

 Journal of Space Technology, Vol 1, No. 1, June 2011

62

Implementation of High Precision Orbit Propagator on TI

Digital Signal Processor
Naveed Ahmed

Satellite Research & development Centre Karachi, SUPARCO Pakistan

 naveedahmed87@live.com

Abstract—Once the satellite is in space, it is very important to

make sure that it is in its correct and prescribe orbit, along with

the appropriate attitude, at any given point of time. Orbit

propagators are used to determine propagated position and

velocity of the satellite. Various perturbations, faced by the

satellite in the space, are also incorporated to portray the actual

picture. An on-board implementation of the orbit propagator is

desired for real time propagation of the orbit. All the algorithms

are developed for the low earth orbit (LEO) satellites. The

propagator is implemented on performance efficient and high

speed digital signal processor (DSP) TMS320C6713, a product

of Texas Instrument. The key feature of this processor, real time

data exchange (RTDX), is exploited to show our results on the

host on-board computer.

Keywords— Propagator, Perturbations, LEO, Embedded, DSP,

C6713, RTDX

1 INTRODUCTION

Orbit propagation is the process of modelling the orbit

for an extended time period using the dynamic equations of

motion, models of environmental forces, torques and other

physical parameters. In any space mission analysis, prediction of

the orbits of satellites is an essential part and it, directly or

indirectly, has the impacts on the satellite’s power system,

attitude control, thermal design and other systems. The problem

of reckoning the orbits of satellites, however, is not

straightforward. The main factors affecting the orbit of a

satellite are: the non-spherical geometry of Earth, atmospheric

drag, perturbed effects from the gravitational pull of the Sun and

other planets, electromagnetic forces, radiation pressures and so

forth. There are a number of propagators available in the space

trade e.g. Two Body, SGP4, HPOP. Though for embedded

applications, it is necessitated that a customized algorithm will

be used with on-board computer to propagate the orbit in real

time.

2 ORBIT PROPAGATOR ALGORITHM

The Simulink model of the propagator is shown in

figure 1. It takes the current values of the Keplerian

elements and computes the current position and velocity
from those values. These values are then propagated in the

simulated environment incorporating different order

perturbations mentioned above.

 The higher order calculations are refrained due to the fact

that higher order harmonics of these perturbations are extremely

small to bring any substantial change in results except for

special cases e.g. in geo synchronous orbit, a satellite remains

largely over one location on Earth; that’s why the sectoral

harmonics, which are of order 12, are present all the time
 [1]

.

Figure 1 - Physical interpretation of sectoral harmonic

The result position and velocity are converted them from

one reference model i.e. ECI (Earth Centred Inertial) to ECF

(Earth Centred Fixed). Finally, the orbital elements will be

extracted back from the values of propagated position and

velocity. These values of the orbital elements are the final

outputs and, henceforth, give the deviation of the satellite’s

orientation in presence of the aforesaid perturbations.

3 SYSTEM’S DESIGN FLOW

 The typical design flow, which has been followed during the

entire design and implementation phase, is shown in the

following titled matrix.

Figure 2 - Typical Design Flow of the HPOP model

implemented on DSP

4 SIMULINK MODEL AND IT

OPTIMIZATION

The design is initiated by building the Simulink mo

This model uses the embedded MATLAB function blocks

These blocks contain complete algorithm, incorporating all the

major perturbations, based on MATLAB programming

language. Up till now, the model has no link with t

Code Composer Studio (software required to develop

program the systems on the DSP target devices). Onc

model is completed in MATLAB, its working is tested an

results are matched using the commercially availabl

tool.

The use of optimization of the model has a mixed ti

of goodness and otherwise at the same time. More op

cause the compiler to take more time to compile a code as

to take care of compilation constraints. But it mak

to execute and performs efficiently than a pessimis

Various optimization strategies have been followed

design of the entire Simulink model. Some of them are listed

below:

I. The signals are once defined and stored in the data

memory. This prevents us from re-

saves plenty of hardware resources such as data

memory.

II. The block outputs are declared in the

wherever possible, to reduce the target device’s gl

RAM usage.

III. The existing global buffers are used to store tempo

results. This reduces the number of local variables

the code and hence the memory requirement.

Floating point calculations are not always recommended/

required. For floating point to integer conversions

simulation handles out-of-range values by saturation or by

modulo two wrapping strategy. This enhances the

��������&����
���������N0O�%%
�����������

%����-������������������

���� ���

1����������������������������

��������2�+P������1��� ����

������������	1�?���������

���������	
�
���

Implementation of High Precision Orbit Propagator o

63

Typical Design Flow of the HPOP model

IMULINK MODEL AND ITS

The design is initiated by building the Simulink model.

This model uses the embedded MATLAB function blocks.

gorithm, incorporating all the

major perturbations, based on MATLAB programming

language. Up till now, the model has no link with the DSP or

Code Composer Studio (software required to develop and

program the systems on the DSP target devices). Once the

el is completed in MATLAB, its working is tested and the

results are matched using the commercially available simulation

The use of optimization of the model has a mixed tincture

of goodness and otherwise at the same time. More optimizations

he compiler to take more time to compile a code as it has

to take care of compilation constraints. But it makes code faster

to execute and performs efficiently than a pessimistic one.

Various optimization strategies have been followed during the

the entire Simulink model. Some of them are listed

The signals are once defined and stored in the data

-initialization and

saves plenty of hardware resources such as data

The block outputs are declared in the local scope,

wherever possible, to reduce the target device’s global

The existing global buffers are used to store temporary

results. This reduces the number of local variables in

the code and hence the memory requirement.

ulations are not always recommended/

required. For floating point to integer conversions, the

range values by saturation or by

modulo two wrapping strategy. This enhances the

efficiency of the code as the floating point calcul

consume more software and hardware resources.

5 REAL TIME DATA EXCHAN

Real-Time Data Exchange provides real

continuous visibility into the way target applicati

the real world. RTDX allows system developers to tr

between a host (which is normally a PC or the other c

processor) and target devices without interfering w

application. The data can be analyzed and visualize

using any host client. This shortens the developmen

giving you a realistic representation of the way your system

actually operates.

RTDX consists of both target and host components

A small RTDX software library runs on the target ap

(RTDX.lib). The target application makes the functi

this library's Application Programming Interface (API) in

to pass data to or from it. This library makes use

emulator (can be either USB or the onboard Joint Te

Group [commonly known as JTAG] interface) to move d

or from the host platform. Data transfer to the host occurs in

real-time while the target application is running.

On the host platform, an RTDX Host library operates

in conjunction with Code Composer Studio. Displays

analysis tools communicate with RTDX via an ea

COM API to obtain the target data and/or to send da

target application. It allows for data exchange bet

PC (or any other processor) and the target DSP Star

(DSK), as well as analysis in real time without sto

target.

�� �������	
��
	���
�

The architecture of RTDX, up to a great extent,

matches with that of HSRTDX (High Speed

eXchange). It relies on a silicon module (referred to as the

RTDX unit) that provides an interrupt

Memory Access) interface between the EMU pin select

RTDX data transport (EMU0 is the default) and the m

system of the target device. The EMU pin used for RTDX data

transport may be modified through the RTDX configur

tool. All memory spaces addressable by the processo

accessible to the RTDX (or HSRTDX) unit. It uses th

interrupts (INT3, INT11 and INT12 in the C6x1x™ DSP

C64xx™ DSP devices) to facilitate communications with

emulator, and to signal the RTDX library when a tra

complete. The following diagram (figure 4) shows th

RTDX target architecture.

O�%%
�����������

1����������������������������

��������2�+P������1��� ����

������������	1�?���������

Implementation of High Precision Orbit Propagator on TI Digital Signal Processor

efficiency of the code as the floating point calculations

consume more software and hardware resources.

EAL TIME DATA EXCHANGE (RTDX)

Time Data Exchange provides real-time,

continuous visibility into the way target applications operate in

the real world. RTDX allows system developers to transfer data

tween a host (which is normally a PC or the other co-

processor) and target devices without interfering with the target

application. The data can be analyzed and visualized on the host

using any host client. This shortens the development time by

a realistic representation of the way your system

RTDX consists of both target and host components
 [2]

.

A small RTDX software library runs on the target application

(RTDX.lib). The target application makes the function calls to

brary's Application Programming Interface (API) in order

to pass data to or from it. This library makes use of a scan-based

emulator (can be either USB or the onboard Joint Test Action

Group [commonly known as JTAG] interface) to move data to

ost platform. Data transfer to the host occurs in

time while the target application is running.

On the host platform, an RTDX Host library operates

in conjunction with Code Composer Studio. Displays and

analysis tools communicate with RTDX via an easy-to-use

COM API to obtain the target data and/or to send data to the

target application. It allows for data exchange between the host

PC (or any other processor) and the target DSP Starter Kit

(DSK), as well as analysis in real time without stopping the

The architecture of RTDX, up to a great extent,

matches with that of HSRTDX (High Speed Real Time Data

. It relies on a silicon module (referred to as the

RTDX unit) that provides an interrupt-driven DMA (Direct

Memory Access) interface between the EMU pin selected for

RTDX data transport (EMU0 is the default) and the memory

EMU pin used for RTDX data

transport may be modified through the RTDX configuration

tool. All memory spaces addressable by the processor are

accessible to the RTDX (or HSRTDX) unit. It uses three

interrupts (INT3, INT11 and INT12 in the C6x1x™ DSP and

xx™ DSP devices) to facilitate communications with the

emulator, and to signal the RTDX library when a transfer is

complete. The following diagram (figure 4) shows the basic

Implementation of High Precision Orbit Propagator on TI Digital Signal Processor

64

Figure 3 - Orbit Propagator Simulink Model

Figure 4 - Basic Architecture of RTDX Communication between host and target

Implementation of High Precision Orbit Propagator on TI Digital Signal Processor

65

B. Configuring the RTDX

Before actually using the RTDX module, it should be

configured properly in CCS and MATLAB alike. In CCS, one

can do this by selecting RTDX from Tools pull-down menu.

This can be used further to invoke the RTDX configuration

window. From the channel viewer control, it can be viewed

which channels are currently enabled to communicate with.

C. Reading data by the host

A separate MATLAB script file (also called m-file) is

written to read the RTDX-transmitted data on the host PC
[3]

.This

script file performs series of tasks that are inevitable before

actually setting up communication with the target. It first

requests the target board info by ccsboardinfo MATLAB

command and then set up an object (usually a structure) against

this information.It then resets the board to bring the target board

in its initial state. RTDX module is enabled by

enable(cc.rtdx)MATLAB command, where cc is the

name of the object which has been created prior to execution of

this command; it can be anything.The RTDX channel can be set

up permanently or for any specific duration of time.

The RTDX channels are then created; if two way

communication is required separated channel should be created

for writing (transmit) and reading (receive) the data. The read

channel needs to be created. It can be done by open

(cc.rtdx,'ochan1','r') MATLAB command.

‘outdata

=readmsg(cc.rtdx,'ochan1','double',1);’

is another MATLAB command used in the said script

file.

The read data is stored in buffer named ‘outdata’. It is

always recommended to disable and close the channel

when either it is timed out or we are not using it anymore.

This saves our system resources from being used

wastefully.

D. Advantages of using RTDX

RTDX is getting ubiquitous day by day. It is starting to

find its usage for variety of applications ranging from

automation to communication, from electronic systems to

military applications and so forth keeping the imagination a

limit. There are couples of advantages of using RTDX in

presence of its counter-parts. The first and foremost advantage is

its speed. The data rate achieved by the real time data exchange,

supported by the C6713 devices, is around 10 KBps (kilobytes

per second). The high speed real time data exchange is giving

even faster data rate of 130 KBps (kilobytes per second)
[3]

.

Secondly, it is also not voracious of ample hardware

requirements and additional cables.

6 TESTING AND VERIFICATION OF RESULTS

In order to compare its results with those from

commercially available simulation tool, various simulations are

performed with the same epoch values of the orbital elements

and the force models used in Simulink. The obtained results,

both from MATLAB and commercially available simulation

tool, are overlapped in figure 5

In future, the project can be refined in multiple ways to

make it more practical. For instance, it can be used in the

mission analysis of various satellites. The efficacy of the

propagator can also be determined using this practice.

7 CONCLUSION

It was aimed to develop a customizable DSP based

orbit propagator addressing the mission needs of a LEO satellite

that simulates a real scenario considering all the perturbations

influencing its propagation. The results were assessed against

simulations of commercially available simulation tool and were

found to be matched satisfactorily. In a nutshell, it can be

asserted that the code provides high accuracy in predicting the

orbit and is successfully embedded into the DSP processor for

real time orbit propagation so that the state may be passed to

other modules as needed.

REFERENCES

[1] James R. Wertz, Mission Geometry; Orbit and

Constellation Design and Management, Chap 2, pp65, ISBN: 1-

881883-07-8

[2] www.focus.ti.com/lit/an/spra895/spra895.pdf

[3] Rulph Chassaing, Digital Signal Processing and

Applications with the C6713 and C6416 DSK, Ch 9, pp313,

 ISBN 0-471-69007-4

[4] www.processors.wiki.ti.com/index.php/Real_Ti

me_Data_eXchange_(RTDX)

.

Implementation of High Precision Orbit Propagator on TI Digital Signal Processor

66

Figure 5 - Plots of Keplerian Elements Set between Commercially available simulation tool and Customized

Embedded Orbit Propagator

