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Abstract— In this article bifurcation analysis for nonlinear 

chaotic Heartbeat Model is presented. Equilibrium points 

of the system are calculated and critical value of the 

bifurcation parameter is extracted. Hopf bifurcation is 

used for nonlinear analysis and to determine the possible 

existence of periodic orbits in the dynamical system. 

Interesting results related with nonlinearity of the system 

are presented through numerical simulations. 

 
Keywords: Heartbeat Model, Hopf Bifurcation, Hopf 

Bifurcation Theorem. 

 

I. INTRODUCTION 

EART is the most important part of human body. It is 

also a complex system. There are two states in a cycle of 

the heart of a human heart beat namely diastole and 

systole. At diastolic state, the cycle of the heart starts whereas 

it is at systolic state when it is at contraction position. The top 

right atrium positioned at the top slot of the heart consists of a 

pacemaker and. The pacemaker causes a slow spreading 

electrochemical wave in the heart and consequently causing 

the muscle fibers to contract so that the blood is pushed into 

ventricles.  Ventricles comprise of bottom portion of the heart.  

This very wave then rapidly spreads over the heart’s lower 

portion, the lower chamber which actually are the ventricles. 

This wave causes the ventricles to get into systolic state which 

ultimately results the blood to run into the lung and arteries. 

The systolic state immediately causes the muscle fibers to get 

into relaxation state and the heart comes at diastolic position. 

This is how one cycle of the heart completes [1]. 

Different mathematical model have been represented so far 

which describe the working of human heart [2, 3, 4]. In [3], 

E.C Zeeman presented a mathematical model for heart beat 

which focuses three crucial qualities of the heart- steady state, 

the start of causing an action potential and finally coming back 

to steady state. The model is second order nonlinear. E.C 

Zeeman also discussed the third order nonlinear model in his 

work [2] which is also applicable to nerve impulse. Many 

recent studies are also dedicated to the study of biological 

heart beat systems by applying the concept of nonlinear 

control system theory [4], 
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using fuzzy-genetic classifier to discuss the cardiac 

arrhythmias in order to get improved results of 

electrocardiogram [5]. In [6], flow curvature method, an 

analytical technique is applied to four dimensional heartbeat 

autonomous unforced heartbeat model and six dimensional 

non-autonomous forced heartbeat model. The introduction of 

forcing term in order to see additional features of the heart 

beat dynamics and the chaotic effects there also became part of 

recent research work [7]. There are other aspects of 

investigating the cardiac models which discuss the cardiac 

performance by comparing the exercise done [8]. All the 

models are investigated based on the mathematical frame work 

to have more accurate results. The nonlinearity remains key 

features of all type of dynamical models related to the cardiac 

study. 

Bifurcation theory is an active and vast area of research. It 

occurs in many phenomena as spontaneous oscillations such as 

airfoil flutter [9] , wind induced oscillations –Tacoma-Narrows 

Bridge collapse [10], bifurcations in electrical circuits [11], 

periodic oscillations as discussed by the Van der Pol oscillator 

[12], the FitzHugh-Nagumo model which depicts periodic 

forcing of neurons in nervous systems [13], the Belousov-

Zhabotinsky reaction as described by Brusselator [14], 

bifurcation phenomena in predator-prey models [15] and the 

epidemic models describing some type of disease [16]. 

In her recent work [17], Luca Guerrini analyzed Hopf 

bifurcation in a model presented by E.C.Zeeman [3]. Our 

present work primarily focuses on the detection of bifurcation 

parameter, its critical value and its bifurcation analysis along 

with its chaotic behavior detected numerically. The model is 

an extended form of [3] with two additional parameters p  and 

q . The former is related to muscle fiber length when the heart 

is in systolic state while the latter is control parameter playing 

the role of cardiac pacemaker mechanism which directs the 

heart switch between both the states. It is analyzed that model 

has a unique equilibrium point. The Hopf bifurcation is 

analyzed analytically. It is proved for fixed parameters value at 

the equilibrium point; the nonlinear model exhibits the 

supercritical Hopf bifurcation. 

 The organization of presented work is as follows. In section 2 

the mathematical model of heartbeat is presented and unique 

equilibrium point is explored. Section 3 comprises of the 

analytical Hopf bifurcation theorem which is applied to the 

presented nonlinear model. Also the classification of 

bifurcation is detected applying the theorem mentioned 

therein. Section 4 deals with the nonlinear behavior of the 

presented nonlinear model using numerical technique for 

different parameter values through phase portraits and time 

history. Finally section 5 concludes the analysis of the 

presented model by showing the importance of Hopf 

bifurcation for the given model and importance of the critical 

parameter values. 
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II. MATHEMATICAL ANALYSIS 

Our proposed mathematical model is taken from [4], which is 

modified form of the one presented originally in [3] b y E.C 

Zeeman. The model is as follows; 
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where )(tx is related to length of muscle fiber, )(ty  

represents electrochemical activity,   represents small 

positive constant, T represents the tension in the muscle fiber, 

r is a scalar quantity representing a typical length of muscle 

fiber in the diastolic state, p is parameter related to length of 

muscle fiber in systolic state, and the parameter q  is the 

control parameter related to pacemaker of the heart. It 

symbolizes as control mechanism directing the heart to be in 

the diastolic and the systolic state. The parameter q  having 

either of two values 0 or 1, which actually represent the 

respective diastolic or systolic states of the heart. The unique 

fixed point of  system    , given by 
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where  is representative of parametric value.  Let it is having 

equilibrium point which can be considered to situated at 

)0,0(),( yx . Assuming the eigenvalues about equilibrium 

points for the linearized system are given as

)()()(),(  i  Assume further that for a 

particular value of  , the underlined conditions are fulfilled:  

1. Non-hyperbolicity condition:  

conjugate pair of eigenvalues 
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2.  Transversality condition 
It states that the eigenvalues of the linearized system cross the 

imaginary axis with non-zero speed. 
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3. Genericity condition 

0a  where 
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Then the periodic solutions are separated from origin into the 

region for 0  if 0a  or 0  if 0a  by a 

unique curve. The origin is a stable equilibrium point when 

0  and an unstable fixed point when 0  provided 

0 , similarly the origin is a stable equilibrium point for

0  and an unstable fixed point for 0  when 0
.The are stable periodic solutions if the origin is unstable about 

0  where the periodic solutions exist and  there exist 

unstable periodic solutions when the origin is stable about 

0  where the periodic solutions exist. The periodic 

trajectories grow like   in amplitude whereas their periods 

incline to      as  approaches zero [18]. 

III. HOPF BIFURCATION ANALYSIS 

 

The linearized form of system (1) in its Jacobian matrix at    
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The eigenvalues are roots of the characteristic equation  
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Choosing   as bifurcation parameter and applying the Hopf 

bifurcation theorem  
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Implying the bifurcation point for parameter  is,   
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Thus the non-hyperbolicity condition is satisfied.  
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So that the value of   at unique equilibrium point 1P at 

parameter value 0T ,  

8

3
a                     (2) 

In order to detect critical value of bifurcation parameter value, 

we fix values of the other parameters, let 

1,05.0,9.1,09.0  qpr , the value of bifurcation 

point is 075.00 T  while 054.1  and 4167.0a . 

Here 1q implies that the bifurcation point is at a point when 

the heart is at systolic state. When 0q with all the remaining 

parameters having same fix value defined above, the 

bifurcation point in the diastolic state of the heart will be 

having critical parameter value 83.100 T . It can be verified 

by the Hopf bifurcation theorem that the Hopf bifurcation 

exists for the fixed values of the parameters. We have 0  

and consequently 0a . The fixed point

)))(())((,)(( 3
1 rrpqrrpqTqrpqP   is 

stable for 2))((3 rrpqT   and unstable for 

2))((3 rrpqT  . The Hopf bifurcation theorem justifies 

that a unique curve of periodic solutions bifurcates from 1P

into the region for 2))((3 rrpqT   as 0a . 

 

Classification of Hopf Bifurcation 

In the following we present the Hopf bifurcation theorem 

which will define the type of bifurcation in our model. 

Theorem: Assume that for   

  ,),( nlmfl has an equilibrium ),( 00 l  fulfilling the 

properties given below [17]: 

(A1) )( 00
lfDl    is the only pair of pure imaginary eigenvalues 

and no other eigenvalues with zero real parts. 

A2) There will be a unique center manifold which 

passes through )),(( 000 l  in n and a system of 

coordinates system. For 0a                        

                                                         

                                      -          

)(),( 00  satisfying parabolic equation 

).)(( 22 ml
d

a
  The periodic solution will yield a  stable limit 

cycle for 0a   and bifurcation will be supercritical, 

while for  0a  the repelling periodic solutions give 

subcritical bifurcation. 
 

It is easy to verify from (2) that the value of a  remains 

negative for all values of the parameter  , supporting the fact 

the Hopf bifurcation is of supercritical type. 

IV.  NUMERICAL SIMULATIONS 

This section is dedicated to the numerical results of the system 

(1) showing its nonlinear behavior. The phase portraits and the 

time history graphs of system (1) are shown for both states of 

the heart. The initial conditions are taken as 

1.0)0(,1.0)0(  yx for both the states. 

Fig. 1 shows the phase portrait of the model in systolic state 

which apparently depicts the nonlinear behavior of the system 

with single cubic nonlinearity. While Fig. 2 represents the time 

history of variable )(tx representing the muscle fiber length, 

depicts the nonlinear behavior.  

For diastolic state, Fig. 3 represents the phase diagram of the 

model for the diastolic state, while time history for variable is 

shown in Fig. 4. 

 It can be observed from phase portraits and the time history 

for both the states of the heartbeat that the model represents 

the oscillatory nonlinear behavior.  
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Fig. 1 Phase portrait of heartbeat model at systolic state  

               when 0075.00 T  

 

 

 

 
Fig. 3 Phase portrait of heartbeat model at diastolic state 

              when 0003.00 T  

 

   

  
        Fig. 4 Time History map for heartbeat model at diastolic state  

 

 

 

V.  CONCLUSION 

 

The nonlinear heartbeat model with cubic nonlinearty is explored 

by finding the unique equilibrium point. Hopf bifurcation is 

analysed using Hopf bifurcation theorem. The bifurcation 

parameter T  related to tension in muscle fiber is explored for its 

critical value,  both for systolic and diastolic states. It is 

interesting to note that as many other applications of bifurcation 

descirbed above, the bifurcation phenomena aslo makes its 

presence in a simple heartbeat model. The oscillatory behavior of 

the system is analysed by detecting the Hopf  bifurcation and 

then verifying the results numerically. It is shown that the 

supercritical Hopf  bifurcation exists in the presented model. 
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