverse. This paper reviews the relevant tools and methods 

from Artificial Intelligence and Control Systems theory for fault 

detection and diagnosis. Different types of modeling approaches 

have been discussed followed by control and mission planning. 

Existing approaches are evaluated and gaps have been identified. 

Possible approaches to fill those gaps are discussed. 

 
Index Terms—Spacecraft mission planning, fault tolerance, 

timeline based planning, plan database.  

 

I. INTRODUCTION 

ISSION planning is a challenging task in general.  

Planning is perhaps most challenging for spacecraft 

because the spacecraft cannot be modified or repaired once 

launched. Further, thermal cycles, radiation, and scattered 

debris in the space environment represent substantial hazards to 

spacecraft. A spacecraft may not be in continuous contact with 

a ground station. This means that if something goes wrong 

during the mission, the spacecraft is on its own until 

communication with the ground station becomes available. This 

motivates the incorporation of fault tolerance into spacecraft 

mission planning. 

There are two major approaches for achieving fault-tolerance 

in spacecraft missions from the literature. One method is to 

calculate a preset response for every possible situation while the 

second is to perform online planning based on predefined 

guidelines [1]. A collection of preset responses for the 

spacecraft mission defines a “plan database” where each “plan” 

is a sequence of actions that leads to the completion of a specific 

goal-achieving or recovery task. Generation of a plan onboard 

the spacecraft offers flexibility but can require nontrivial 

computational resources. Many techniques have been proposed 

to reduce planning complexity.  For example, iterative repair 

[2] methods focus on improving plan quality as time permits.  

Distinction of short and long-term planning facilitated 
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scheduling in Hubble Space Telescope [3]. Besides planning for 

normal situations, planning to manage faults has also been 

studied [4][5]. In case of a fault, the current plan of the 

spacecraft typically becomes invalid due to change in system 

performance and capabilities. A new plan can be formulated via 

online deliberation during which the spacecraft is typically 

placed in “safe mode” hence causing delay in mission 

completion as a minimum and missed opportunities in some 

cases, e.g., a fly-by that cannot be repeated. A plan database can 

also contain pre-calculated plans to manage each fault 

anticipated by system engineers in advance. However, since 

spacecraft faults cannot all be anticipated in advance, there is a 

limit to having plans ready in the database to be activated when 

required.  

To-date, no plug-and-play software has been developed for 

spacecraft mission planning. However, some tools have been 

developed to assist in developing mission plans for multiple 

missions. For example, ASPEN [6] and CASPER [2] include 

structures that allow for inclusion of activities, states, 

constraints, and contingency responses. SPIKE [3] is another 

example of an intelligent scheduling framework. Spacecraft 

mission planning typically requires information from 

astrodynamics, science payload management, spacecraft 

kinematics and dynamics, fault diagnosis, fault tolerance, and 

constraint satisfaction. Therefore it is important to understand 

how all these systems work to develop a consolidated mission 

planning framework. For example, consider a spacecraft 

mission of collecting scientific data from astronomical objects. 

Each object may not be accessible to the spacecraft payload 

equipment from every point in the orbit. Therefore mission 

planning needs to have information about the orbital dynamics. 

Secondly, once an astronomical object of interest is “visible” to 

the payload, mission planning has to incorporate constraint such 

as sun avoidance, available power, and health of the spacecraft 

components. Specifically, if a stable and accurate attitude 

pointing is not guaranteed (due to faults in any of the attitude 

sensors or actuators) it would be difficult to collect scientific 

data. Finally, if multiple astronomical objects are visible at the 

same time, spacecraft planner must decide the sequence of data 

collection.  

This paper provides a review of technical literature relevant 
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to fault tolerance in spacecraft mission planning. Section II 

presents an overview of the mathematical modeling techniques 

used in the spacecraft domain. Section III presents a review of 

spacecraft mission planning and motion estimation and control 

techniques. Section IV presents references and methods in 

hybrid systems or switched control systems that have been 

successfully used for fault tolerant control. This section also 

presents methods in Markov Decision Processes (MDPs) to 

support planning under uncertainty. Section V describes 

existing frameworks for fault tolerant attitude planning in 

artificial intelligence and in control systems theory. 

Representation gaps and possible solutions have also been 

discussed in the same section. Concluding remarks and future 

directions are discussed in Section VI. 

II. SPACECRAFT MODELING 

Before moving into the discussion of spacecraft mission 

planning, it is important to understand the basic components of 

spacecraft. A spacecraft is a complex system with discrete as 

well as continuous time behavior. It consists of subsystems such 

as attitude and orbital control, telemetry tracking and command, 

power generation storage and distribution, thermal control, and 

structures subsystem [7]. Interconnections of various 

subsystems onboard the spacecraft is depicted in Fig. 1. Various 

aspects of the spacecraft are modeled using different 

mathematical tools. For example dynamics and kinematics are 

modeled using the differential equations whereas discrete 

component switching and faults can be modeled as discrete 

variables. Like most of the models in real world, spacecraft 

models are not exact representation of actual spacecraft 

behavior. Inaccuracy in modeling (as well as unpredictable 

nature of space environment) causes uncertainty and one of the 

ways to model uncertainty is through Bayesian Networks. In the 

rest of the section we discuss two aspects of spacecraft 

modeling. One is the modeling of the motion of spacecraft and 

second is the modeling of processes and events with spacecraft.   

 
Fig. 1: Spacecraft Subsystems 

A. Modeling of the Motion of Spacecraft 

Motion of the spacecraft is of two types. One is orbital 

motion and second is attitude related motion. For most 

spacecraft mission, orbital motion is uncontrolled after the 

desired orbit is achieved after initial launch. Attitude however 

is actively controlled in majority of spacecraft. Attitude motion 

is represented by the equations of kinematics and dynamics of 

spacecraft. There are multiple ways of representing spacecraft 

attitude kinematics [8].  Equations (1a), (1b), and (1c) represent 

alternate ways to model the kinematics of the spacecraft as a 

rigid body. 

�̇� =
1

2
(𝑞4Ω − [Ω × 𝑞]) 
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𝑞4̇ = −
1

2
(Ω𝑇𝑞) 

(1a) 

�̇� = [

0 𝜔3 −𝜔2

−𝜔3 0 𝜔1

𝜔2 −𝜔1 0
] 𝑅

     (1b) 

[

𝜃1̇
𝜃2̇
𝜃3̇

] = [

𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2
0 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 −𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1
0 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1

] [

𝜔1

𝜔2

𝜔3

]

  (1c) 

  In (1a), q is a 3 × 1 vector of the first three elements of 

attitude quaternion of the spacecraft with respect to an inertial 

frame of reference; q4 is a scalar representing the fourth element 

of the quaternion. Ω is a 3 × 1 vector representing spacecraft 

angular velocities in a body-fixed frame. In (1b), R is the 3 × 3 

rotation matrix for the spacecraft whereas ω1, ω2, and ω3 

represent components of Ω. In (1c),  1 2 3

T
   represent 

angular velocities in the body-fixed frame and  1 2 3

T
  

represent Euler angles roll, pitch, and yaw, respectively, with 

respect to the inertial frame. There are other ways to represent 

the attitude, e.g. Euler-Rodriguez parameters [8] [9] not 

discussed here. The quaternion representation is common for 

spacecraft as it has no singularities and requires only four 

continuous-valued quantities in its representation.  Euler angles 

do have singularities, while rotation matrices have no 

singularities but must be represented with nine values. 

   The attitude dynamics of a rigid spacecraft are represented 

as 

𝜔1̇ =
1

𝐽1
[(𝐽2 − 𝐽3)𝜔2𝜔3 + 𝑢1], 

𝜔2̇ =
1

𝐽2
[(𝐽3 − 𝐽1)𝜔1𝜔3 + 𝑢2], 

𝜔3̇ =
1

𝐽3
[(𝐽1 − 𝐽2)𝜔2𝜔1 + 𝑢3] 

(1d) 

In (1d), (J1, J2, J3) are diagonal components of 3 × 3 inertia 

matrix in a body-fixed frame and (u1, u2, u3) represent control 

inputs. Note that the inertia matrix is typically assumed to be 

diagonal.  There are a number of ways to control spacecraft 

attitude [10] even with two control inputs instead of three [11].  

In [11] a stabilizing feedback control strategy has been 

developed that is discontinuous and can achieve any possible 

attitude value. The results presented in [11] show that although 

nonlinear control techniques do not apply, a stabilizing control 

law can still be constructed that is based on a sequence of 

maneuvers. Also, for attitude determination, a number of ways 

have been developed to estimate the attitude from the sensor 

readings which may or may not provide accurate 

measurements, e.g. [12] where Kalman filtering has been used 

to estimate the attitude with gyroscopes that have both drift and 

bias errors. 

B. Modeling of Processes and Events within the Spacecraft 

Modeling of the processes and events within the spacecraft 

can be done with discrete time variables and logical expressions 

(or rules). Each process involves variables that have 

dependencies. One way to represent dependencies among the 

variables is Bayesian Network. More precisely, Bayes network 

[13] is a way of representing dependence relations between 

random variables and is used for efficient computation of joint 

and conditional probabilities. Bayes nets can be used for 

modeling the internal composition of a spacecraft by noting that 

failure of any component is a random event and failures of 

components within the spacecraft depend upon each other in a 

way that can be determined from the interconnection and 

interaction of components with one another. A Bayes net 

succinctly represents a conditional probability table (CPT).  

Bayes nets can intuitively represent CPTs associated with 

spacecraft fault diagnosis.  For example, consider a one degree 

of freedom (1DOF) reaction wheel system where a battery 

supplies power to two electronics boards (one of which is 

redundant for fault tolerance) that can drive the reaction wheel. 

A simple Bayes net model for failure probabilities of this 

system is shown in Fig. 2. 

 
Fig. 2: Bayes net example 

The above graph indicates failure of the battery affects the 

failure of the electronics boards (EB1 and EB2), and the failure 

of the electronics boards affects the functionality of the reaction 

wheel (RW). Furthermore, failure of the reaction wheel is 

conditionally independent of the failure of battery given 

definitive knowledge (evidence) of whether both electronics 

boards have failed as this evidence “breaks the dependency 

link” from the Batt graph node. This type of model can be used 

to solve for the probabilities of failure of any components or 

subsystems given failure information about any other 

component(s) or when no information or evidence is given. 

There are several methods for deriving probabilities from Bayes 

nets [13] including enumeration, variable elimination, and local 

propagation. The computational and memory requirements for 

some of the methods are shown in Table 1. In this table, n is the 

number of nodes in the Bayes Net, and all nodes are assumed 

to be binary, e.g. fail/not-fail. Also note that the local 
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propagation method has the lowest computational complexity 

but it is only applicable on Bayes nets that have a poly tree 

structure (i.e. no cycles or multiple paths connecting one node 

to another).  

TABLE 1: COMPUTATIONAL COMPLEXITY OF METHODS FOR SOLVING BAYES 

NETS [13] 

Method Applicability Memory 
Requirement 

Computational 
Cost 

Enumeration general O(n) O(n2n) 

Variable 
Elimination 

general O(2n) O(2n) 

Local 
Propagation 

polytrees O(n) O(n) 

Clustering general O(2n) O(2n) 

Conditioning general O(n) O(2n) 

III. SPACECRAFT CONTROL 

Once the modeling is completed, next step is to design and 

implement control. A spacecraft is controlled at multiple levels. 

At a high level, the control is in the form of mission planning 

and scheduling tasks. At a low level, the control refers to 

specification of the physical motion of spacecraft (e.g., attitude 

or pointing sequence).  

A. Spacecraft Mission Planning and Scheduling 

There are five main ingredients of the classical artificial 

intelligence (AI) planning problem:  a finite set of discrete 

states, a set of state-dependent actions, the specification of 

desirable or goal states, the specification of an initial state, and 

a search method to determine an optimal sequence of actions 

(i.e. the solution) that leads from initial state(s) to goal state(s). 

For a given size of the state and action spaces, the 

computational complexity of finding the solution depends upon 

the search method used. All the planning methods are centered 

on the method of search that they use to find a solution. Typical 

real-time schedulers see the world as a set of resources and a set 

of resource-consuming tasks requiring up to a known worst-

case utilization of each computational resource (e.g., processor 

or communication). Schedulers allocate resources to tasks, 

assigning each a start time and resource set that guarantee all 

deadlines are satisfied, making tradeoffs as needed to degrade 

best-effort tasks given resource constraints [14][15]. One of the 

basic algorithms used for scheduling is earliest-deadline-first 

scheduling [16][17] where tasks are placed in a priority queue. 

This means that at the occurrence of a scheduling event, (a task 

is finished, a new task is released, etc.) the queue is searched 

for the task closest to its deadline. Another basic algorithm for 

scheduling is rate-monotonic (RM) scheduling [18][19] where 

priority is given to the tasks with shortest period. 

   Autonomous spacecraft task planning and scheduling have 

been achieved for a limited set of science missions [2][20][21]. 

Algorithms such as iterative repair [2] have been selected due 

to their ability to adapt existing plans without prohibitive 

computational overhead. Hence, iterative repair supports 

modification (possibly due to occurrence of faults or change in 

mission priorities) and updating of a current working plan. 

Iterative repair adapts an existing plan by using search-based 

algorithms such as backtracking [22]. This results in plan 

improvement but optimality in general is not guaranteed by 

iterative repair due to the local nature of search in iterative 

algorithms. Reference [2] discusses continuous planning on 

board the spacecraft using iterative repair to support 

autonomous control of spacecraft. This allows for responding 

to the anomalies resulting in delays or resource depletion. 

Another reference on integrated planning and scheduling is [23] 

that present a Heuristic Scheduling Testbed System (HSTS). 
HSTS is a framework of representation and problem solving 

which provides an integrated planning and programming 

vision. HSTS involves the decomposition of continuous time 

domain state variables. In this manner, description and 

manipulation of complex resources is managed. Resources in 

HSTS are modeled in classical programming tasks. Schedules 

developed in HSTS implicitly identify a set of behaviors legal 

system. This is an important difference from the classical 

approaches; however, specify all aspects of the same behavior, 

nominal system. In [24], a multi-agent planning system 

(MAPS) for autonomous planning is built that is used to 

generate feasible action sequence under complex constraints. 

The planning model is capable of describing simultaneous 

activities with continuous time. The model can also handle 

resource and temporal constraints. The architecture of MAPS 

includes multiple planning agents (PAs) and a planning 

manager agent (PMA). One might consider the subsystems in a 

spacecraft as intelligent agents and the goals of the spacecraft 

are achieved by combined operation of the agents. Mission 

planning system is managed by PMA. It also functions as a 

communication medium between PAs. Pas interact with each 

other only after they have registered with PMA. 

B. Spacecraft Motion Control and Estimation 

Attitude control is fundamental for ensuring spacecraft 

stability thus requires fault tolerance. Multiple attitude control 

schemes are often required for implementing full 

reconfigurable control. A careful presentation of spacecraft 

attitude control methods is given in [10].  This book treats the 

basics of dynamic systems modeling and control. The problem 

of attitude stabilization and control for the rigid spacecraft 

under the influence of various actuators such as reaction jets, 

momentum wheels, and control moment gyros is discussed in 

this book. These techniques can provide a good support for our 

proposed framework especially when different types of 

redundant actuators are used in the spacecraft for fault 

tolerance. A number of stabilization and control problems for 

three axes stabilized as well as spin stabilized spacecraft are 

also treated in [10]. Specifically large-angle attitude maneuvers 

are discussed where spacecraft moves about an inertially fixed 

axis. The motion has to be as fast as possible but actuator 

saturation must be handled. Such maneuvers are fundamental 

for science data collection missions where targets of interest can 

only be observed by slewing the spacecraft through a sequence 

of large-magnitude motions. Advanced problems of spacecraft 

attitude control via developing logic based solutions using 

CMG reaction jets are treated along with momentum 

management for large spacecraft.   

   There has also been some interesting work done on 
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magnetic control of spacecraft attitude in [25][26][27][28][29]. 

For example, in [25], a magnetic dipole moment modulation 

based reconfigurable attitude control is presented for an earth 

pointing satellite. Spacecraft control with two torques has also 

been extensively studied e.g. in [11]. Spacecraft control with 

two-torques is very useful for implementing fault tolerance. 

Robust spacecraft attitude estimation is required for most 

missions and requires fault tolerance. Most dynamics-based 

fault detectors are based on output estimation. One of the most 

useful resources in the literature of spacecraft attitude 

estimation is a survey paper by Lefferts et al [12]. This work 

presents a summary of experience in the Kalman filtering of 

spacecraft attitude and offers two possible implementations of 

the Kalman filter for systems with attitude sensors and gyros 

with noise terms describable by a first-order Markov process. 

The difference in the two schemes is only in the choice of frame 

for the update, for example using the complete four-component 

quaternion versus using the truncated quaternion where one 

component has been eliminated. Crassidis and Markley [30] 

present an attitude estimation approach based on minimization 

of model error (MME). The approach is designed for three-axis 

stabilized spacecraft. Based on the implementation example 

included in [30], their algorithm is shown to be robust and 

accurate, able to estimate attitude with or without gyro 

measurements. Functional form of the optimal estimation 

involves a linearization technique and gradient search with a 

linear Riccati transformation. This algorithm is demonstrated to 

be accurate and computationally efficient for generating state 

estimates based on an implementation example. Results 

obtained from MME-based approach indicate accurate 

estimation of the attitude of spacecraft using only 

magnetometer sensor measurements. Crassidis and Markley 

have also published their work on spacecraft attitude estimation 

using unscented Kalman filter [31] and attitude estimation 

using modified Rodriguez parameters [32]. Both these authors 

along with Cheng have published a survey on modern attitude 

estimation methods [33]. This survey presents a quaternion 

estimation filter (QUEST), extended QUEST and reverse-

smoothing extended Kalman filter. In QUEST, a discrete set of 

sigma points is propagated and updated instead of using 

linearized equations for the mean and covariance. 

IV. THEORIES AND TOOLS INVOLVED IN SPACECRAFT 

MISSION PLANNING 

While the previous section discussed various issues involved 

in mission planning, in this section, the relevant theories and 

tools for implementing the same are reviewed.  

A. Constraint Satisfaction Problems 

Constraint Satisfaction Problems (CSPs) represent a class of 

AI planning problems where states belong to specific domains 

of values and there are constraints over allowable combinations 

of values for subsets of state variables. CSPs can be solved with 

algorithms that take advantage of the specific state-space 

formulation. A constraint satisfaction problem (CSP) involves 

selection of a value from a finite domain that is to be assigned 

to each variable in the problem, such that all the restrictions 

related to the variables are satisfied. Then a sequence of actions 

is selected that allow the achievement of goals by the plan and 

which satisfaction of numerical and symbolic constraints.  

Many combinatorial problems in operational research, such as 

timetabling and scheduling can be formulated as CSPs. In [34], 

the authors calculate the number of tree search operations 

involved in the solution of binary constraint satisfaction 

problems. It is shown experimentally and analytically that there 

are two principles that improve backtracking search 

performance i.e. placing most likely to fail first and 

remembering the past actions to avoid repetitions. In [35], 

Dechter identifies easily solvable problem classes, and has 

designed algorithms to calculate optimal solutions for such 

problems. Other useful references on CSPs by the same author 

include [36][37]. Brailsford et al. describe CSPs and solution 

techniques in [38], and also show how constraint satisfaction 

approach is used in solving various combinatorial optimization 

problems. Also the constraint satisfaction approaches of have 

been compared with operational research (OR) techniques e.g. 

simulated annealing, branch and bound, and integer 

programming. 

B. Hybrid Systems 

Hybrid systems of interest for this work contain two different 

types of components: continuous and discrete dynamic 

subsystems with interacting dynamics. Hybrid systems theory 

has been applied in many areas e.g. communication networks, 

manufacturing, engine control automotive, designing autopilot, 

chemical processes, and computer synchronization etc. A key 

role is played by Hybrid systems in the embedded control 

systems. Hybrid systems are also used in developing complex 

systems with hierarchical organization of complex systems as 

well as in the interaction of scheduling algorithms along with 

continuous and discrete intelligent autonomous systems and 

control algorithms. A survey on control and modeling of hybrid 

systems is presented in [39]. Certain characteristics of hybrid 

systems are highlighted in this survey. Modeling approached 

within hybrid systems has been illustrated through a simple 

three fluid-filled tank system. Further exploration of the 

characteristics of hybrid model is done through variations of the 

same example. A discussion on the analysis and control 

techniques for hybrid systems is also presented in [39].  Model 

predictive control (MPC) has also been employed on discrete 

time hybrid systems [40]. The cited method builds a “tree of 

evolution” to abstract the behavior of the hybrid system. 

Reachable states of the system are represented as nodes of the 

tree and if a transition between two states exists, the concept of 

a branch is utilized. Each node is associated with a cost-function 

value which serves as the base value for exploration of the tree. 

Other references on hybrid systems include [1][41]. 

Introduction to the theory of hybrid systems as well as 

discussion on its applications is included in [41]. Authors in 

[42] discuss the output feedback control of a class of stochastic 

hybrid systems. 

C. Markov Decision Process (MDP) 

A Markov Decision Process is a controlled Markov chain 
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[43] that is solved using a discrete stochastic dynamic 

programming (SDP) algorithm, e.g. policy iteration or value 

iteration [44][13]. In value iteration an expected discounted 

reward function is maximized that is of the form 

0

0

( ) ( , ) | , .Pol t t t

t

V s E R s Pol s s 




 
  

 
        (2) 

   Here, st represents state after t actions, and µt is the action 

applied in state st according to a policy Pol (st is a random 

variable). V is the value function that can also be viewed as 

expected discounted reward of the state. The discount factor γ 

(γ ϵ (0, 1)), indicates that the future rewards may have lower 

value. R is the reward function that is assumed to be finite 

valued. The optimal policy can be calculated as 

    

 *( ) arg max , ( | , ) ( ) .i k i j k i j
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(3) 

All states that are connected via any action with nonzero 

probability have direct relationship between their 

corresponding values. This relationship can be expressed using 

the Bellman equation [13]:  

1( ) ( ) max ( | , ) ( ) .t i i j k i t j
k
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(4) 

where Vt+1(si) represents value of state si at iteration t+1. R(si) 

is the immediate reward of state si. T (sj |μk, si) is the probability 

of transitioning from state si to sj by executing action μk.  

In terms of the convergence of value iteration algorithm, 

number of iterations (Itr) to reach an error bound of ε can be 

bounded as: 

        
max2 1

log / log .
(1 )

R
Itr

  

    
     

    
             (5) 

Here ε is the required tolerance of the solution satisfying  

1( ) ( ) , .t i iV V i             (6) 

The inequality (2.3.3-5) is ensured by [13] 
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1
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      (7) 

Value iteration has computational complexity of the order 

O(N2k) where k is the number of actions and N is the number of 

states in the MDP. As described in [43], Equation (4) converges 

to a unique solution. The solution of Equation (4) achieves its 

maximum value of the right hand side in Equation (2). If the 

policy is calculated using (3) with solution of (4), it will be 

optimal with respect to (2). 

The value iteration algorithm used to solve (4) and find an 

optimal policy from (3) is shown in Algorithm 1. 

Algorithm 1: Value Iteration algorithm [44] 

 

D. Approximate Dynamic Programming 

Approximate Dynamic Programming (ADP) is a collection 

of methods that are used to decrease the computational 

complexity of MDPs. Researchers from three different research 

communities have written dedicated books to this topic. From 

control systems theory, book by Bertsekas and Tsitsiklis [45] 

provides a fundamental theoretical foundation of the field.  

Specifically neural network approximations have been used in 

this text [45] to overcome the "curse of dimensionality" and the 

"curse of modeling". These curses have been bottlenecks to the 

practical application of stochastic control and dynamic 

programming to complex problems. From the perspective of 

artificial intelligence and computer science, book by Sutton and 

Barto [46] describe the field of ADP. Starting with intuitive 

examples and a definition of reinforcement learning, they 

present three fundamental approaches to reinforcement 

learning. The operational research (OR) perspective of ADP is 

presented by Powell [47]. Where the emphasis is on the high-

dimensional problems that typically arise in OR. In [48], the 

authors present an algorithm that dynamically performs 

hierarchical decomposition of factored MDPs. Their algorithm 

is based on determination of causal relationship between states. 

Communication-based decomposition methods for 

decentralized MDPs are presented in [49]. A goal-based 

decomposition approach (similar to the approach adopted in 

this thesis) is presented in [50]. In [50], the decomposition is 

based on the additive terms in the reward function that 

correspond to different sub-goals. Decomposed MDPs are 

assigned sub-goals based on decomposition of the reward 

function. Optimal policies are computed for each sub-goal and 

finally merged together using a value function heuristic and 

best-first search to generate an approximate policy for the 

original task. 

V. INCORPORATING FAULT TOLERANCE IN SPACECRAFT 

MISSION PLANNING 

Incorporation of fault tolerance in mission planning of 

spacecraft requires nontrivial innovation. On the other hand, 

Step 0. Initialization: 

 Set V0(s) = 0 for all s ϵ S 

 Fix a tolerance parameter ε > 0 

 Set t = 1. 

Step 1. For each s ϵ S compute:

1

'

( ) ( ) max ( ) ( , , ') ( ')t t
M
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V s R s C T s s V s


   




  
    

  


 

Step 2. If: 

  1 1 / 2 ,t tV V       

calculate: 

*

'

( ) max ( ) ( , , ') ( ')t

s S

P s C T s s V s


  


 
   

 


 

 else, set t = t + 1 and go to Step 1. 
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any of the methods discussed in the previous section can be 

employed for realization of fault tolerant mission planning. In 

this section we present some classic approaches for fault 

tolerant spacecraft motion control and processes control. We 

also identify the representation gaps in both types of control. As 

evident from discussion in section II, the models of processes 

and events differ fundamentally from the models of motion 

(kinematics and dynamics).  

A number of algorithms for planning and scheduling as well 

as plan execution have been proposed in the Artificial 

Intelligence (AI) community [22][51][24][13].  A majority of 

these algorithms present the state as a set of discrete valued 

variables. This enables search-based algorithms to select, 

decompose, and sequence appropriate actions given the 

specified task-level goal and the observed system state.  For 

spacecraft for which operations involve nontrivial uncertainty, 

reasoning is typically based on Bayesian and/or Markov 

Decision Process (MDP) models [52].  The MDP builds optimal 

policies that cater for the uncertainty involved in the state 

transitions of the spacecraft. Note that the MDP solves a slightly 

more general form of the AI planning problem where state 

transitions involve uncertainties and possess the Markov 

property. The AI literature includes many frameworks for 

spacecraft mission planning and execution, but only a few of 

them have been successfully deployed. This is mainly due to 

their computationally-intensive and often difficult-to-validate 

nature.  The Remote Agent [22][53][54] offers a good focus for 

this paper due to its emphasis on fault tolerance for space 

applications.  In the following subsection, we describe Remote 

Agent in more detail since it is one of the most successful multi-

layer AI architectures implemented and deployed on a 

spacecraft. Alternatives to the AI based approaches include 

algorithms based on the theory of fault tolerant control 

[55][56][57].  Fault tolerant control uses physics based 

dynamical models with continuous time state variables as 

opposed to discrete valued variable in AI based approaches. On 

top of the physics based dynamical model, there is usually 

supervisory control logic for fault related decision making. 

A. Artificial Intelligence Planning 

Researchers from the Jet Propulsion Laboratory (JPL) and 

NASA Ames developed the Remote Agent (RA) AI 

architecture to enable autonomous onboard mission 

management [22][53]. Remote Agent has been tested on the 

Deep Space One (DS-1) spacecraft. RA is comprised of five 

components: 1) Planning Experts (PE), 2) Mission Manager 

(MM), 3) Planner and Scheduler (PS), 4) Smart Executive 

(EXEC), and 5) Mode Identification and Reconfiguration 

(MIR). Planning Experts (PE) are innovative software modules. 

The role of PE is to assist the Planner and Scheduler (PS) in two 

possible ways:  the PE can either request new goals from PS or 

PE can compute planning solutions for PS. For example, in the 

navigation domain, PE may request updated engine thrust goals 

based on its estimation of the spacecraft orbit, whereas in the 

attitude domain PE might provide anticipated duration of 

specified turns and resulting resource consumption.  

 
Fig. 3: The original Remote Agent architecture [22] 

The role of the mission manager is to initiate PS activities 

based on long term mission objectives and current status of 

mission execution. The execution layer (EXEC) incorporates 

artificial intelligence and is responsible for main mission 

execution. EXEC also gathers data from onboard sensors and 

monitors to determine the mission execution status which is 

sent to the mission manager along with the request for new 

plans to be executed. Initial mission objectives are programmed 

before launch and later on new objectives can be uploaded from 

the ground station. MM works in phases or horizons of time. In 

a particular phase, the objectives to be achieved are combined 

with the current status of the spacecraft provided by EXEC. 

Then constraints are formulated based on the mission objectives 

(for current phase) and the spacecraft status to be sent to PS. 

The decomposition of mission objectives into short term phases 

allows for uninterrupted long term autonomy.  

The role of the PS is to perform iterative repair based search 

[21] and chronological backtracking in order to calculate the set 

of tasks that extends the existing partial plan. PS consists of a 

plan database and Heuristic Scheduling Testbed System 

(HSTS) [51] that uses the plan database to calculate the 

consequences of each activity in the partial plan and to generate 

feasible sequences of activities that form a plan.  Domain 

Description Language (DDL) [58] is used to specify domain 

constraints within HSTS. A finite set of symbolic state variables 

are used to describe the system state. Special variables 

“Tokens” are used to describe action and state literals. PS 

incorporates search-based planning and scheduling (in classical 

sense) that is implemented efficiently using parallel 

programming threads. Although the search mechanism in PS is 

classic, it is advanced to handle periodic and accumulative 

goals as well as the default goals. 

EXEC is the plan execution system that is robust and 

multithreaded driven by events occurring inside the spacecraft. 

EXEC is a framework for customized control, fault diagnosis, 

and fault reconfiguration. It uses spacecraft state and current 

mission goals to determine activity to be performed. EXEC can 

handle interdependent activities and can request and execute 

plans with potentially uncertain outcomes and timings. EXEC 

determines primitive commands from the tasks involved in 

current mission plan based on the state of the spacecraft. In this 

way the planner can reason at higher level where EXEC handles 

low level execution. EXEC is also designed to compute fault 

responses during various activities. Execution Support 

Language (ESL) [20] is used in the development of EXEC 

which provides parallel execution, synchronization, error 

handling, and property locks [58]. A special submodule known 

as Mode Identification (MI) helps EXEC in monitoring of the 
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task execution and spacecraft state. When the given plan by 

MM is executed by EXEC, it provides MM with the current 

state of the spacecraft and requests new plan. In case of any 

fault rendering the spacecraft unable to execute the current plan, 

EXEC puts the spacecraft in safe mode and requests an alternate 

plan from MM. The alternate plan is generated without 

intervention from the ground station if within the capabilities of 

the MM. A certain level of robustness is achieved by EXEC 

through another special submodule called Mode 

Reconfiguration (MR) module. MR allows flexibility through 

deductive search and calculation of appropriate response to a 

given fault so that the MM may not have to be summoned.  

 
Fig. 4: Livingstone architecture [22] 

    The Mode Identification and Reconfiguration (MIR) 

capability in Remote Agent is provided by a special architecture 

known as the Livingstone [59]. Livingstone is a discrete model-

based controller inserted between low level feedback control 

layer and high-level feed-forward reasoning in a physical 

system. MIR is responsible for calculation of reconfiguration of 

the systems (spacecraft) that mitigate or reduce the effect of 

faults on the mission goals. MIR has Mode Identification (MI) 

for processing sensor values into spacecraft mode of operation. 

Also Mode Reconfiguration (MR) in MIR computes the 

reconfiguration commands required to mitigate/reduce the 

effects of fault. The model of MIR is compositional, stochastic, 

and declarative with concurrency support. MI receives input 

data from EXEC and spacecraft sensors and combines it with 

the built-in model of the spacecraft to determine possible faults. 

Specifically, predicted sensor values from the model are 

compared to the actual sensor values to determine discrepancy. 

If a mismatch is found, then possible fault is searched for which 

best explains the mismatch. Fault recovery is handled by MR in 

coordination with EXEC. Whenever a fault occurs, MI informs 

EXEC and EXEC calls MR for possible actions. In call to MR, 

EXEC also conveys the mission goals and resource constraints 

so that only feasible reconfiguration is returned. MR solves the 

constraint satisfaction problem by performing reactive 

deduction and search with the help of unit propagation and 

propositional logic. Fig. 4 shows the architecture of Livingstone. 

B. Control Systems Theory based Approach 

The fault detection and reconfiguration discussed in the 

previous subsection is only at a discrete level. The model used 

is based on operational modes of the spacecraft and not the 

actual physical motion. Continuous time fault detection based 

on the model of the motion requires the use of the tools from 

control systems theory. Such tools make use of the knowledge 

of forces acting on the spacecraft and the resulting behavior. A 

lot of research has been done in this regard categorized in the 

literature as Fault Tolerant Control System (FTCS). FTCS 

typically is a three layered architecture [60][55][57]. The 

bottom layer consists of state estimation and control with 

additional capability of reconfiguration. Middle layer is usually 

a fault detection and diagnosis (FDD) [56] scheme. Top layer 

consists of a supervisory logic that manages the whole 

operation of the system by manipulating the lower layers in the 

light of information obtained from these layers and the high 

level system objectives. Fig. 5 shows example fault tolerant 

control system architecture. In this figure, x is the state vector 

for dynamic system, u is the control input vector, y is the output 

vector, F is the vector of fault flags, and M is a scalar indicating 

configuration mode of the reconfigurable controller.

 

 
Fig. 5: Fault tolerant control architecture [56]
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There are many formulations in terms of adaptation in control 

laws in FTCS. Specifically, there are two types of adaptation 

schemes i.e. active and passive [55]. The passive schemes rely 

on the robustness of the control systems and the design of the 

controller. Whereas the active schemes use online recalculation 

of the control law that is most appropriate given a certain fault 

condition. Sometimes active and passive schemes can be used 

in combination where passive serves as the baseline and active 

comes into play when inherent robustness is not enough to cater 

for the fault at hand. A fundamental tradeoff in fault tolerant 

control is between detection sensitivity and robustness. It is 

hard to detect a fault in a robust system whereas a non-robust 

system is susceptible to even small faults. For quick 

reconfiguration, active scheme of fault tolerance may 

incorporate pre-computed fault responses [57]. In general, 

FTCS can either mitigate the effect of a fault or reduce the same 

as much as possible [61].  

As shown in Fig. 5, faults (F) are predicted by FDD layer of 

FTCS using the information of the input and output of the 

systems and built-in model of dynamics [62]. A signal known 

as residual signal indicates the deviation of the actual behavior 

(x) from the behavior depicted from the model of the dynamics 

(f(x, u)). Different values of the residual correspond to different 

levels of a fault (or may refer to as different faults). In case of 

normal operation, all residual signals automatically turn out to 

be zero. Usually state estimation or parameter estimation or a 

mixture of both is used to implement FDD. There are two main 

types of FDD schemes i.e. data-based FDD approaches and 

model-based FDD approaches. Robustness is a key requirement 

for any FDD scheme. Specifically model be robust [63] 

otherwise a false alarm or a missed detection could occur 

rendering the FTCS to a completely devastating response. 

Many methods have been developed in order to incorporate 

robustness in FDD schemes e.g. averaging, statistical data 

processing, adaptive thresholds, and fuzzy decision-making 

[63][64]. A daunting challenge in the implementation of FTCS 

is to distinguish between disturbances in the system, the noise 

in the sensors, and the occurrence of faults. Methods have been 

developed in literature to decouple disturbance from the fault 

[56].  But the disturbance decoupling may sometimes lead to 

missed detection if some faults affect the system in the same 

manner as the disturbance does. For a complex system such as 

spacecraft, FTCS must be able to detect and diagnose 

coexisting multiple faults as well as incipient and abrupt faults. 

The logic based supervisory layer is responsible for decisions 

of reconfiguration (M) based on its built-in reasoning 

algorithms and the information received from FDD. Some 

methods for implementation of supervisory logic are presented 

in [57][55][57], Some of the techniques are based on Fuzzy 

Logic, Intelligent Computing, Genetic algorithms, Neuro-

Computing, and Probabilistic reasoning. Furthermore, 

supervisor logic may include failure mode effect analysis. Also 

state machines can be used to model various transitions. 

C. Representational Gaps 

So far two different types of fault tolerance architectures are 

discussed. One is MIR in remote agent and the other is FTCS 

in control systems community. While both architectures 

perform fault tolerance, the major difference is in the under 

lying model of the system (spacecraft) that is used for the 

purpose. The MIR uses discrete high level model of the 

spacecraft that includes operational modes and transitions 

between the modes. On the other hand FTCS uses the model of 

dynamics and kinematics of the spacecraft that is based on its 

physical motion. The sensor data required by MIR may include 

current, temperature, and voltage sensor data whereas FTCS 

may require data from magnetometers, gyroscopes, and 

accelerometers. Control commands in MIR may involve 

turning on or off various components and subsystems while 

commands in FTCS involve thruster firings, reaction wheel 

speed adjustment etc. MIR typically deals with various 

components and their interaction within the spacecraft while 

being unaware of the motion profile. On the other hand, FTCS 

deals with the motion profile while being unaware of the 

spacecraft component interactions. Such differences in 

reasoning and operation of MIR and FTCS are termed as 

representational gaps in these two architectures. It may be 

tempting to bridge the representational gaps by extending the 

models of either MIR or FTCS. Extending the analytical model 

used by MIR to include motion profile requires substantial 

increase in state space which may render the response of the 

MIR to anomalies be slow and sluggish. On the other hand 

incorporating inherently discrete component interaction 

dynamics into the continuous time motion profile model adds 

substantial complexities to the FTCS model. Therefore it is 

advisable to bridge the representational gaps by using both 

architectures and an interfacing mechanism [65] rather than 

making things complex by extending either of the modeling 

approaches. 

D. Combining AI with Control Systems 

The ultimate solution for fault tolerance in spacecraft mission 

planning is to use the combination of control systems and 

artificial intelligence. One way to achieve this goal is to use the 

famous three-tier architecture [20]. This architecture proposes 

the following layers in decision making 1) The controller, 2) 

The sequencer, 3) The deliberator. Controller layer uses the 

model from control systems theory and is able to handle the 

continuous time dynamics of the spacecraft. The sequencer uses 

the discrete AI model and makes high level decisions about 

mission-related activities. The deliberator is responsible for 

resolving conflicts and finding solutions for anomalous 

situations using complex computations and extensive search. 

Adoption of three-tier for fault tolerance in spacecraft mission 

planning is a less discussed area of research. The approach used 

in [65] is similar to a three-tier architecture where the focus is 

on the design of the deliberator layer. Also the deliberator layer 

has been implemented using an MDP which poses the issues of 

computational complexity. An approach for reduction in 

complexity is proposed in [65] but more rigorous treatment is 

required for generalization of the proposed method. Specific 

problem in designing a combined approach is to design a robust 

and reliable mechanism for highlighted blocks in Fig. 6.   With 

the existing knowledge base, it is possible to develop dynamics 

based and logic based fault diagnosis engines separately. But 

the real challenge is to make use of the combined information 

from these engines and reach a more reliable conclusion about 

the existence and nature of faults. According to maximum 

likelihood, combined information from a group of different 

sensors (or sources) is at least as reliable as the information 
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from the most reliable sensor among the group. A simple 

maximum likelihood based approach can be used for combining 

information from artificial intelligence based and dynamics 

based fault diagnosis. But such scheme would simply be an 

underutilization of the potential of information. There is more 

to obtain from series of data than just comparing numbers. For 

example machine learning can be used to identify trends and 

learn from statistics of faults and fault calls from each source. 

Incorporation of learning algorithms may increase the online 

computational overhead but is worth investigating. It is worth 

mentioning here that dynamics based fault diagnosis engines 

mostly cover faults in attitude estimation and control related 

equipment, e.g., attitude sensors and actuators. On the other 

hand, logic based model can cover faults in practically any 

component of the system. Therefore, when working on the 

combination of artificial intelligence and control systems, scope 

of faults is limited. Having said that, there might be components 

in the spacecraft which are not attitude sensors or actuators but 

their faults affect attitude control, e.g., circuit boards, wiring 

connectors, even the structure damage on the spacecraft can 

affect attitude control. Therefore it is important to combine 

artificial intelligence based diagnosis of whole system with 

dynamics based diagnosis of attitude control system in order to 

reach to the true cause of anomalous behavior of spacecraft.

 
Fig. 6: Combined Approach for Fault Tolerance in Spacecraft 

VI. CONCLUSION 

Theories involved in spacecraft mission control and 

incorporation of fault tolerance have been reviewed. The paper 

provides a thorough overview of algorithms and key 

architectures from the AI and control systems literature. While 

there have been many approaches developed for incorporation 

of fault tolerance in spacecraft missions, a lot of questions 

remain unanswered. For example, what is the most efficient 

way of implementing fault tolerance? How can AI and control 

systems based models be fused in a way that achieves the pros 

of each approach while keeping complexity in check? How can 

a spacecraft anticipate faults and execute precautionary 

measures to avoid or manage failures should faults be 

experienced? The future of research in this regard is in the 

hybrid approach where methods from control systems theory 

are combined with those of AI to enable reasoning over the 

spectrum of discrete and continuous system properties required 

to model the spacecraft and its mission.   
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