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   Abstract—The maneuvering of an aircraft requires design 

and implementation of advance control techniques for both 

longitudinal and lateral motion. The main objective of this 

paper is to design an optimal controller for aircraft dynamics 

in terms of quadratic performance index. The problem 

formulation is carried out using different control techniques 

like linear quadratic regulator (LQR) and linear matrix 

inequalities (LMI). The controller design process begins with 

obtaining appropriate mathematical model for aircraft 

dynamics. The model is obtained using first principle 

approach and linearized using small perturbation theory. Open 

loop analysis is carried out for model using MATLAB and 

results are obtained in step responses. The model response is 

compared with LQR and LMI based results.The simulation 

results reveal the effectiveness of these control techniques 

applied and ensure stability of aircraft dynamics. Longitudinal 

model of aircraft is used for analysis and aircraft used as 

reference is Cessna 310. 
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I.    INTRODUCTION 
 

  The development and advancements of aircraft of various 

design is still a research area of growing interest because of its 

civil and military applications. The challenges that any aircraft 

goes through during its mission assigned not only depend 

upon the aerodynamic design but also on system design. 

Aircraft of light weight low cost with efficient control 

techniques and strategies are of great interest. Effective 

control methods are applied during designing which can be 

helpful in case of failure of control surface, actuator etc and 

also provide with efficient performance during its flight [1]. 

   

   Aircraft is a highly non-linear and complex system. Free 

flight motion for any aircraft is very complicated task [2]. 

 

The aircraft motion basically consists of three translational 

and three rotational motion along x-, y- and z-axes. The three 

translation motion includes horizontal motion along x-axes, 

vertical motion along z-axes and transverse motion along y- 

axes while three rotational motion includes roll, pitch and yaw 

motion. The main control surfaces designed for control of 

different types of motion are elevator, rudder and aileron. 

Aileron located on wing controls pitch motion, rudder on 

vertical tail affect yaw motion and elevator is responsible for 

roll motion [3]. The aircraft motion can be mainly categorized 

into longitudinal and lateral motion resulting in two main 

types of control i.e. longitudinal control and lateral control. In 

case of longitudinal control, elevator plays its role in 

controlling longitudinal motion and pitch while for lateral 

control, aileron and rudder perform their role [4]. 

  The aircraft being highly coupled and non-linear dynamical 

system is difficult to modeled accurately. Therefore, certain 

assumptions are made to make derivation of model easy and 

retaining the model accuracy within desired limit. Aircraft is 

assumed to be a rigid body with constant mass and also some 

deviations exist in motion from equilibrium level flight [5]. 

The mathematical modeling of aircraft can be carried out 

using first principle approach or using system identification 

technique. The first principle method is a theoratical method 

uses Newton-Euler equations for description of dynamic 

characteristics of aircraft. This paper also considers this 

method for derivation of longitudinal motion equations which 

are linearized using small perturbation theory. 

  The controller design for aircraft dynamics which are 

coupled and highly non-linear is a difficult task and it 

becomes further difficult due to its sensitivity to disturbance. 

Research interest for control design techniques preferred to 

achieve desired performance without causing increase in 

complexity. Modern control methods exist for overcoming all 

short comings exist in flight control of aircraft but 

proportional integral derivative is still in use because of its 

ease in implementation and reduced cost [6]. For flight control 

system to maintain robustness along with maintaining desired 

performance uses a robust control technique named     ⁄  

[7,8]. The main idea of using this method is to maintain 

boundary limit between performance of aircraft and 

robustness. State output feedback (SOF) is another method for 

autopilot design of aircraft dynamics and its significance of 

this method is that it can work on signal information to be 

controlled. The SOF technique calculate static gain in order to 

meet desired requirement for system in closed loop [9]. 

Dynamic inversion is among other methods which is applied 

in control community and is mainly energized due to 

aerospace control significance [10- 13]. It helps in retaining 

non-linear characteristics along with flexibility and its 

simplicity. LQR is another controller design approach used to 

achieve stability and control of aircraft motion. It can maintain 

trim state of aircraft if uncertainties are generated due to loss 

of control surface. LQR method calculate feedback gain which 

stabilizes the motion and overcome disturbance uncertainties 

[14-15]. 

  The organization of paper is carried out as: The first part of 

paper discusses modeling of aircraft longitudinal motion using 

first principle approach with linearization of non-linear 

differential equations using small perturbation theory and 

obtaining state space form. The open loop analysis of model is 

carried out and simulation results are obtained for step 

responses. The next part describes control technique named 

linear quadratic regulator (LQR). The LQR calculated gain 
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matrix stabilize the system dynamics and results obtained are 

compared with that of open loop. The second part of the third 

section deals with another control method named linear matrix 

inversion (LMI) which is a static feedback controller design, 

stabilizing the system as evident from simulation results. LQR 

and LMI simulation results are compared and conclusion is 

drawn in last section. 

 

   II. AIRCRAFT DYNAMICS 

   

  This section describes mathematical modeling of aircraft 

which makes easier to understand characteristics of aircraft. 

The different axes of aircraft are shown in figure 1 describing 

roll, pitch and yaw motion. The geometric and flight data 

regarding aircraft is shown in table I. 

The different assumptions made for derivation of 

mathematical model of aircraft are; it is assumed to be a rigid 

body with constant mass and small disturbances exist in its 

motion. The aircraft equations of motion are derived using 

Newton-Euler equations and these equations are as follow [16-

17]; 

 
                            Fig. 1. Aircraft axis 

                                   Table I 

                         Geometric and flight data 

Mass (lbs) 4600 

Mean aerodynamic chord (ft) 4.79 

Wing Surface (   ) 175 

Wing Span (ft)  36.9 

Altitude (ft) 8000 

Mach Number 0.288 

Air Speed (   ⁄ ) 312.5 

Dynamic Pressure (      ⁄ ) 91.2 

Location of CG % of MAC 0.33 

Moment of inertia x-axes (     
   ) 

8,884 

Moment of inertia y-axes (     
   ) 

1,935 

Moment of inertia z-axes (     
   ) 

11,001 

 

              ∑   
 (  )

  
⁄                                             (1) 

              ∑       ⁄                                                    (2) 

   

  Disturbance act upon aircraft dynamics and its forces and 

moment equations get modified to following form: 

 

             ∑   ∑    ∑                                          (3) 

            

             ∑     ∑    ∑                                      (4) 

 

  Where ∑   and ∑   represent sum of steady state forces 

and moments while sum of disturbance forces and moments 

are described by ∑   and ∑   respectively. The main 

reason for disturbance are control surfaces deflection or 

atmospheric disturbances. 

  The equations of motion describing aircraft dynamics are as 

given as follows; 
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]  [
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  ( ̇       )     
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]                    (5) 

[

       
        
        

]  [

    ̇       ( ̇    )     (        )

    ̇     (         )       ( 
      )

    ̇       ̇     (        )        
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Where      and   are components of translational velocity, p, 

q and r are components of rotational velocity, m is mass of 

aircraft and   ,    and    are components of gravity along 

  ,    and   axes. Similarly, ,   and   are rolling, 

pitching and yawing moments along x-, y- and z-axes. The 

forces, moments, linear velocity and angular velocity 

components are shown in figure 2. 

 

 
        

Fig. 2. Forces, Moments and velocities components 
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  Euler angles describes the aircraft motion in inertial space 

and equations for  ̇,  ̇ and  ̇  

 

        ̇                                                             (7) 

       ̇                                                 (8) 

       ̇       
    

    
       

    

    
                                             (9) 

 

  The linearization of non-linear equations is carried out using 

small perturbation theory and linearized equation are 

converted to state space representation. The generalized state 

model is given as; 

 

              ̇                                                           (10) 

                                                                         (11) 

 

  Where A, B, C and D describes system matrix, control 

matrix, output matrix and feed forward matrix. In our case, the 

state vector for longitudinal model is given by   
 [        ] , Where u is longitudinal component of true 

airspeed,   is the angle of attack, q is pitch rate and   is the 

pitch angle. The elevator control surface    is used as input 

which affects the longitudinal motion.  The numeric values 

obtained for the matrices A and B of the longitudinal model of 

the aircraft are: 

 

            A   [

                               
                               
                                
                                                

] 

 

             B  [

 
       
       
 

] 

 

  The eigen values obtained for the longitudinal model are: -

9.93e+000, -7.44e-001, -4.79+1.84e-002i and -4.79+1.84e-

002i. The open loop response obtained for the model shows 

unsatisfactory performance and these simulations are shown in 

fig. 3-5. 

 
                  Fig. 3. Response for angle of attack 

 
                          Fig. 4. Response for pitch rate 

 
                        Fig. 5. Response for pitch angle 
 
  The simulation results in fig. 3-5 shows quite unsatisfactory 

behavior for the mentioned state. The angle of attack, pitch 

rate and pitch angle should obtain zero as their steady-state 

value according to trim conditions. 

Similarly the frequency response of the open loop longitudinal 

model can be studied from fig. 6. 

 
            Fig. 6. Longitudinal model frequency response 
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 These unwanted characteristics should be eliminated anyhow 

and it became necessary to design controller(s) so that desired 

results can be achieved. These different control strategies 

designed and implemented are discussed in the next section. 

  

 

           III. FLIGHT CONTROLLERS DESIGN 

 

  The simulation results obtained for the longitudinal model of 

the aircraft show diverging behavior. These states should be 

stable and required to obtain their desired steady state value 

within the required time. In order to achieve desired 

performance the different control techniques implemented 

using Matlab/Simulink are Linear Quadratic Regulator (LQR) 

and Linear Matrix Inequality (LMI). These control methods 

are described in the following sections. 

 

A.  Linear Quadratic Regulator (LQR) 

 

  Optimal control design approach for multi-input multi-output 

(MIMO) dynamical systems is one of the important control 

method which work effectively for systems. LQR is a control 

strategy which when design properly provide with desired 

performance of a system which can be stated in terms of 

performance index. It provides optimal approach to calculate 

feedback gain and for that all states of systems should be 

available for controller. The block diagram for LQR is shown 

in figure 7. 

 

 

 
            Fig.7.  LQR Block diagram 
 

 
  The feedback control law implemented for the state space 

form of the aircraft dynamics in (10) is given as [18-19];     
     
                  (          )                                (12)            
 
After obtaining value for gain matrix K, the longitudinal 

model dynamics modifies to following form: 

 

 ̇      (    )                                    (13) 

 

           is input to external closed loop system and 

representing desired state vector. The modified system matrix 

for plant dynamics after K calculation is A-BK. The 

performance index J which need to be minimized and gives 

cost function is sum of terminal cost and integral along way is 

given by; 

 

           ( ( )  )   ∫  ( ( )  ( )  )  
 

  
                (14) 

 

Where terminal cost is described by  ( ( )  ) and 

 ( ( )  ( )  ) is non-negative. Also  ( ( )  )    for 

linear quadratic regulator and L is given as; 

 

        
 

 
  ( ) ( )   

 

 
                                         (15) 

 

 The feedback control law obtained on the basis of linear 

model assumptions is given as; 

 

               ( )           ( )                                    (16)   

   

  The value of gain matrix K obtained for longitudinal model 

is given as; 

 

              [                              ]   
 

 The LQR controller stabilize the plant model very effectively. 

After introducing K into the model dynamics the simulation 

results obtained for longitudinal model are shown in fig. 8-10. 

 
                  Fig. 8. LQR response for angle of attack  

 
                         Fig. 9. LQR response for pitch rate 
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                     Fig. 10. LQR response for pitch angle 

  
 The simulation results obtained in fig. 8-10 using LQR 

control technique shows significant performance in improving 

the response and characteristics of the longitudinal model. The 

angle of attack response in fig. 8 has zero steady state value 

according to requirement without any delay of time. Similarly, 

for pitch rate and pitch angle, their desired steady state value 

is achieved efficiently. There is slight variation from their trim 

value at the beginning but after short time of few second, the 

desired final value is attained. 

 

 
B.  Linear Matrix Inequality (LMI) 

 

  For an affine function with decision vector   

[              ]
 
 and with real symmetric matrices        

       , the matrix inequality is given as[20-22]; 

 

     ( )                 +       > 0            (17) 

  

is known as Linear Matrix Inequality (LMI).  

  The disturbance showing impact on longitudinal motion is 

given by [             ]
  hence affecting horizontal velocity, 

angle of attack, pitch rate and pitch angle. The main objective 

is to design control law of form:       which guarantees 

the system stability and its performance index J is given by;  

 

         ∫  ( ) 
 

 
(      ) ( )                         (18) 

 

  The Lyapunov stability matrix P obtained is given as; 

 

      P    [

                                       

                                   

                                   

                                    

] 

 
The gain matrix K calculated for state feedback is given as; 

 
              [                               ]   

 
  The system performance shows significant improvement 

using LMI based dynamic model. The effect of disturbance is 

accounted effectively. The performance shows high degree 

efficiency of LMI based control approach. The simulation 

results obtained are shown in fig. 11-13. 
            

 
                 Fig. 11. LMI simulation for angle of attack 
 

 
                      Fig. 12. LMI simulation for pitch rate 

 
                     Fig. 13. LMI simulation for pitch angle  
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  The simulation results in fig. 11-13, obtained for the 

longitudinal model of the aircraft using LMI control strategy 

have significantly improved its performance. The desired 

steady-state results are achieved effectively and system 

behavior modified efficiently. 

 

  IV. LQR and LMI PERFORMANCE COMPARISON 

 

  The Linear Quadratic Regulator (LQR) and Linear Matrix 

Inequality (LMI) control strategies designed for the 

longitudinal model of the aircraft have brought significant 

improvement in the performance of the model obtained. The 

unwanted behavior of the open loop model is eliminated 

efficiently and effectively. The performance of both LQR and 

LMI are compared in terms of their time domain responses to 

reach their desired steady state values. Their comparison is 

shown in fig. 14-16. 

 

 

 

 
            Fig. 14. LQR-LMI comparison for angle of attack 
 

 
                Fig. 15. LQR-LMI comparison for pitch rate 

 

 
              Fig. 16. LQR-LMI comparison for pitch angle 
 

 From fig. 14-16, it is evident that the LMI control strategy 

designed effectively and efficiently attains the desired trim 

value for each state of the model. The LQR controller 

performance for pitch rate and pitch angle undergoes through 

slight variation from the steady-state value and attain it after a 

short interval of time. Overall, the performance of the LMI is 

much effective than the LQR.  

 

                                V. CONCLUSION  

 

  This paper has considered feedback stabilization for 

longitudinal motion of aircraft through LQR and LMI 

approach. The 6 degree-of-freedom model of an aircraft is 

derived using first principle approach and these non-linear 

equations are linearized using small perturbation theory and 

converted to state space model. The stability analysis is 

carried out for open loop system and simulation results are 

obtained for step responses. The control design for technique 

developed are linear quadratic regulator and linear matrix 

inversion. The solution of the problem with both LQR and 

LMI approach is demonstrated and results obtained shows that 

the performance and handling qualities are satisfactory with 

the reference model over wide range of nonlinear flight 

regime. 
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