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Abstract—— In this study, we have compared results of 

three image processing techniques; Spectral indices (SI), 

Featured Principal component analysis (FPCA) and Band 

ratio (BR) using ASTER satellite remote sensing data for 

lithological discrimination at Lakhra, Sindh. SI for minerals 

like Calcite, Dolomite, Laterite (Iron oxides) and Clay are 

generated using VNIR & SWIR bands, on basis of spectral 

absorption features of major rock forming minerals. Principal 

components are produced using Crosta Technique to 

decorrelate calcite and -OH (clay) minerals. Eigen values of 

PC-3 have maximum decorrelation values (0.851484 & -

0.463157 in band 6 & 8) indicating presence of calcite. Also, 

Eigen vector values of PC-4 (-0.675364 & 0.714621) for band 5 

and 6 indicate presence of –OH bearing clay minerals. Band 

Ratios (4/3-5/8-4/6) are used to discriminate rocks based upon 

their mineralogical compositions. Overall, Spectral Index 

method with 64% accuracy, is found to be the most effective 

technique among the others for lithological mapping of major 

rock units including carbonate (limestone, dolomite), shale 

(clays) & laterite (Fe oxide minerals). Comparison of satellite 

image processing results shows a good agreement with field 

samples and geological map of study area. 

Index Terms—ASTER, Lakhra Anticline, Spectral Indices, 

Band Ratio, Featured Principal Component Analysis 

I.  INTRODUCTION  

Exploration of natural resources and their mapping has 
remained one of the fundamental motivation for remote 
sensing scientists. The field of remote sensing has advanced 
rapidly with the development of strong computation 
algorithms and generation of rich databases [1]. At present, 
remote sensing and other geospatial techniques have 
become an essential supplementing tool for earth scientists 
to explore remote and large areas of earth for exploration 
and mapping activities [2]. 

ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer), a space-borne earth observation 
senor, located onboard Terra satellite, offers multispectral 
imagery with 15 spectral bands covering Visible-Near 
Infrared (VNIR), Short Wave Infrared (SWIR) and Thermal 
Infrared (TIR) regions of electromagnetic (EM) spectrum. 
Major rock forming minerals show their characteristic 
absorption features in SWIR region of EM spectrum [3]. 
ASTER has six bands in SWIR region thus offering an 
effective dataset for exploration of mineral resources [4-6]. 

Lakhra, located in Sindh province of Pakistan, is known for 

its extensive coal resources and lateritic clay. Massive coal 

mining is already being carried out in this area, while there 

is much more potential of coal and laterite exploration in 

the area  which could be further exploited by using  ASTER 
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satellite imagery. In this context, the current study focuses 

on learning the potential of different image processing 

algorithms by employing ASTER data to map different 

lithological units in this area. The accuracy of three image 

processing techniques (Spectral indices, Principal 

component analysis and Band ratios) have been compared 

with each other along with the available ground information 

conducted in earlier studies [7].  

II. STUDY AREA AND GEOLOGICAL SETTING 

Lakhra anticline is a north trending breached structure 
situated 40km west of Hyderabad, Sindh. The dimensions 
of Lakhra Anticline are 15 miles east-west and 43miles 
north-south (Fig. 1). Lakhra anticline was named after 
intermittent principal drainage system that is called Lakhra 
Nala. The major rock type present in the study area include 
limestone, shale, dolomite, sandstone and with traces of iron 
beds (laterite) exposed on surface [8].  

Structurally, the Lakhra anticline is a part of long doubly 

Fig. 1. Location Map of study area. Lakhra Anticline is shown by orange 

color boundary. 
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plunging anticline, which runs North-South direction. 
Rocks of Paleocene Ranikot group are exposed in this area 
which is divided into Khaskheli Basalts, Khadro Formation, 
Bara Formation and Lakhra Formation [8]. The Bara 
Formation (Middle Paleocene) is the oldest Formation and 
occurs in the core of the Lakhra anticline, whereas the Laki 
Formation is the youngest Formation of this area and occurs 
on the flanks of the Lakhra anticline. Bara Formation is 
composed of sandstone which is multicolored, fine to coarse 
grained, soft, crumbly, and poorly sorted.  It is laminated to 
massive, calcareous, ferruginous, ripple marked and cross-
bedded. The sandy, soft, carbonaceous and gypsiferous 
shales are grey, yellowish green and multicolored and 
contains coal [9]. Lakhra Formation mainly comprises of 
clastic sediments of shallow-marine environment such as; 
claystone, siltstone and argillaceous fine grained sandstone. 
Lakhra Formation has a conformable contact with 
underlying coal-bearing Bara Formation. Lakhra Formation 
is unconformable overlain by Sohnari member (coal-
bearing) of Laki Formation [10]. Figure 2 presents the 
detailed geological map of the study area. The stratigraphy 
of the Lakhra anticline is tabulated in Table 1. 

 The area contains deposits of limestone, coal and minor 
occurrence of gypsum. Limestone of this area is a good 
source for cement factory, construction and ornamental 
purposes. Gypsum occur as lenticular lenses in shale of 
Lakhra Formation belonging to upper Paleocene age [11]. 
Bituminous type of coal is present in Lakhra Formation and 
is being mined locally. This coal is used for the various 
purposes in the industries.  

TABLE 1. Stratigraphic Sequence of the study area (after Shah, 2009) 

III. METHODOLOGY 

A. Pre-Processing 

The study used ASTER L1B data which is downloaded 
free of charge from United States Geological Survey 
(USGS) Earth Explorer (http://earthexplorer.usgs.gov). 
ASTER Level 1B is being offered by USGS with pre-
corrected geometric and radiometric errors. VNIR bands of 
ASTER have spatial resolution of 15m whereas, SWIR 
bands have a spatial resolution of 30m. Prior to application 
of image processing algorithms, VNIR bands have been 
resampled to 30m and stacked with SWIR bands. The 
resultant file comprises of 9 ASTER VNIR-SWIR bands of 
30m spatial resolution. Fast Line-of-sight Atmospheric 
Analysis of Spectral Hyper-cubes (FLAASH) model [12], 
available in ENVI 4.8 (Environment for Visualizing Images 
Software) is used for atmospheric correction of data. The 
FLAASH model requires several parameters as input from 
metadata file available along satellite image to remove 
atmospheric influence and converts top of atmosphere 
radiance into surface reflectance. 

B. Band Ratios 

Band ratio is a simple technique to limit the spectral 
divergence in an image by dividing a band by another [13]. 
Band ratios to delineate spatial distribution of specific 
lithological units are adopted after Kalinowski and Oliver, 
2004 by analyzing the spectral response of major rocks 
present in the area. Spectral reflectance of rocks is the key 
signature in remote sensing based geological mapping. 
Since, Limestone, Laterite and shale are main rock types in 
study area, their spectral characteristics form the basis for 

selection of band ratios (Fig. 4). The three band ratios are 
applied in the study include: 5/8 for identifying calcite rich 
rocks (carbonate); 4/3 for rocks with iron oxide (laterite); 
and 4/6 for rocks with major clay (shale) [14]. 

C. Principal Component Analysis  

Principal Component Analysis (PCA) is a multivariate 

statistical based approach which was first introduced by 

Pearson (1901). PCA is based on mathematical calculation 

which utilizes orthogonal transformation of coefficients for 

conversion of correlated variable into uncorrelated 

variables, Principal Component Analysis reduces the 

dimensionality of data set in a way that the total number of 

PCs are less than or equal to original number of variables 

[15]. 

Age Group Formation Major Lithology 

Miocene 
 

Manchar 
Formation 

Sandstone, shale, clay with 
subordinate conglomerates 

Eocene 
 

Laki 
Formation 

Limestone, calcareous 
shale, sandstone, laterite 

Paleocene 
Ranikot 
Group 

Lakhra 
Formation 

Limestone, Sandstone, 
shale interbeds 

Bara 
Formation 

Sandstone, shale 

Khaddro 
Formation 

Sandstone, shale, basaltic 
flows 

Fig. 2. Geological Map of study area (after Outerbridge et. Al., 2007).   
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The variance in statistics of PC bands is associated with 
the response of various surficial materials to EM light and 
the dimensionality of image data [16].  

PCA for ASTER data are produced based on spectral 
response of rocks in different wavelengths of 
electromagnetic spectrum [16-18]. The FPCA or Crosta 
method comprises of selection of spectral subset to enhance 
the decorrelation for indented material (rocks, vegetation, 
soil etc.). Since specific bands are used, the interpretation of 
resultant imagery becomes much easier in FPCA than PCA.  

D. Spectral Indices 

Spectral Indices involves orthogonal transformation of 
multispectral data with a pre-defined transform axis for 
representation of a certain pattern. Since, spectral indices 
use pre-defined coefficients, it is much easier to interpret 
and extract to certain degree the physical meaning of 
transformed resultant image from geological point of view 
[19, 20]. 

As the study area is predominantly covered with sand, 
clay with minor limestone on the periphery and ferrous 
oxidation at some parts, the spectral indices are adopted 
after Yamaguchi and Naito, 2003 to find rock distribution 
on ASTER imagery. Clay Index, Calcite Index, Ferrous Ion 
Index are used based on spectral response of rock types 
towards different portions of electromagnetic spectrum [21]. 

The characteristic absorption feature for calcite mineral 
is marked at band 8 of ASTER data. Similarly, calcite 
mineral shows high reflectance value at band 6 and 9 [20]. 
Calcite Index (CI) is shown in equation (1). 

C.I = Band 6 X Band 9 / Band 8 X Band 8  

 The absorption in Hydroxyl minerals (clays) is caused 
by the presence of aluminum hydroxide (Al-OH) bond and 
can be mapped through using Hydroxyl Index (H.I) which 
is shown in equation 2 [22].  

H.I = Band 4 X Band 7 / Band 6 X Band 6  

Iron oxide minerals such as hematite has absorption at 
near infrared corresponding to band 3 of ASTER data and 
can be identified using Ferrous Index (FI) as shown in  

 

Equation 3 [14, 23].

F.I = Band 5/ Band 3 + Band 1 / Band 2  

IV. RESULTS AND DISCUSSION 

 Results of band ratios in Fig. 5 show the false color 
composite of band ratio of 5/8, 4/3 and 4/6, which are 
calculated from ASTER surface reflectance data. BR 5/8 
indicates carbonates in the light bluish green color 
distributed mostly in the center and outer rim of the area 
(Fig. 5). Montmorillonite, Alunite, Kaolinite and other 
alteration / clay minerals are associated with argillaceous 
rocks (shale). These alteration minerals are highlighted 
towards southern parts of the area in light to dark blue color 
by band ratio 4/6 (Fig. 5). Iron oxide minerals such as 
hematite are formed in oxidation conditions and are mostly 
associated with surface weathering (laterite). BR 4/3 
highlights the distribution of iron oxides in the northern 
areas in light pink to red color (Fig. 5).   

 Out of four PC bands extracted form PCA of ASTER 
bands, PC-1 contains maximum information around 95% 
and shows correlated features, while PC-4 has minimum 
information but shows high decorrelation. For this reason, 
only decorrelated bands (PC-3 and PC-4) are selected and 
analyzed for discrimination of lithological units. 
Eigenvalues of four PC bands generated from ASTER 
bands 3, 6, 8 & 9 are shown in Table 2. The response of 
each PC band is compared to the geological map 
representing major lithologies. PC-3 band is found to be 
true representation of calcite as it has positive value for 
band 6 and negative eigenvalue for band 4 (Table 2). 
Eigenvalues of four PC bands generated from PCA of 
ASTER bands 1, 3, 5 & 6 are shown in Table 3. PC-4 band 
shows a positive eigenvalue for band 6 and a negative 
eigenvalue for band 5 (Table 3) and is selected to delineate 
clay minerals in the image (Fig. 6). For iron oxide minerals 
(laterite), PC-4 from PCA of ASTER bands 1, 2, 3 & 4 is 
selected. False color composite (FCC) image (Fig. 6) is 
produced using PC bands from PCA of 3689 (PC-3), 1356 
(PC-4) & 1234 (PC-4) to discriminate and highlight 
limestone, shale and laterite respectively. In Fig. 6, 
Carbonates (containing calcite & dolomite) are highlighted 
in dark to light blue, shales (clay) in orange to yellow tones, 
and laterites (iron oxides) in purple to pinkish colors. 

      Fig. 3. Methodological Flow chart of the study 

Fig. 4.  Availability of ASTER VNIR-SWIR bands 1-9 relative to spectra 
of common minerals of the study area (after USGS Spec Lib 6, 2007). 
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 Fig. 7 shows results of spectral indices of CI (Calcite), 
HI (Clays) and FI (Iron oxides) with a thematic map which 
is produced by extracting and coloring pixel values of 230-
255 (CI; Green), 181-244 (HI; Yellow), and 201-255 (FI; 
Red) respectively. High values CI (>230) indicates presence 
of carbonate minerals, calcite and dolomite [24]. Rocks 
with high CI are mostly distributed around the flanks of 
anticline (Fig. 7) coinciding with limestone of Laki 
formation (Fig. 8). Distribution of HI values (181-244) 
show the presence of clay minerals which can be inferred as 
shales (Fig. 7). As the Lakhra formation is predominantly 
composed of Argillaceous limestone along with shale and 
sandstone, the spatial distribution of high values of HI 
seems to agree with the geological map (Fig. 8). FI with 
values >201 indicates occurrence of iron oxide minerals 
such as hematite which are associate with laterites and 
oxidized sandstones [25, 26]. According to geological map, 
Bara and Manchhar formations are composed of ferruginous 
sandstones and shales (Fig. 8). Distribution of high values 
of FI overlaps with locations of these two geological units 
(Fig. 7). 

TABLE. 2. Eigen values of FCPA of ASTER bands 3, 6, 8 & 9 

PC Band 3 Band 6 Band 8 Band 9 

1 -0.423338 -0.470681 -0.439735 -0.637085 

2 -0.850627 -0.065385 0.394751 0.341072 

3 0.287072 -0.625548 0.694917 -0.208252 

4 0.121689 -0.618768 -0.409750 0.659108 

TABLE.  3.  Eigen values of FCPA of ASTER bands 1, 3, 5 & 6 

PC Band 1 Band 3 Band 5 Band 6 

1 -0.310049 -0.509883 -0.568793 -0.566006 

2 -0.521134 -0.612582 0.465127 0.369892 

3 0.776639 -0.600568 -0.063362 0.179261 

4 -0.170647 0.063880 -0.675364 0.714621 

 Results of all three image processing algorithms used in 
the study are compared with geological map and field 
samples collected from the area (Fig. 8). The data used for 
referencing and validation comprised of 14 ground samples 
of limestone, shale, sandstone and laterite. Due to this 
limited ground data and geological map, only a qualitative 
comparison could be performed [27]. Table 4 shows a 
comparison of the image processing results with the ground 
based referenced data from 14 locations (Fig. 5, Fig. 6, Fig 

7 & Fig. 8). Among all algorithms used in the research, SI 
proved to be most viable method for discrimination of 
carbonates minerals including limestone and dolomite with 
accuracy of 64%. Whereas, PCA with  42% accuracy is the 
regarded as supplementary technique for differentiating 
(decorrelation) distinct boundaries between rock types (Fig. 
6).BR method although seems to be less accurate (35%), but 
it still has been effective in delineating iron oxide rich zones 
(Fig. 5).  
Although results proved effective in discriminating major 
lithological units present in the area, however at some 
regions where intermixing of units have occurred, a clear 
discrimination could not be achieved. As the 30m spatial 
resolution data is used in the study, localized units with less 
lateral distribution posed problems in discrimination due to 
spectral mixing of multiple minerals at pixel level. This 
effect is dominant where weathering and mining activities 
have disturbed the surface cover of the area. To overcome 
these limitations and for better mapping, potentials of high 
spatial and spectral resolution airborne and satellite sensors, 
such WorldView-3 and AVIRIS may be exploited.  

V. CONCLUSION 

 This study has qualitatively analyzed the results of 
remote sensing algorithms to discriminate and identify 
different sedimentary rocks / minerals at the study area. 
ASTER imagery due to its good spatial and spectral 
coverage offered discrimination and identification of rock 
units within geological formations. Spectral Indices, 
Principal Component Analysis (Crosta method) and Band 
Ratio are used and proved effective in discriminating rocks 
& surface minerals. All techniques were able to 
discriminate rocks and minerals in study area up to some 
extent. Overall, Spectral indices successfully discriminated 
all major rocks and surface minerals (Carbonates, 
Shale/Clays and Laterite/Iron oxides) on the basis of their 
spectral responses. Classifications based upon spectral 
indices, are in good agreement (64%) with earlier studies 
and geological maps. Whereas, PCA successfully identified 
limestone and shale but could not discriminate clearly 
between clays and iron oxides. Band ratio method is simpler 
than the SI and PCA method, however, its results are 
somewhat coarse and not as reliable as that of other two 
methods. This study shows that SI method could be more 
suitable for detection and discrimination of sedimentary 
rocks and minerals in the arid area.  

 
TABLE 4. Comparison of results generated through image processing algorithms with geological map classification and ground samples 

S. No. Geographic Coordinates Field Sample  Geological Map  
Results 

SI PCA BR 

1 68.1540 E 25.6705 N Shale Bara Fm Clay/FeO Clay Laterite 

2 68.1514 E 25.6537 N Laterite Lakhra/Bara Fm FeO/Clay Clay Clay 

3 68.1523 E 25.6535 N Laterite Bara Fm FeO/Clay Clay Clay 

4 68.1519 E 25.6540 N Sandstone Bara Fm Clay/FeO Laterite Laterite 

5 68.1684 E 25.7183 N Alluvium Surficial Deposits Laterite Clay/ Laterite Laterite 

6 68.1972 E 25.7177 N  Limestone/Laterite Lakhra/Laki Fm Calcite/ Laterite Calcite/Clay Laterite 

7 68.1905 E 25.7191 N Limestone Lakhra Fm Clay/ Calcite Clay Clay 

8 68.1684 E 25.7183 N Limestone Lakhra Fm Calcite/ Laterite Clay Laterite 

9 68.1662 E 25.7189 N Limestone Lakhra Fm Laterite/Calcite Laterite Clay/ Laterite 

10 68.1898 E 25.7197 N Limestone Lakhra Fm Clay/ Calcite Clay Laterite 

11 68.1519 E 25.6545 N Limestone Lakhra Fm Clay/ Calcite Clay Clay 

12 68.1541 E 25.6706 N Sandstone Bara Fm FeO/Clay Laterite Laterite 

13 68.1517 E 25.6539 N Limestone Lakhra Fm Clay Clay Clay 

14 68.1543 E 25.6717 N Shale Lakhra/Bara Fm Clay Clay Clay 

Matched =  Mismatched =  Accuracy (%) 64 42 35 
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Fig. 6. FCC image of FPCA of 3678 (PC-3), 1356 (PC-4) & 1234 (PC-4)  
Fig.5. FCC image of band ratio 4/3(R), 5/8(G), 4/6(B) showing distribution 

of Calcite/Dolomite, Shale/Clay and Ferrous/Laterite in study area.  

  Fig.7. Spectral indices of Calcite, clay and ferrous minerals. 
Fig.8. Digitized Geological Map of study area showing major 

lithologies along with location of rocks samples collected from field.  
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