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I. INTRODUCTION

hock/shock and shockwave/ boundary layer interactions

[1-3] are of vital importance for the design of hypersonic
flight vehicles. These interactions happen over important
components, such as aerodynamic control surfaces and
supersonic combustion ramjet (SCRAMjet) intakes, etc.
Precise assessment of these interactions severity is essential to
ensure satisfactory measures are implemented to counteract the
deleterious effects of the shock/shock and shock wave/
boundary layer interactions. Several experimental and
theoretical studies dealing with the shock/shock and
shock/boundary layer interactions were conducted in the past.
The hypersonic flow around the compression corner [4] with a
flow separation upstream from the ramp and involving a
multiple shock wave interaction is significantly important for
the aero-thermal design of a winged re-entry vehicle. The
separated flow over the compression corner involving a
multiple shock wave interaction is significantly influences the
effectiveness of the control flaps.
Aerothermodynamics loads on the base of re-entry vehicles [5-
6] are significant in vehicle drag, heat shield design, payload

placement and stability. Considerable uncertainty in predicting
the base and wake flow field are often compensated by large
factor of safety in the heat shield design. The wake flow field
of a hypersonic vehicle has significant influences on vehicle
stability, base heating, and optical emissions from non-
thrusting vehicles. Even though, the base pressure adds a small
proportion to the total drag, the control of vehicle trajectory
and attitude requires accurate base pressure estimation.

Flow field around double cone is also very complex [7]. The
attached shock from the first cone interacts strongly with the
detached shock associated with the second cone. This
shock/shock interaction produces a transmitted shock which
impinges on the surface of the second cone. Extremely high
surface heat transfer rates and pressures generate due to this
impingement. The high pressures which result at the cone-cone
junction cause the flow to separate in this region. Separation
bubble interacts with the inviscid flow field and impacts the
strength of the transmitted shock.

Shock/shock and shock/boundary layer interactions can
senously degrade the performance of a hypersonic vehicle.
complex1ty and the d651gn implications of these

high speed numerical scheme has to possess
sipation to capture strong shocks without
Yhoots and oscillations in the vicinity of the

accurately compute boundary layers. The simultaneous
satisfaction o two necessities formulates the
computation hypersonic  flows extremely

the higher Mach numbers where
many of the best sth ignce numerical difficulties.
In present studies, twg
and low dissipative

methods [12] are used

shock wave/ boundary layer interactio

II. NUMERICAL AXA

Numerical analysis has been carried ott by using the following
two different methods:

Second order Harten-Yee TVD[8-11] scheme for convective
part and second order central difference approximation for
diffusive part of the governing equations

Forth order ACM [12] for convective part and forth order



central difference approximation for diffusive part of the
governing equations

Roe’s approximate average state is used to calculate
eigenvalues and eigenvector matrix [19].

A. Harten-Yee TVD
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1. The base Scheme

Fourth order central differencing used for both convective and
diffusion parts of Navier-Stokes equations is given below:
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2. The Numerical Flux Filtering Scheme
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Non linear dissipation term [ of Harten-Yee TVD
scheme in combination with Harten’s switch [20] applied to all
characteristic waves as the filter numerical fluxes,
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The parameter k is a problem dependent. The function
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For steady state calculation and/or implicit method, we have
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Three limiters are used for Eq.[16[]in the present study, (19)
namely,
g",=minmod [am/.; ’amng © Three shock/shock and shock wave/ boundary layer

B. Low Dissipative High order ACM

The fundamental idea of these shock-capturing schemes
consists of two steps. The first step is a high-order spatial and
temporal base scheme. Various standard high-order non
dissipative or low dissipative base schemes fit in the current
frame work. The second step is the appropriate filter for
stability, shocks, contact discontinuities, and fine scale flow
structure capturing. Various TVD, positive, WENO, and ENO
dissipations, after a slight modification, are appropriate
candidates as filters.

test cases, namely, compression
step [15-16], and double cone [17-

Applied boundary conditi re\described in figure 1-2 and
the associated values\ a en jin Table I. The flows are
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TABLE 1
Description of Test Cases
Test Case 1 Test Case 2 Test Case 3
(Compression Corner) (Rearward Step) (Double Cone)
M., 6.0 5.0 6.0
Rerc 8x 10° 4.43x 10* 5.73x 10°
T (K) 57.3 62.96 67.07
Poo(Pascal) 681.156 375.846 673.67
P (kg/m3) 0.04142 0.0208 0.035
Tw (K) Adiabatic Wall Adiabatic Wall ~ Adiabatic Wall
7.5° -90° -
0.04 0.0112522 0.075
287 287 287
1.4 1.4 1.4
0.72 0.72 0.72

Fig 4: Grid for rearward step

RESULTS AND DISCUSSIONS

coefficient on the wall for compression corner [13-14]. Results
for Low Dissipgt ok Order ACM and Harten-Yee TVD

are almost identioal—4o

pressure and skin frictfion destribu§jon. Min-mod limiter (eq. 9)
provides excess amount pa on near corner.

different limiters and low dissipatt
method. The locations of the separation and y€attachment point
along the compression corner for a
Table II. It is noticed from Table II t
diffusive limiter delays the onset of the separation than other
schemes. This is due to the dissipative nature of this limiter, it
dissipates the pressure more across the shock. It is also notice
that, in the case of low dissipative high resolution ACM
method, the size of the separation vortex is larger than the size



of the separation vortex calculated by TVD scheme with
different limiters, indicating that the numerical dissipation of
low dissipative high resolution ACM method is indeed lower
than TVD scheme.

Figure 9 shows the comparison between experimental and
numerical distributions of pressure ratio on the wall for

But the wall pressure starts to
Its and becomes worsened
the wake flow region is
separated and reverse

Table III
alculated by

dissipative high resolution XA
summarizes the length of separation=
both schemes. It is noticed from Table

numerical dissipation.
Finally, hypersonic flow around double cone is solv:
12 shows the comparison between experimental and
distributions of pressure on the wall of double cone
Results for low dissipative high order ACM are closes
experimental results. TVD provides excess amount
dissipation near the corner.

Figure 13 show the separation vortex at the cone—flare region
of double cone by using TVD scheme and low dissipative high
resolution ACM method, respectively. The location of the
separation and reattachment point for both schemes are given
in Table I'V. It is observed that in the case of low dissipative
high resolution ACM method, the size of the separation vortex
is larger than the size of the separation vortex calculated by
TVD scheme, indicating that the numerical dissipation of low
dissipative high resolution ACM method is indeed lower than
TVD scheme.
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TABLE IV
Location of Separation and Reattachment for Double Cone

Scheme Separation Point (m)  Reattachment Point (m)
TVD 0.079 0.095
Low Dissipative
High Resolution 0.076 0.097
ACM
N
Comparison of num against  available

experimental data illustig exlow dissipative high

han the TVD scheme.

the TVD scheme. Present studies depict
to use low dissipative high resolution ACk
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