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Abstract— Global positioning system (GPS) observables can be 

used to compute the orbits of low earth orbiting (LEO) satellites 

using kinematic approach. Data from GPS receiver, installed 

onboard the LEO satellite is used for this purpose.  

In present paper, GPS data from challenging Mini-satellite 

Payload (CHAMP) is used for its orbit determination. The 

ionospheric effects on GPS raw data are removed by frequency 

combination technique. Furthermore, the CHAMP orbit 

computed using the GPS data are compared with jet propulsion 

laboratory’s (JPL) published CHAMP spacecraft orbit for same 

epochs. The root mean square difference in Earth centered Earth 

fixed (ECEF) Coordinates and JPL computed coordinates are 

compared. The standard deviations of the differences in ECEF 

coordinates (JPL results – GPS computed results) is presented. 

CHAMP orbits computed by JPL have accuracy of centimeter 

level. Therefore the difference in results of GPS data computed 

orbits and JPL computed orbits can also be referred as observed 

error in our method. On this basis, accuracy of our method is 

analyzed. The observed standard deviation of difference/errors is 

about 11m. 

Index Terms— ambiguity integer, ambiguity resolution; code 

observable; Kalman filter; phase observable. 

I. INTRODUCTION 

atellites in space frequently undergo thrust and other 

perturbations which disturb their orbits continuously. 

Therefore, it is essential to keep predicting their motion 

and perform orbit determination on them to meet the desired 

mission life. For this purpose, researchers have always been 

trying to find some ways to improve orbit determination 

including use of new estimation techniques. Jerome has 

presented fifty years history of satellite orbit determination in 

[6]. Employment of GPS observables for orbit determination 

is one of the modern techniques being used today. Improved 

accuracy of GPS observables also promises their future use in 

attitude determination of satellites as presented in [12]  

Orbits of low earth orbiting (LEO) satellites can be 

determined using kinematic technique. Code and phase 

observables for L1 and L2 frequencies of GPS are recorded to 

compute the LEO satellite orbit. During the last two decades, 

several LEO missions have been equipped with a GPS 

receiver (like CHAMP or GRACE etc). Precise orbit 

determination of these missions has shown that GPS data 

based orbit determination with good accuracy is possible. Data 

from these missions can be used to analyze the developed 

algorithm for orbit determination. Several algorithms are 

available for GPS positioning like, [3] have presented a 

recursive least squares algorithm for GPS data based 

positioning using carrier phase and code measurements. 

Andersson in [1] and [2] has used undifferenced approach 

of GPS positioning to develop a complete displacement 

monitoring system during his doctorial studies. This algorithm 

can be modified easily to compute the satellite orbits. The 

ionospheric effects can be removed according to the method 

presented by Sjöberg and Horemuž in [10]. 

The author, during his masters’ degree thesis work, in 

[11] has derived necessary mathematical equations and models 

required for computing the satellite orbit. Here equations for 

code pseudoranges and phase observables are discussed 

briefly. 

A. The code pseudorange observable 

GPS signals travel with the speed of light therefore, by 

knowing the travelling time from satellite to receiver, the 

distance from satellite to receiver can be computed using 

equation 

( ) ( )S s

A A AP t t t c                                  (1) 

 

where tA represents nominal receiver time at which signal is 

received at receiver, t
S
 represents time when signal is emitted 

by GPS satellite and c is speed of light.  

Equation (1) does not include the clock biases, therefore we 

introduce these biases and finally resultant distance equation is 

linearized to obtain pseudorange observation equation 
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B. The phase observable 

The GPS receiver generates the carrier phase at the signal 

reception time and the same is compared with phase of the 

received satellite signal to measure the phase observable. 

Phase observable is defined as measure of the phase of the 

received GPS satellite signal relative to the carrier phase 

generated by receiver at reception time. This can be measured 

by shifting the receiver-generated phase and further tracking 

the received phase. The phase observation equation is derived 

by the author in [11] and is given by 
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Where   represents wavelength of the signal and N is 

unknown integer ambiguity. 

There are some biases and noises which can be related to 

satellite, the propagation media and the receiver as divided by 

Hoffman-Wellenhof in [5] in to these three groups. These 

biases and noises are not included in equation (3). Therefore 

some additional terms will also be included in equation (3) to 

model the systematic errors. These terms are listed in Table I 

 
TABLE I. ADDITIONAL BIASES TO GPS SIGNAL [1] 

Receiver 

,
SM
A i

    Multipath Error 

tA         Receiver clock offset 

,HA i     Hardware delay bias of receiver 

 
,

SA
A i

     Antenna phase centre variations 

Media 

SI
A

         Ionospheric delay 

ST
A

         Zenith Tropospheric delay 

Satellite 

SO
A

      Orbital errors 

St        Satellite clock offset 

SHi     Hardware delay bias of satellite 

SAi      Antenna offset of satellite 

 ST
GD

      Satellite Code offset 

 

The subscript A and superscript S depict the relevance of the 

bias to satellite, receiver or both. Index ―i” is either L1 or L2 

which shows that the variable is frequency dependant. 

Hardware errors in the satellite like S

iH often assumed to 

be zero because they cannot be separated from clock offset 

[1]. Time offset between C1 and P2 code message S

GDT  and is 

inseparable from the receiver hardware delay. It can be used 

by dual frequency users to eliminate the ionospheric effects 

conventionally at the receiver end.  

The terms related to atmospheric errors, listed in Table I, 

depend upon actual condition of the ionosphere and 

atmosphere along the path through which the signal 

propagates.  

Multipath effect at receiver antenna is dictated by actual 

environment around it because this effect is caused by the 

reflecting surface reflected signal collected by receiver. It can 

be removed for static surveys having long time of 

observations; however this effect is significant for rapid 

surveys. According to [5], it can grow as large as 100m in 

when observations are taken near buildings or other special 

environments. 

Dedes and Mallett have analyzed the effects of ionosphere 

on long baseline GPS positioning [4]. I have used ambiguity 

resolution technique presented by Sjöberg and Horemuž in 

[10]. This technique uses combination of phase and code 

observables to introduce an ionofree observable for position 

computation. 

The actual phase centre of antenna is slightly different from 

its geometrical centre, therefore this phenomenon gives rise to 

phase centre variations denoted by
,

S

A iA . It has to be dealt 

with considering antenna calibration data. 

Adding all these terms to equations (2) and (3), these 

equations are reshaped as [11] 
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and  
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        (7) 

Since measurements contain random noises therefore the 

terms 
1 2 1 2, ,  and P P L L    are added in the end of equations 

(4) to (6) respectively and their values are listed by Hoffman-

Wellenhof in [5]. 

B. The positioning methods and state vector models 

Different positioning methods like single difference method, 

double difference method and triple difference methods are 
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used which are listed in [7]. We have used undifferenced 

method, which is an alternate to double difference method. 

This method can avoid the singularity introduced due to the 

ionospheric and hardware delays of the phase observations. 

Therefore least square solution (LSQ) would not be singular 

when we use this method. 

The real challenge with undifferenced method is to model 

the real time correlation between measurements of epochs 

after which, Kalman filter can estimate the unknowns for each 

epoch. Complete derivation of state vector model for 

undifferenced solution is carried out by the author in [11]. 

For position and velocity estimation, velocity is assumed to be 

constant. This assumption enables us to model the velocity as 

random walk process. The state vector of receiver is given by 

 

 , [ ]
TT

PV A A A A A A XA YA ZAX X v X Y Z v v v          (8) 

 

with, 
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                          (10) 

are dynamic model and covariance matrix respectively. 

Where , &AX AY AZq q q  are the power powers spectral densities 

(PSD) of the acceleration having units (m
2
/S

4
) / Hz. 

The dynamic matrix
,PV AF , gain coefficients matrix 

,PV AG and 

random noise force function
,a Au  are 

 

, ,
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The process noise covariance matrix becomes (for F 
n
 = 0, n 

≥2): 
2 3
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2 3
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The transition matrix is 

, ,
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0 0 0 0 0 1

PV A PV A

t
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                (14) 

 

Ionosphere and troposphere have their effects on the signal 

propagation however here we have to deal only with 

ionosphere because the ionospheric height is about 50km from 

mean sea level (MSL) which is far less than the altitude of the 

CHAMP spacecraft (whose data is used for orbit 

determination) 

 

To remove the ionospheric effect, we have used linear 

combination of the phase and code observables, a method 

presented by Sjöberg and Horemuž in [10]. An artificial 

ionospheric observable is used for this purpose which has zero 

observed value and certain variance. Based on this, the double 

difference ambiguities for each satellite are estimated 

employing smoothed pseudoranges and combination of 

phases.  

Let we have two phase observations with phases          

having ambiguities N1 and N2 respectively. This method says 

that it is better to formulate the liner combination of N1 and N2 

1 2ijN iN jN  instead of estimating them separately. 

Following equation is used for this linear combination 

 

 
ij ij ijN                                              (15) 

where,  
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We have combined the L1 and L2 phases and applied single 

point positioning, coordinates and velocities of the receiver are 

computed.  

Other errors like receiver antenna phase centre difference, 

receiver clock offsets, common errors and multipath errors are 

discussed in [1]. 

C. The observation equations 

Considering all parameters discussed in previous heading, 

equations (4) to (7) can be re-written as code and phase 

observation equations. 

1. The code observation equation 

 

Code observation equations for L1 and L2 are given as 
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and  
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2. The phase observation equation 

 

Similarly phase observation equation, after including all 

parameters, become 
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and 
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LHS of above equations (17) to (20) represent the 

deterministic parameters and RHS have stochastic parameters 

to be estimated using Kalman filter. The author has discussed 

all of these parameters in [11]. 

D. The Kalman filter implementation 

The detail derivation and application process of Kalman filter 

is given in [11], here we just summarize its three steps; the 

prediction, gain calculation and update step. We need to 

initialize the filter with somehow known set of initial values of 

the state vector so that the filter does not diverge [1]. The 

initialization is followed by the prediction step, where 

parameters are predicted from the previous epoch to the 

current epoch which is given by following two equations 

 ̂ 
         ̂                                            (21) 

and 

, 1 , 1, 1
,

   T

k k k k kX k
X k

Q T Q T Q

 
              (22) 

where superscript ―-―symbolizes a predicted and ―^‖an 

estimated parameter.  

 

The next step of the filter is gain calculation which is carried 

out according to following equation 
1

, ,[ ]T T

k X k k k k X k kK Q H R H Q H                     (23) 

The last recursive step of the filter is update step carried out 

using following equation  

  
 ̂   ̂ 

           ̂ 
                            (24) 

 

The covariance matrix can be updated using following 

equation  

 

, ,( ) ( )T T

X k k k X k k k k k kQ I K H Q I K H K R K              (25) 

Each recursive loop of Kalman filter uses equations (21) to 

(25).  

E. The software implementation 

The software consists of different MATLAB codes which are 

integrated together for post processing of GPS data. Kalman 

filter algorithm developed by Andersson [1] is integrated with 

some sub-modules. The author has modified this algorithm/ 

software according to the needs for computation of CHAMP 

orbit. Undifferenced approach of GPS based positioning is 

used. Kalman filter output gives estimated parameters of the 

state vector and their standard deviations. Software functional 

steps are summarized in Figure 1. 

In the first step software in initialized and then it moves to 

next step. Till the end of input data, the Kalman filter 

algorithm keeps itself repeating. At the output we get 

estimated parameters and standard deviations. The state vector 

at output of Kalman filter contains the computed X,Y and Z 

coordinates and velocities in ECEF frame. Necessary 

equations for conversion to geodetic coordinates are given by 

Ligas in [8]. All of these steps are explained in detail by the 

author in [11]. 
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1) The initialization step 

In initialization step, the software reads the configuration file 

that dictates different future decisions (like single frequency 

computation or double frequency computation, minimum and 

maximum acceptable elevation angle of satellite, etc) and it 

also contains some initial values and file names (e.g. precise/ 

broadcast ephemeris file name, navigation data file name etc). 

The next step is pre-processing during which Kalman filter is  

predicted, deterministic parameters are computed, new 

parameters are initialized and observation weights are 

computed to detect the cycle slip. 

1. Computation of satellite orbits 

Satellite positions are computed using precise ephemerides by 

interpolation technique using following polynomial 

 
1

1 2 1( ) n n

n np t a t a t a t a

                           (26) 

The general flow chart for computation of satellite orbits 

using precise ephemerides (PE) or broadcast ephemerides 

(BE) is given in Figure 2. 

 

 
 

Figure 1 Functional and implementation steps of software 
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Figure 2 General flowchart for computing satellite positions [1] 

2. Observations weighing 

The GPS signal has to travel through ionosphere and 

troposphere therefore noise level may be different for signals 

received from different GPS satellites available at particular 

elevation angle. To deal with this problem, observation 

weighing is used Following equation is used for observation 

weighing purpose  

 

 

2

2 0

2sin
E

a

E
                                                       (27) 

E is elevation angle towards GPS satellite and a0 is empirically 

estimated coefficient, 2

E  is a-priori variance for the variance-

covariance matrix R and it can be can be computed when a0 is 

known. 

3. Cycle slip detection 

After this step the software detects the cycle slips. Many 

methods are available for this purpose. We have used single 

frequency phase /code combination and dual frequency phase 

combination. Detail of these methods is available in [11]. 

4. Filling in H, L and R matrix 

In the next step the software fills in the design matrix H, 

observation vector L and the variance-covariance matrix R for 

each of the recursive loop of Kalman filter. 

5. Ambiguity fixing 

Lambda method is used for ambiguity fixing. We provide 

ambiguity the parameters in the state vector 
kX and the 

corresponding part of covariance matrix
XQ at the input of this 

algorithm.  This algorithm returns two alternative solutions for 

the ambiguities. We control the ratio between them by the 

following equation given in [7] at page 371.   

 

 2min
3

min

nd

best

best
                                               (28) 

The ambiguity is fixed when condition in above equation is 

met. If the condition is not met, it is kept unfixed until the next 

loop of the algorithm. 

6. Output parameters 

At the output of the Kalman filter we get estimated parameters 

of the state vector X along with standard deviations which are 

further. We can also get 

 

a) Cycle slip detection parameters for single-frequency, 

iono-free and geometry-free combinations. 

b) Number of satellites at each receiver.  

c) The residuals for each observation type 

(    ̃   ( ̂)) 

d) The predicted residuals for each observation type  

            (    ̃     ̂  ) 

 

II. RESULTS AND DISCUSSIONS 

A. Available data 

GPS data (pseudoranges and phase observables) from 

CHAMP satellite, for the epoch day/time (01-01-2002)/ 

00.00h to (02-01-2002)/ 00.00h was used to compute the 

CHAMP orbit. This data corresponds to CHAMP orbits 

number 8247 and onwards. To avoid the long computational 

time, this data was divided into time intervals corresponding 

to CHAMP periods and tagged according to the orbit 

number/revolution numbers. 

B.  Orbit computation and results analysis 

Using data, discussed in section II-A and the mathematical 

models discussed in preceding sections, we computed the orbit 

for four periods of CHAMP starting from orbit number 8247 

till orbit number 8250 for the epoch day (01-01-2002). The 

results are quite promising. Ground tracks (of orbit number 

8247 till 8250) of CHAMP spacecraft are given in Figure 3. 

Since the result obtained by our algorithm does not diverge, 

therefore initial functionality of our algorithm is validated by 

this result. 
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Figure 3 CHAMP satellite ground tracks computed using GPS observables 

 

The residuals of any measurement are most important factor 

which decides the acceptability of the measurements. Our 

algorithm computes the residuals for each observation type 

using the relation (    ̃   ( ̂)). These residuals of P1 and 

P2 (pseudorange code observations for GPS frequencies L1 

and L2) observations are given in Figures 4 and 5. These 

residuals are mostly below decimeter level, except some 

spikes which can arise by random noise, therefore we can say 

that our algorithm is functioning properly and giving good 

results. 

 

 
Figure 4 P2 residuals calculated for available GPS satellite 

 
Figure 5 P2 residuals calculated for available GPS satellite 

Standard deviation of ECEF X, Y and Z coordinates, 

computed using GPS observables is given in Figure 6 and is 

mostly below 0.5 meters. However some spikes are observed 

due to random noise (or maybe due to other factors) up to 2 

meters at maximum.  

 
Figure 6 Standard deviations of XYZ coordinates computed using GPS 

observables 

C. Results validation by comparison with JPL computed 

CHAMP orbits 

Orbit data of CHAMP spacecraft, computed by JPL 

(ftp://sayatnova.jpl.nasa.gov/pub/genesis/orbits/champ/) was a 

used as reference to estimate the accuracy of our algorithm. 

These orbits for the CHAMP spacecraft were created for JPL's 

rapid processing of CHAMP GPS data using GIPSY/OASIS II 

software. This software is precise up to centimeter-level for 

GNSS-based positioning (https://gipsy-oasis.jpl.nasa.gov/). 

Further details of orbit determination strategy are available at 

ftp://sayatnova.jpl.nasa.gov/pub/genesis/orbits/champ/quick/D

ocuments/README.quick . 

A comparison of the ECEF X, Y and Z coordinates, 

computed by using GPS data and JPL published data is shown 

in following Figures 7 to 9. 

 

ftp://sayatnova.jpl.nasa.gov/pub/genesis/orbits/champ/
https://gipsy-oasis.jpl.nasa.gov/
ftp://sayatnova.jpl.nasa.gov/pub/genesis/orbits/champ/quick/Documents/README.quick
ftp://sayatnova.jpl.nasa.gov/pub/genesis/orbits/champ/quick/Documents/README.quick


Journal of Space Technology, Volume V, No.1, July 2015 

75 

 

 
Figure 7 ECEF X component of CHAMP computed by GPL and using GPS 

observables 

 

 
Figure 8 ECEF Y component of CHAMP computed by GPL and using GPS 

observables 

 

Comparison of results plotted in Figures 7 to 9 shows that the 

results produced by our algorithm are well agreeing to the 

precise orbits determined by JPL for CHAMP spacecraft. 

 
 

Figure 9 ECEF Z component of CHAMP computed by GPL and using GPS 

observables 

 

It is very easy to calculate the root mean square (RMS) of 

the difference (JPL computed positions – GPS data computed 

positions) in ECEF position X, Y and Z coordinates. RMS 

difference for ECEF-X coordinate is plotted in Figure 10. 

Standard deviation of this difference is 11.7m. Therefore we 

can expect that accuracy of our computed results is within 

12m other than some spikes which may occur due to random 

noise or other factors. These results show that the orbit 

computed using GPS data are well agreeing to the true orbit of 

CHAMP spacecraft and our algorithm is functioning properly 

with good accuracy. 

 

 
Figure 10 RMS difference (JPL-GPS) of X coordinate 
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III. CONCLUSION 

The present paper has presented algorithm to compute LEO 

satellite orbit using GPS observables which is functioning 

quite properly. Residuals of P1 and P2 observations are 

computed, furthermore standard deviations of ECEF-X, Y and 

Z coordinates are computed and these parameters show that 

the presented algorithm is fairly accurate for computation of 

satellite orbits. The accuracy of algorithm is around 11m as 

compared to JPL’s computed CHAMP orbit. 

The author [11], during his masters’ degree thesis work has 

compared the results of this algorithm with satellite tool kit 

(STK) propagated orbits of CHAMP and found that results are 

in agreement with STK propagated orbits. 

 

In this paper I computed CHAMP orbit with the available data 

for one day which may be extended for other periods of 

CHAMP, if data is available. However the trend of residuals 

and computed standard deviation shows that., the errors will 

grow for longer time computations therefore this aspect of the 

presented algorithm needs further studies which can done in 

future work. A proper algorithm, developed to predict and 

reduce the random errors will increase the performance of this 

algorithm while reducing the effect of the random errors on 

Kalman filter loop. In this regard application of MINQUE 

method presented by Rao in [9] will be very useful. 
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