Journal of Space Technology, Vol 1, No. 1, June 2011

Performance Comparison of a Proprietary CCSDS Stack
Implementation between two 32-bit Embedded Controllers

Muhammad Owais, Syed Ashar Akhtar
Space and Upper Atmosphere Research Commission of Pakistan, SUPARCO
owal983 @gmail.com, Engineer.ashar @ gmail.com

Abstract—CCSD
communication

publishked widely recognized data packet header is mandatory. There is a possibility of a secondary
space missions. This paper  header just before the source data.

Its inclusion is up to the communicating nodes. The length of the

from the packets and packet is between 7 and 65542 bytes.

it controllers. One is 1.2 Space TM Data Link Protocol

cHQmies and other is The TM Data Link protocol or transfer frames are used to

transport source packets and segments through the telemetry
system to receiver network. The frame starts with a 4 byte
synchronization marker which is a fixed pattern called ASM
(Attached Synchronization Marker). The frame pattern is shown
in figure 4.

1.3 Space TC Data Link Protocol

The tele-command transfer frame is the unit of encapsulation
for tele-command packets sent from ground systems to
spacecrafts. It provides link to link delivery for tele-command
. packets. The format of TC frame is given in Figure 3. It is

Key.wort.ls: CCsD S Stack, 32-bit Embedded Cn important to note that the data link layer for TM and TC link is
Execution time comparison iferent but the network (packet) layer can use same
ymission unit: space Packet.

80386 based, 386Ex from Intel.
application protocol processor and, the ¢ their performance

assisting selection. Parameters compate
generation time, parsing time, throughpu

and tool chains are involved but this comparisd
worthy parameter for decision making.

1 INTRODUCTION 2 IMPLEMENTATION SCOPE
The Consultative Committee for Space Data Systems (CCSDS) Mementation scope for this paper is limited to the
is an international organization formed by space agencies in T sortion (blue colored, staircase shaped outline) in
1982. CCSDS develops common standards and provides a forum > . ’
for exchange of ideas. CCSDS has been very successful in

generating standards which are well known and used by almost
every space related organization.

software~ts=developed for the PC environment first, because PC

CCSDS provides comprehensive specification for space data as a target is easierto develop for compared to embedded
protocols. These protocols [1] are layered just like ISO layered ¢ entation for PC platform, the code is
reference model as seen in figure 1. Each of these protocols and Ex processors. It is to be noted that
its transfer unit is discussed next. e insmitted when using reliable service

1.1  Space Packet Protocol

Formerly called CCSDS source packet, this protocol
corresponds to the network layer routing functions. The packet
format is shown in figure 2. The CCSDS source packet [6] is a
data structure generated by spacecraft on-board and ground end
communication systems to share application data. These packets
are variable length depending in the information conveyed. The
packet consists of two parts, the header and the source data. The

sly by spacecrafts. If a packet
generated will provide the
S able then an application layer
should provide the required se

101



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

| nssless Nata Image MNata
Compression Compressicn
e Application
Application Layer Spaciiic
SCPS-FR/FTP Protocols
CCSDS File
e DEVETY | oo e e e e emaem
Protocal
(CFDP)
SCPS-TR/FTP LUDP
Transport Layer
| SCPS-SP | | IPSe: |
Space
Network Layer Packet SCPS-NP IP Version 4 IP Version 6
Protocol
Data Link Layer TIA Space TC Space ADS Space Proximity-1
(Data Link Data Link Data Link Cata Link (Data Link
Profocol Sublayer) Prolocol Protocol Protocol Layer)
iSync. and - - Proxirmity-1
e | I ooy | | ©odnadms
Sublayer) — d — - Sync. Layer)
Proximity-1
Physical Layer RF and Modulation Systems (Physical
Layer)
D)

Figure 12 - Space

m?iejio Protocols Reference Model [1]

- PACKET PRIMARY HEADER > FACKET DATA FIELD 4‘{
VERBION PACKET SEQUENCE PACKET PACKET SOURCE DATA (3)
LENGTH HEADER («)
TYPE | PCKT.| APPLIGATION | QROUPING SOURGE
INDI- | SEC. PROCESS FLAGS SEQUENCE
CATOR| HDR. | IDENTIFIER COUNT
FLAG
Mey
Contain:
@1 - first Pekt. No of = §/C Tima
00 - conl.Pekt, octets = Packat
10f 10 - lant Peikt. of Packat Format
Sac.Har. of Group Data Info
pragant, Frald = Anciltary
0oo 0 aise 0 11 = no Grouping minus 1 Data
3 Blts-me1 B.‘I‘+ 1 BIime— 11 Blts— P 2 Bits — %14 Bita—», 4 variable —¥t varlable ¥
4 2 Octels 2 Oclols — 2 Oct.—»——— | to 65538 Oclete——»

Figure 2 - Space Packet Protocol Format [6]

102



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

~-——————————FRAME HEADER (5 octets) ——————————

2 octets 1 octet
VERSION | BYPASS| CO C S |SPACE | VIRTUAL FRAME
NUMBER ) CHANNEL LENGTH

) ID

ocC

(max)

Figure 3- Space TC Data Link Protocol [9]

b

- TRANSFER FRAME PRIMARY HEADER >
ATT. FRAME MASTER | VIRTUAL TRAME
SYNC| IDENTIFICATION  |CHANNEL|CHANNEL DATA FIELD
MARK FRAME | FRAME STATUS
ver|sic| virT [oper| COUNT [ COUNT | gpe  |sync|PACKET|SEGMENT| FIRST
# | 1D |cHan| cTRL. HEADER| FLAG | ORDER | LENGTH [HEADER
10 | FIELD FLAG FLAG ID  |POINTER
FLAG
2 [10] 3 1 1 1 1 2 B
32 16 8 8 16
e ) TRANSFER
_JRANSFER FRAME TRANSFER FRAME FRAME
44— SECONDARY HEADER »>a ierEn T — »le O >
OFTIONAL) DATA FIELD TRAILER
' . A (OPTIOMAL)
(SECONDARY (SECONDARY (OPER.| (FRAME
HEADER ID) HEADER DATA) cTRL. | ERROR
(SPACECRAFT FIELD)| CTRL.
SEC SEC APPLICATION WORD)
HEADER | HEADER DATA)
VERS. | LENGTH
NUMBER
(2) (6) (UP TO 504) ng&l (32) (16)

[
Figure 4- Space TM Data Link Protocol [5] dil

103



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

The software developed is not a complete implementation
of CCSDS TM and TC standards. The limitations or
deviations are,

1. Handling of one Virtual Channel in each direction
2. One packet per frame and one frame per Command

other is the grounds station software which sends c6
and receives telemetry.

The performance of this stack is compared, when r
386Ex and ARM7 based CPUs.

3 ARCHITECTURAL COMPARISON OF TARGET
CONTROLLERS

The target processors for comparison are both 32-bit
controllers. They have their similarities as well as differences.
STR7 is based on ARM7TDMI RISC core and features a three
stage instruction pipeline. 386Ex is a CISC architecture based
on 386CX core and has a four stage pipeline. Both controllers
have no on-chip cache for data or addresses (386Ex can be
used in protected mode and has some address cache in this
mode). There is abundance of embedded peripherals on each
making embedded platform development easier.

3.1 STM STR710

There are many variants of this controller. The one which is
used is STR710FZ2T6. It features 256KB internal Flash and
64KB internal RAM. It is capable of running at SOMIPS when
executing code from RAM. External clock for core can be a
maximum of 16MHz which can be multiplied or divided
internally by a PLL Unit to reduce EMI. The clock input to
the core and the peripherals is configurable using a system

104

peripheral called clock control unit (PRCCU). The core clock
is varied to get timing result at different speeds (Table 1 and
2). The maximum allowed clock for the core is SOMHz. The
controller features fast interrupt controller with multiple
vectors. There are abundant resources on the fabric. About 10
serial communication peripherals, 5 timers and a real time
clock as well. A basic block diagram for the main components
of STR7 is shown in figure 5 as taken from the datasheet.

ARM7TDMI m External Parallel
Core ::> Memory Interface
Embedded Flash
JTAG —)
256K + 16K
Interface :> - o ( :
<z
:> RAM 64K
APB APB
Bridge 1 :> :> Bridge 2

Figure 5- STR7 Simplified block diagram [15]

.2 Intel 386Ex

The processor used in this experimental setup is Intel

EXTC running at 33MHz @ 5.0V. It is a 32bit controller

o>x86 instruction set. It has CISC architecture and can
It is capable of running

ece\some complex instructions. i
w . This variant of the processor features system and
poWer-Tanagement and built in peripheral including: Two

upt controllers; Timer, Counter (3 channels);
SIO (2 channels); Synchronous SIO (1
dfchdog timer and many parallel 10s [14]. The
controller block diagram is shown in figure 6.

PLATFORM FOR TARGET
ONTROLLERS

time of 70ns and 4
dal read access time
RAM present on the
A\ scaled to half

MBit (256K x 16Bit) of SRAM wi
of 15ns. There is no internal Flash ¢
386Ex. The crystal used is 66MH



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

inside the CPU by a divider. So effectively it is running at
fixed 33MHz clock.
1) 1

Bus Interface
Unit

Address

Chip-zselect
Unit

JTAG Unit

Address

Clock and Power
Management Unit

Processor Core

DRAM Refresh
Control Unit

Watchdog Timer Unit
Eus Monitor

Asynchronous Serial 1O
2 channels
(16450 compatible)

Synchronous Serial IF0
1 channel, full duplex

Timer/counter Unit
3 channels
{B2C54 compatible)

VO Poris

INTR

Interrupt Contral Unit

DMA Controller
2 channels
(8237A compafible)
and Bus Arbiter Unit

Figure 6- 386Ex Block Diagram [14]

The development tool chain used is Paradigm Pro 6 C/C++
with debug support. Results are acquired in two different
scenarios. In first scenario the code was executing from
SRAM using Paradigm Debug Kernel. In the second scenario
code was loaded in EEPROM boot memory to execute
without kernel. Both test scenarios used Real Address Mode
with Large Memory model. Due to unwanted extra wait states
in second scenario code showed better performance in
execution from first scenario (SRAM) even under Debug
Kernel. Thus, to obtain better performance from the processor,
code should be executed from high-speed SRAM without
presence of any Debug kernels. The results in table 1 and 2 are
based on code execution from the external RAM.

4.2 Hardware Platform for STR7

The hardware platform used for STR7 is a COTS board. It
is called STR710-EVAL [15]. It has external 16-bit Flash and
RAM installed for use but it is chosen to use internal 64KB
RAM only as the entire code and data fits in it. One UART is

@,

105

used for transfer of TC and TM frames. There are some LEDS
and test points present which are used for indicating status of
running code. The JTAG header is used to program and debug
the board. No other board peripheral is used.

The development tool chain used is IAR Embedded
Workbench for ARM version 5.50. The code executes in a flat
memory model and there is no address translation required.
The processor runs in ARM mode (also possible to use Thumb
mode).

S PERFORANCE MEASUREMENT RESULTS

The main performance metric in consideration is time
required to complete packetization and processing tasks. Code
density is not an issue at the moment and is not considered.
The image size of binary for STR7 is about 32KB with
additional 12KB for RAM. The code was first written for a
PC. It was then ported to the STR7. After successful execution
on STR7, it was then ported to 386Ex. The required changes
were minimal and mostly involved changing device drivers
for peripherals.

Execution Time is calculated on both platforms for two
tasks.

1. Time required for preparing, filling and transmitting
a TM packet inside a TM frame.

2. Time required for
consuming a TC packet inside a TC frame.

receiving, decoding and

TM/TC over
UART \
- Time v
measurement
Oscilloscope ¢ | Target Platform
\ JTAG Adapter
for STR7
igure 7 - Experimental Setup
T s are calculated by pulsing specific GPIO lines and

using osc1llosc0pe to measure the pulse duratlon RTC and

e 1 shows the execution speed results
egds on both controllers. STR was



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

Send
Telemetry

Add Received
byte to Temporary
Buffer

TM Measure Start |

Generate New

TC Measure S

Frame R\(?'W(
Convert CLNU < True
to Frame ¢
\‘< Initialize Frame
Parse Packet

Not NULL
v

Add Payload

Generate New

Mark Ready Not I;IULL

for Execution Add Frame
Header

Pad Extra

P Bytes
True 6
v Add Payload
Add Received
Byte to Frame
Buffer Generate CRC
i Send
Packet

over UART

Figure 8- Flow chart for TC processing

N\ TM Measure Finish |

AN

Figure 9- Flow chart for TM processing

Figure 8 shows the flow when TC times are measured. The
exact points where measurement is done is highlighted by the
big arrows. Start and end sequence parsing times are not
included. The emphasis is on BCH decoding, packet and
frame parsing and processing by application layer.

Return

re 9 shows TM processing flow. For TM case
gending bytes over UART is subtracted from

Table 1 - Timing execution results with STR7 @ 32MH® at 33MHz

386Ex STR Speed compared
RAM to 386Ex

N
Speed of core in MHz 32 33 MHz | - <\
TM Transmission + Processing Time 289 289.6 | ms - G\C \

TM Processing/Preparation time only 1.5 2.1 ms 1.40

Metric STR710

TC Processing and Execution time 15.5 38.9 ms 2.51

106



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

Table 2 shows the test results when the STR7 was slowed
down to 8MHz only with 386Ex at 33MHz. 386Ex is naturally
faster. TC processing is seen to be 4 times slower on STR7 in
this scenario. Table 3 and 4 are same experiment as in table 1
and 2 except the code for 386Ex was burnt to EEPROM and
executed from the tead of RAM. The EEPROM device

used is not very fast and incurs one extra wait state compared
to SRAM. It is also an 8 bit parallel access device compared to
16 bit SRAM. Due to these two factors the performance is
almost degraded by more than five times for 386Ex when STR
runs at same clock rate. Figure 10 shows the summary of all
gathered timing data.

2- Timing execution results with STR7@ 8MHz and 386Ex at 33MHz

. 386Ex STR Speed compared
Metric STR710 RAM t0 386Fx
Speed of O\Qr(}t\m 8 33 MHz | -
™ Transmlssm + ssing Time 300 289.6 | ms -
TM Processing/P arayi jon kzﬁé\only 12.5 2.1 ms 0.17
TC Processing and Execlition 60.2 38.9 ms 0.65
g \;zne a\

STR Speed
; 386Ex

Metric STR710 EEPROM compared to
386Ex

Speed of core in MHz | 8 C% A\ MHz | -

TM Transmission +

Processing Time 300 0%’2/7/ s -

™

Processing/Preparation f\

time only 12.5 8.7 6 ms) 0.7

TC Processing and \

Execution time 60.2 82.96 ms 1.38

Table 4 - Timing execution results with STR7 @ SZM@ at 33MHz

STR Speed
Metric STR710 %?II’EEOM compared
to 386Ex
Speed of core in MHz | 32 33 MHz | - ; N O
N
TM Transmission +
Processing Time 289 296.2 ms -
™
Processing/Preparation
time only 1.5 8.7 ms 5.8
TC Processing and
Execution time 15.5 82.96 ms 5.35

107



Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers

optimization is needed or not. Also it can provide information

W3TR 710 Internal RAM @ 32MHz BL36 in case a completely new solution is needed. It is also
observed that for low power and resource constrained devices

w5TR 710 Internal RAM @ BMHz (as in space applications) time critical software could be

. 607 executed from faster SRAM instead as compared to generally

Ni386ex Bxtemal RAM @ 33MHz ' slower FLASH or EEPROM devices, to get maximum
performance.

i386eyx Extemal EEPROM @ 33MHz

REFERENCES

[11 Overview of Space Communication Protocols, CCSDS
Informational Report, 130.0-G-2, December 2007

21 “Telemetry Channel Coding”, CCSDS 101.0-B-6-S,
October 2002

[3] ;gg%ket Telemetry”, CCSDS 102.0-B-5-S, November

[4] “TM Synchronization and Channel Coding”, CCSDS
131.0-B-1, September 2003

[51 “TM Space Data Link Protocol”, CCSDS 132.0-B-1,

TM Processing/Preparation  TC Processingand Execution September 2003
. . [6] “Space Packet Protocol”’, CCSDS 133.0-B-1, September
time only fime 2003

Figure 10 - Summary of execution ti Nes £ {OW and [71 “Communication Operation Procedure-1”, CCSDS 232.1-

TC Operations [8] “Telecommand Part 1: Channel Service”, CCSDS 201.0-

B-3-S, June 2000

6 CONCLUSION [91 “Telecommand Part 2: Data Routing Service”, CCSDS
202.0-B-3-S, June 2001

[10] “Telecommand Part 2.1: Command Operation
Procedures”, CCSDS 202.1-B-2-S, June 2001

[11] “Telecommand Part 3: Data Management Service”,
CCSDS 203.0-B-2-S, June 2001

‘TC Synchronization and Channel Coding”, CCSDS

Performance results are gathered for a custom
implemented in C/C++ for two different embedded j
It is important to know parameters like, execution §m
memory footprints of software libraries when they arece
in other projects. The stack library developed here can be
reused as a building block for a larger application targeting .0-B-1, September 2003
specific mission. The results generated experimentally should Rittter, T.Vladimirova and H.Tiggeler. “A CCSDS
be useful as they are parameterized in terms of execution So e System for a Single-Chip On-Board Computer
speed. The effects of variations in the hardware platforms STall Satellite”, Proceedings of 15th AIAA/Utah Sate
used are quantified experimentally. The variations studied onference on Small Satellites, Utah, USA,
include access times and bus width for memory and main Auon
clock speed for the embedded controllers. (14] © \

. . o [15] “STRZIO-Eval Board User Manual”, STMicroelectronics,
Execution times of developed stack (under similar September 2005

conditions) prove to be faster for STR710 compared to 386EX  «§TR71xF Seri
possibly because of nature of code being more suitable for a  §TMicroelectré
RISC processor. Results can help in deciding if further

108



