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Abstract 

This chapter proposes a new and efficient heuristic algorithm to solve the problem of hierarchical 

production of limber in sawmills. The proposed solution is based on Mixed-Integer Linear Programming 

(MILP), using Benders’ decomposition and Lagrangean relaxation techniques  The proposed methodology 

achieves a higher computational efficiency than the state of the art for the solution of this kind of problems. 
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Introduction 
 

Mexican companies are immerse in a world-wide competition González S. F. (1995, 2004, 2005, 2008), 

states that in a globalized market, Mexican companies will find difficult to remain in the market to 

distribute its products, unless they modernize to a competent infrastructure.  This modernization includes 

material and human resources, and a control system that allow them to operate with a high degree of 

efficacy and efficiency: the requirements in our current reality. 

 
Under those circumstances, the company requires an optimal production planning and scheduling to gain 

competitive advantage.  This can be done assuming that goods and/or services provided by the company are 

certified and competitive in price and quality. 

 

The production-planning problem Aardal K. et al (1990) addressed in this contribution is classified as NP-

Complete.  The goal of this problem is to plan and schedule production over time Bitran G.R., Hax A.C. 

(1977), González S.F. et.al (1996, 2011).  Production planning has fundamental objectives: the planning 

function determines the requirements sources, the current point in time determines the planning horizon and 

the order of demand satisfaction.  The scheduling function determines how the available production sources 

act, locating the individual products provided to consumers at a minimum production cost.  The problem is 

to achieve a production volume for the analysis period at high efficiency levels.  Achieving this goal 

guarantees the company’s permanence in the global markets.  This contribution addresses this problem in 

the framework of a limber production sawmill; we present its mathematical model, a solution algorithm and 

the results of the production plan. 

mailto:betyf@umich.mx
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Problem Statement 
 

On of the most important economic activities of the state of Michoacan, Mexico is the industrialization of 

the forestry resources.  The first industrialization stage from the mechanical point of view of this resource 

is sawmills.  The stages that form this process González Santoyo F. (1987) are: Reception and classification 

of raw material, edging, multiple head remover, classification table and storage.  The problem´s 

representative variables are: raw material, machine time, processing time availability, supplies, labor, 

electricity, maintenance and sawn products market. 

 
One problem found in the process is that logs present different diameters, lengths and uniformity ranges, so 

they need to be classified according to those variables.  This enables a more efficient operation and the 

choice of an optimal cut schedule for the main saw and other stages in the process. 

 

In the state of Michoacan, Mexico, the main problem is the log length.  Logs are supplied in lengths of 8, 

10, 12, 14, 16, 18, 20, and 22 feet, with diameters from 12 to 30 inches.  Commercial measures are ½, ¾, 

1½, 3, 3½ inches thick, 8, 10, and 12 inches wide.  These conditions allow us to deal with this problem 

using Mixed-Integer Linear Programming (MILP).  We have 8 kinds with 1, 2, and 4 families, which 

means to have 160 elements of sawn lumber in the company. 

 

Using MILP, production is aggregated in families and families in types of products Bitran G.R., Haas E.A., 

Hax A.C. (1981)  This aggregation structure [González S.F. (1995)], lies in the research line known as 

hierarchical production planning.  Planning of the original production is divided in a hierarchy of sub 

problems, where a structuring production plan considers that individual parts and final products are 

aggregated. 

 

The grouping criterion follows Bitran (1981), using the description provided by [González S.F. (1995)]: 

Items are final products, required by the market in a time unit, types of products are groups of items that 

have similar production costs, present the same demand model and the same production range.  Types are 

characterized according to log length.  Families of products are represented by a set of items that share a 

common characteristic.  In this case this characteristic is mean width. 

 

The general MILP problem is characterized as a large-scale problem. The hierarchical planning problem 

will be solved using MILP and a heuristic algorithm, based on Bender´s decomposition theory Aardal K., 

Larsson T. (1990), González S.F. et.al (1996). 

 

Mathematical Model 
 

The hierarchical planning problem (PS) can be formulated as follows: 
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where t is current the time period, Ct the cost of one hour of extra time, hit is the inventory cost for items of 

type i, Sjt is the preparation cost per family j, dit (djt) is the demand of item i (family j), Ki is the required 

production time for i, T(i) is the set of families that belong to type i, mjt is the production amount for family 

j, and rt is the available production time. The model´s decision variables re: C is the number of extra time 

hours for production at time t, Iit (FIjt) is the inventory of type i (family j), Pit (FPjt) is the production amount 

of type I (family j), Xjt is a 0-1 variable that indicates the update of family j. 

 
The solution process is based on Bender´s decomposition techniques.  Complex variables in PS are Xjt, FIjt, 

and FPjt; these variables allow us to structure the problem on a type and family levels.  For this variable 

partition, the Bender´s sub problem PSUBT  can be stated as: 
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PSUB , becomes a PS constraint. The sub problem has unique feasible primal solution, 

which is found by inspection as follows: 
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Let Uit, Vt, Wit, be the dual variables associated to the primal constraints, given in the formulation PSUB t. 

The PSUBt dual problem DPSUBt  can be stated as: 
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The solution of the dual problem, obtained by inspection, is: 
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DPSUB has multiple solutions, since PSUB is a degenerate solution.  An alternative is to make Uit y Wit 
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variable from Bender´s master problem. 

 

These kinds of cuts are favorable and are included in the master problem. Let U
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it y V
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solutions corresponding to the case Ot > 0. Let us assume PSUB has been solved for a sequence of given 

variables and that the Ot > 0 occurs at least once for the periods  TT ,...,1*  .  The master problem 

PM1 can be stated as: 
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A variable substitution allows us to reformulate the master problem PM2  as follows: 
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The master problem is a relaxation of PS, where ZPM provides a lower bound to ZPS. [González S.F. 

(1995)], suggests the use of a Lagrangean relaxation as a strategy to solve problems of PM2.  By relaxing 

Bender´s cuts with Lagrangean multipliers λt, the objective function gets the form: 
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Each qt is a non-negative continuous variable that does not appear in the rest of the constraints. Assuming λt 

 1, tT
*
, qt´s coefficient becomes non-negative, and qt´s optimal value approaches zero as the objective 

function approaches its minimum. 

 

PM2´s Lagrangean relaxation LRPM  can be stated as: 
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By relaxing PM, the resulting problem LRPM, is separated by families in a set of problems of Economic 

Lot Size without capacity constraint.  This kind of problems can be solved efficiently by dynamic 

programming [Wagner, Whitin (1958)]. From the Lagrangean Duality theory for Integer Programming, 

ZLRMP is a lower bound to ZPM. The largest available lower bound, D , is obtained by the solution to: 
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Which is the Lagrangean Dual with respect to the relaxed Bender´s cuts. This terminology is used since 

since λ={ λtt} plays a similar roll LRPM with Lagrangean Multipliers normally used in the continuous 

problem. The dual objective function ZLRPM (λ) is continuous, concave, piecewise linear, and sub-

differentiable. 

 

A standard procedure to solve the dual problem is the sub-gradient optimization algorithm, which generates 

dual solutions according to the following rule. 
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where  ={ t} is a sub-gradient of ZLRPM (λ) for a particular value of λ  and Θl is the step size. 
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Solution Algorithm 
 
1. Assume І T

*
І Bender’s cuts have been generated and that PM2 is solved using Lagrangean Relaxation 

and Subgradient Optimization. 

2. Vector λt is updated a number of times determined by the equation. 

 

,...1,0,     , *
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t
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t

l   

 

For a particular value of λ,   ={  t} is a subgradient of Zlrpm (λ) and Θ1 is the step size. At every point 

in time LRPM is solved and lower bound to Zps is determined. 

 

3. The values of variables Xjt, FIjt, FPjt, obtained from LRPM solution, are used to execute PSUB, while 

the set of updated variables is improved for the heuristic exchange. 

4. The optimal dual variables sent to PSUB are based on new Bender’s cuts. Nonetheless, a cut may 

already be included in PM2.  A previously generated cut cannot be included again in PM2. 

5. An upper bound for Zps is obtained by a heuristic exchange for PSUB’s solution; this value depends on 

the lower bound.  

 

In the next iteration, the subgradient procedure for PM2 continues from the last solution to LRPM. The 

procedure is initialized by initial values  {Xjt,}, which indicate the amount of product for family j at time t. 

The algorithm continues until a given number of Bender’s subproblems have been solved or the difference 

between the upper and lower bounds is small enough, according to a previously established parameter. 

Dual variables Uit, Wit are part of the input to LRPM’s objective function. These variables can be 

interpreted as production and storage costs for families that belong to a certain type of product. 

 

Study Case 
 

The proposed algorithm was used to solve problems that included 1, 2, and 4 families from the 8 different 

types in the problem. 160 different products were included (commercial sawn wood products), which are 

being produced in the sawmill under the current supply conditions.  A family’s model includes 5 different 

commercial sizes of sawn products; 4 families include 20 different sizes for each one of the types they 

produce. 

 
Each production plan specifies the commercial size, its location within the family, and its type. The size 

contributes to the objective function to minimize cost; to satisfy demand, the production amount is 

specified and the inventory level at the planning horizon (assumed to be 1 year).  Since this is a dynamic 

analysis process, it allows the manager to define the plant’s operation form.  This section presents an 

example with the results of the production plan for type 1, characterized by 8´ length, 4 families, and 

different commercial diameters (indicated in the following tables). The plan information is expressed in 

P.U. (per unit). 

 

Table 1. Commercial sawn wood sizes 

Size Size Size Size 

½´´x6´´x8 ½´´x8´´x8 ½´´x10´´x8 ½´´x12´´x8 

¾´´x6´´x8 ¾´´x8´´x8 ¾´´x10´´x8 ¾´´x12´´x8 

11/2´´x6´´x8 11/2´´x8´´x8 11/2´´x10´´x8 11/2´´x12´´x8 

2´´x6´´x8 2´´x8´´x8 2´´x10´´x8 2´´x12´´x8 

31/2´´x6´´x8 31/2´´x8´´x8 31/2´´x10´´x8 31/2´´x12´´x8 
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Results 
 

Table 2.  Production Plan Type I 

     Family 1     Family 2     Family 3     Family 4 

T D P I D P I D P I D P I 

1 40 125 0 40 90 0 65 65 0 70 120 0 

2 60 0 85 50 0 50 120 120 0 50 0 50 

3 25 0 25 50 90 0 120 145 0 100 190 0 

4 65 65 0 40 0 40 25 0 25 90 0 90 

5 120 120 0 70 120 0 60 120 0 80 120 0 

6 120 145 0 50 0 50 60 0 60 40 0 40 

7 25 0 25 100 190 0 85 125 0 60 85 0 

8 60 120 0 90 0 90 40 0 40 25 0 25 

9 60 0 60 80 120 0 40 90 0 65 65 0 

10 85 165 0 40 0 40 50 0 50 120 120 0 

11 40 0 80 60 85 0 50 90 0 120 145 0 

12 40 0 40 25 0 25 40 0 40 25 0 25 

T= time (months), D = Demand, P = Production Volume (units), I = Inventory Level. 

 

The product type and family for Plan I, characterized by 8´ (feet) long in different width and thick sizes are 

shown in the following table. 

 

Table 3. Product Type and Family for Plan I 

FAMILIES PRODUCT T (min) COST ($) 

1 (3/4” x 6” x 8”) 

.826 3,801.00 
2 (1/2” x 8” x 8”) 

3 (2” x 10” x 8”) 

4 (3/4” x 12” x 8”) 

 

These results allow the manager to make efficient and effective decisions, associated to the plan’s operation 

cost, the product volume and type of commercial sizes the market demands.  It is also important an 

appropriate management of an minimal inventory system capable of satisfying the market’s demand in 

contingency conditions with the least financial resources invested in it. 

 

Conclusions 
 

From the resulting production plan, we conclude that for large-scale problems, the proposed algorithm is 

computationally efficient.  The solution is obtained in 4 iterations.  The proposed methodology presents a 

practical flexibility for efficient decision making in the company.  Thus, the algorithm can be easily 

deployed on a personal computer, presenting a greater flexibility than the currently available commercial 

software to solve this kind of problem. 
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