
 

 Journal of Space Technology, Vol 1, No. 1, June 2011 

 

101 

 

Performance Comparison of a Proprietary CCSDS Stack 

Implementation between two 32-bit Embedded Controllers 
 

Muhammad Owais, Syed Ashar Akhtar 

Space and Upper Atmosphere Research Commission of Pakistan, SUPARCO 

owa1983@gmail.com, Engineer.ashar@gmail.com  

 

Abstract—CCSDS has published widely recognized data 

communication standard for space missions. This paper 

discusses a custom streamlined implementation of the CCSDS 

channel, frame and packet layers. Non essential features and 

extra fields are omitted/not implemented from the packets and 

frames. The stack is ported for two 32 bit controllers. One is 

ARM7 based STR710 from STMicroelectronics and other is 

80386 based, 386Ex from Intel. Both are candidates for a space 

application protocol processor and therefore their performance 

data is required, to evaluate protocol stack performance thus 

assisting selection. Parameters compared are frame/packet 

generation time, parsing time, throughput and application 

memory footprint. Porting effort is also considered. 

 

It is hard to select a controller when two different architectures 

and tool chains are involved but this comparison may act as a 

worthy parameter for decision making. 

 

Keywords: CCSDS Stack, 32-bit Embedded Controller, 

Execution time comparison 
 

1 INTRODUCTION 

The Consultative Committee for Space Data Systems (CCSDS) 

is an international organization formed by space agencies in 

1982. CCSDS develops common standards and provides a forum 

for exchange of ideas. CCSDS has been very successful in 

generating standards which are well known and used by almost 

every space related organization.  

CCSDS provides comprehensive specification for space data 

protocols. These protocols [1] are layered just like ISO layered 

reference model as seen in figure 1. Each of these protocols and 

its transfer unit is discussed next. 

1.1 Space Packet Protocol 

Formerly called CCSDS source packet, this protocol 

corresponds to the network layer routing functions. The packet 

format is shown in figure 2. The CCSDS source packet [6] is a 

data structure generated by spacecraft on-board and ground end 

communication systems to share application data. These packets 

are variable length depending in the information conveyed. The 

packet consists of two parts, the header and the source data. The 

packet header is mandatory. There is a possibility of a secondary 

header just before the source data.  

Its inclusion is up to the communicating nodes. The length of the 

packet is between 7 and 65542 bytes.  

1.2 Space TM Data Link Protocol 

The TM Data Link protocol or transfer frames are used to 

transport source packets and segments through the telemetry 

system to receiver network. The frame starts with a 4 byte 

synchronization marker which is a fixed pattern called ASM 

(Attached Synchronization Marker). The frame pattern is shown 

in figure 4. 

1.3 Space TC Data Link Protocol 

The tele-command transfer frame is the unit of encapsulation 

for tele-command packets sent from ground systems to 

spacecrafts. It provides link to link delivery for tele-command 

packets. The format of TC frame is given in Figure 3. It is 

important to note that the data link layer for TM and TC link is 

different but the network (packet) layer can use same 

transmission unit: space Packet. 

2 IMPLEMENTATION SCOPE 

The implementation scope for this paper is limited to the 

highlighted portion (blue colored, staircase shaped outline) in 

figure 1; including Space Packet at network layer, TM and TC 

Data Link protocols at data link layer and associated channel 

coding schemes. The software is developed in stages. The 

software is developed for the PC environment first, because PC 

as a target is easier to develop for compared to embedded 

processors. After implementation for PC platform, the code is 

ported for STR710 and 386Ex processors. It is to be noted that 

only TCs frames are re-transmitted when using reliable service 

COP standard, not TM frames. TM reliability is not a problem 

because it is generated continuously by spacecrafts. If a packet 

gets corrupted, then next packet generated will provide the 

values required. If no loss is acceptable then an application layer 

should provide the required service. 

 

 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

102 

 

 

 

 

Figure 12 - Space Communication Protocols Reference Model [1] 

 
Figure 2 - Space Packet Protocol Format [6] 

 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

103 

 

 
Figure 3- Space TC Data Link Protocol [9] 

 

 
Figure 4- Space TM Data Link Protocol [5] 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

104 

 

The software developed is not a complete implementation 

of CCSDS TM and TC standards. The limitations or 

deviations are,  

1. Handling of one Virtual Channel in each direction  

2. One packet per frame and one frame per Command 

Link Transfer Unit CLTU is used.  

3. Large packets greater than a fixed size (280 bytes) 

are not handled.  

4. Frame Extraction for TC receiver is different and 

uses liner array searching rather than detecting two 

false BCH code block failures; because searching an 

array of 16 characters for 16 byte fixed sequence is 

faster than doing BCH decoding of two 8 byte 

blocks.  

5. No COP-1 support is implemented. 

The respective channel coding and CRC schemes are 

implemented as well. The Channel coding scheme used for 

TC frames is BCH (56, 63) in error detecting mode. 16-bit 

CRC is used for TM frames. The CRC and BCH code is 

reused from another project [13]. RS coding is recommended 

for TM frames which is not implemented in current setup. 

There are two communication nodes in the experiments; one 

emulating a spacecraft computer / protocol processor and 

other is the grounds station software which sends commands 

and receives telemetry. 

The performance of this stack is compared, when run on 

386Ex and ARM7 based CPUs. 

3 ARCHITECTURAL COMPARISON OF TARGET 

CONTROLLERS 

The target processors for comparison are both 32-bit 

controllers. They have their similarities as well as differences. 

STR7 is based on ARM7TDMI RISC core and features a three 

stage instruction pipeline. 386Ex is a CISC architecture based 

on 386CX core and has a four stage pipeline. Both controllers 

have no on-chip cache for data or addresses (386Ex can be 

used in protected mode and has some address cache in this 

mode). There is abundance of embedded peripherals on each 

making embedded platform development easier. 

 

3.1 STM STR710 

There are many variants of this controller. The one which is 

used is STR710FZ2T6. It features 256KB internal Flash and 

64KB internal RAM. It is capable of running at 59MIPS when 

executing code from RAM. External clock for core can be a 

maximum of 16MHz which can be multiplied or divided 

internally by a PLL Unit to reduce EMI. The clock input to 

the core and the peripherals is configurable using a system 

peripheral called clock control unit (PRCCU). The core clock 

is varied to get timing result at different speeds (Table 1 and 

2). The maximum allowed clock for the core is 50MHz. The 

controller features fast interrupt controller with multiple 

vectors. There are abundant resources on the fabric. About 10 

serial communication peripherals, 5 timers and a real time 

clock as well. A basic block diagram for the main components 

of STR7 is shown in figure 5 as taken from the datasheet. 

 

 
Figure 5- STR7 Simplified block diagram [15] 

 

3.2 Intel 386Ex 

The processor used in this experimental setup is Intel 

386EXTC running at 33MHz @ 5.0V. It is a 32bit controller 

using x86 instruction set. It has CISC architecture and can 

execute some complex instructions.  It is capable of running 

11.4 MIPS.  This variant of the processor features system and 

power management and built in peripheral including: Two 

82C59A interrupt controllers; Timer, Counter (3 channels); 

Asynchronous SIO (2 channels); Synchronous SIO (1 

channel); Watchdog timer and many parallel IOs [14]. The 

controller block diagram is shown in figure 6. 

4 HARDWARE PLATFORM FOR TARGET 

CONTROLLERS 

4.1 Hardware Platform for 386Ex 

 

The 386Exhardware platform is a custom single board 

computer equipped with a single Intel 80386Ex. TC processor 

is running in Real Address Mode, with 1 MBit (128K x 8 Bit) 

boot EEPROM with typical read access time of 70ns and 4 

MBit (256K x 16Bit) of SRAM with typical read access time 

of 15ns. There is no internal Flash or RAM present on the 

386Ex. The crystal used is 66MHz which is scaled to half 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

105 

 

inside the CPU by a divider. So effectively it is running at 

fixed 33MHz clock. 

 

 
Figure 6- 386Ex Block Diagram [14] 

 

The development tool chain used is Paradigm Pro 6 C/C++ 

with debug support. Results are acquired in two different 

scenarios. In first scenario the code was executing from 

SRAM using Paradigm Debug Kernel. In the second scenario 

code was loaded in EEPROM boot memory to execute 

without kernel. Both test scenarios used Real Address Mode 

with Large Memory model. Due to unwanted extra wait states 

in second scenario code showed better performance in 

execution from first scenario (SRAM) even under Debug 

Kernel. Thus, to obtain better performance from the processor, 

code should be executed from high-speed SRAM without 

presence of any Debug kernels. The results in table 1 and 2 are 

based on code execution from the external RAM. 

 

4.2 Hardware Platform for STR7 

The hardware platform used for STR7 is a COTS board. It 

is called STR710-EVAL [15]. It has external 16-bit Flash and 

RAM installed for use but it is chosen to use internal 64KB 

RAM only as the entire code and data fits in it. One UART is 

used for transfer of TC and TM frames. There are some LEDS 

and test points present which are used for indicating status of 

running code. The JTAG header is used to program and debug 

the board. No other board peripheral is used. 

The development tool chain used is IAR Embedded 

Workbench for ARM version 5.50. The code executes in a flat 

memory model and there is no address translation required. 

The processor runs in ARM mode (also possible to use Thumb 

mode). 

5 PERFORANCE  MEASUREMENT RESULTS 

The main performance metric in consideration is time 

required to complete packetization and processing tasks. Code 

density is not an issue at the moment and is not considered. 

The image size of binary for STR7 is about 32KB with 

additional 12KB for RAM. The code was first written for a 

PC. It was then ported to the STR7. After successful execution 

on STR7, it was then ported to 386Ex. The required changes 

were minimal and mostly involved changing device drivers 

for peripherals. 

Execution Time is calculated on both platforms for two 

tasks. 

 

1. Time required for preparing, filling and transmitting 

a TM packet inside a TM frame. 

2. Time required for receiving, decoding and 

consuming a TC packet inside a TC frame. 

 

�

 

Figure 7 - Experimental Setup 

 

The times are calculated by pulsing specific GPIO lines and 

using oscilloscope to measure the pulse duration. RTC and 

internal timers can be used also but it was decided to use 

GPIO lines as their drivers are very simple and have no 

execution overhead. Table 1 shows the execution speed results 

with different processor speeds on both controllers. STR was 

setup for 32MHz and 386Ex fixed at 33MHz. STR7 was 

found to be faster in both TM and TC processing.  Figure 7 

shows block diagram of experimental setup. 

 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

106 

 

 

 

Figure 8- Flow chart for TC processing 

 

Figure 8 shows the flow when TC times are measured. The 

exact points where measurement is done is highlighted by the 

big arrows. Start and end sequence parsing times are not 

included. The emphasis is on BCH decoding, packet and 

frame parsing and processing by application layer.  

 

 
Figure 9- Flow chart for TM processing 

 

Similarly figure 9 shows TM processing flow. For TM case 

the time for sending bytes over UART is subtracted from 

analysis as it should be almost same for a fixed baud rate. 

 

 

Table 1 - Timing execution results with STR7@ 32MHz and 386Ex at 33MHz 

Metric STR710 
386Ex 

RAM 
  

STR Speed compared 

to 386Ex 

Speed of core in MHz 32 33 MHz  - 

TM Transmission + Processing Time  289 289.6 ms  - 

TM Processing/Preparation time only 1.5 2.1 ms 1.40 

TC Processing and Execution time 15.5 38.9 ms 2.51 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

107 

 

 

Table 2 shows the test results when the STR7 was slowed 

down to 8MHz only with 386Ex at 33MHz. 386Ex is naturally 

faster. TC processing is seen to be 4 times slower on STR7 in 

this scenario. Table 3 and 4 are same experiment as in table 1 

and 2 except the code for 386Ex was burnt to EEPROM and 

executed from there instead of RAM. The EEPROM device 

used is not very fast and incurs one extra wait state compared 

to SRAM. It is also an 8 bit parallel access device compared to 

16 bit SRAM. Due to these two factors the performance is 

almost degraded by more than five times for 386Ex when STR 

runs at same clock rate. Figure 10 shows the summary of all 

gathered timing data. 

 

 

Table 2- Timing execution results with STR7@ 8MHz and 386Ex at 33MHz 

Metric STR710 
386Ex 

RAM 
  

STR Speed compared 

to 386Ex 

Speed of core in MHz 8 33 MHz  - 

TM Transmission + Processing Time  300 289.6 ms  - 

TM Processing/Preparation time only 12.5 2.1 ms 0.17 

TC Processing and Execution time 60.2 38.9 ms 0.65 

 

Table 3 - Timing execution results with STR7@ 8MHz and 386Ex at 33MHz 

 

Metric STR710 
386Ex 

EEPROM 
  

STR Speed 

compared to 

386Ex 

Speed of core in MHz 8 33 MHz -  

TM Transmission + 

Processing Time  300 296.2 ms -  

TM 

Processing/Preparation 

time only 12.5 8.7 ms 0.7 

TC Processing and 

Execution time 60.2 82.96 ms 1.38 

 

Table 4 - Timing execution results with STR7@ 32MHz and 386Ex at 33MHz 

 

Metric STR710 
386Ex 

EEPROM 
  

STR Speed 

compared 

to 386Ex 

Speed of core in MHz 32 33 MHz  - 

TM Transmission + 

Processing Time  289 296.2 ms -  

TM 

Processing/Preparation 

time only 1.5 8.7 ms 5.8 

TC Processing and 

Execution time 15.5 82.96 ms 5.35 



 

Performance Comparison of a Proprietary CCSDS Stack Implementation between two 32-bit Embedded Controllers 
 

108 

 

 
Figure 10 - Summary of execution times for both TM and 

TC Operations 

6 CONCLUSION 

Performance results are gathered for a custom CCSDS stack 

implemented in C/C++ for two different embedded platforms. 

It is important to know parameters like, execution times and 

memory footprints of software libraries when they are reused 

in other projects.  The stack library developed here can be 

reused as a building block for a larger application targeting a 

specific mission. The results generated experimentally should 

be useful as they are parameterized in terms of execution 

speed.  The effects of variations in the hardware platforms 

used are quantified experimentally. The variations studied 

include access times and bus width for memory and main 

clock speed for the embedded controllers. 

 

Execution times of developed stack (under similar 

conditions) prove to be faster for STR710 compared to 386Ex 

possibly because of nature of code being more suitable for a 

RISC processor. Results can help in deciding if further 

optimization is needed or not. Also it can provide information 

in case a completely new solution is needed. It is also 

observed that for low power and resource constrained devices 

(as in space applications) time critical software could be 

executed from faster SRAM instead as compared to generally 

slower FLASH or EEPROM devices, to get maximum 

performance. 

REFERENCES 

[1] Overview of Space Communication Protocols, CCSDS 

Informational Report, 130.0-G-2, December 2007 

[2] “Telemetry Channel Coding”, CCSDS 101.0-B-6-S, 
October 2002  

[3] “Packet Telemetry”, CCSDS 102.0-B-5-S, November 
2000  

[4] “TM Synchronization and Channel Coding”, CCSDS 
131.0-B-1, September 2003  

[5] “TM Space Data Link Protocol”, CCSDS 132.0-B-1, 
September 2003  

[6] “Space Packet Protocol”, CCSDS 133.0-B-1, September 
2003  

[7] “Communication Operation Procedure-1”, CCSDS 232.1-
B-1  

[8] “Telecommand Part 1: Channel Service”, CCSDS 201.0-
B-3-S, June 2000  

[9] “Telecommand Part 2: Data Routing Service”, CCSDS 
202.0-B-3-S, June 2001  

[10] “Telecommand Part 2.1: Command Operation 
Procedures”, CCSDS 202.1-B-2-S, June 2001  

[11] “Telecommand Part 3: Data Management Service”, 
CCSDS 203.0-B-2-S, June 2001  

[12] “TC Synchronization and Channel Coding”, CCSDS 

231.0-B-1, September 2003 

[13] I.Rutter, T.Vladimirova and H.Tiggeler. “A CCSDS 

Software System for a Single-Chip On-Board Computer 

of a Small Satellite”, Proceedings of 15th AIAA/Utah Sate 

University Conference on Small Satellites, Utah, USA, 

August 13-16 2001, SSC01-VI-4. 

[14] “386Ex Processor User Manual”, Intel Corporation 

[15] “STR710-Eval Board User Manual”, STMicroelectronics, 
September 2005 

“STR71xF Series Controllers Data Sheet”, 

STMicroelectronics, August 2006

 


