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ABSTRACT 
 

Global-electrocortical activity is being modeled as a system of driven harmonic oscillators, considering telencephalonic 

structures as masses of linked oscillators generating activity at a number of resonant modes. This paper proposes the 

covariant-enhanced-coupling model of global-electrocortical activity of the human brain, which is a generalization of 

the covariant-generalized-coupling model. Enhanced coupling is dependent, not only, on the electrical potentials, but 

also, on their first and the second time derivatives. The signal equations, which were, originally, set up in the comoving 

frame, are transformed into the laboratory frame, expressed in the covariant notation using tensorial representation. 

This brings in the magnetic field in addition to the electric field.   
 

Keywords: Magnetoencephalography, neuromagnetic response, covariant model, generalized-coupling model, mathema-

tical definition of brain death 

  

INTRODUCTION  
 

Brain is a complex structure and theory of brain function is emerging as a most important and an interesting 

field. This topic has long attracted the attention of biologists and physicists, alike. One of the most challenging 

problems of neuroscience is working of the brain. Quantitative data regarding the nervous system, being much more 

sparse, pose great difficulties in attempts to build mathematical models of brain functioning. It is a very intricate 

system containing around the order of 
1110 nerve cells with approximately

1510 interconnections. Necessary for the 

development of principles, able to connect brain-cell activities to the other psychological processes, will be a deeper 

comprehension of the phenomena describing bioelectrical and neuronal interactions. 

This work reviews models of global-electrocortical activity. The activity is pictured as a system of driven 

harmonic oscillators, considering telencephalonic structures as masses of linked oscillators generating activity at a 

large number of resonant modes. This paper proposes the covariant-enhanced-coupling model of global-

electrocortical activity of the human brain, which is generalized from the covariant-generalized-coupling model. 

Enhanced coupling depends on the electrical potentials as well as their time derivatives (the first and the second).  

The signal equations are, initially, set up in the comoving frame. They are, then, transformed into the laboratory 

frame and written in covariant notation employing tensorial representation. This introduces the magnetic field in 

conjunction with the electric field. 

 

MODELING OF BRAIN ACTIVITY  
 

Computational neuroscience is a discipline that traces its origins to the efforts of Hodgkin and Huxley, who 

pioneered quantitative analysis of electrical activity in the nervous system (Lytton et al., 2017). Modeling of brain 

activity has been of interest to many researchers. Shine et al. (2016) described the dynamics of functional brain 

networks. Rouleau (2017) studied structures and functions of the post-mortem brain. Rouleau and Persinger (2017) 

investigated regional processing of induced current in ex.vivo brain specimens. Shen et al. (2017) used connectome-

based predictive modeling to determine individual behavior from brain connectivity. Breakspear (2017) reviewed 

dynamic models of large-scale brain activity. According to him, there is evidential support that collective, nonlinear 

dynamics are the base of adaptive cortical activity. Becht and Mills (2020) modeled individual differences in brain 

development. Donnelly-Kehoe et al. (2019) used whole-brain modeling of resting-state activity to reveal reliable 

local dynamics in the brain across sessions. Since discovered, the EEG of human brain has shown itself a vital tool 

in brain research. However, selecting the correct electroencephalographic reference still remains to be a challenge 
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(Vega et al., 2019). Xu et al. (2018) studied global-signal-regression impact on characterizing dynamic functional 

connectivity and brain states. The study of Mesbah-Oskui (2016) indicate that alterations in thalamic spillover 

inhibition could underlie the changes in electrocortical activity that signal anesthetic-induced loss-of-consciousness. 

Grenier et al. (2019) are of the opinion that brain organoids models, improved with classical and emerging 

molecular and analytic tools, have the potential to unravel the opaque pathophysiological mechanisms of 

neurodegeneration and devise novel treatments for an array of neuro-degenerative disorders. Starting from a review 

of the basic principles of in vitro ‘brain organogenesis’, Quadrato and Arlotta (2017) discuss which aspects of human 

brain development and disease can be faithfully modeled with current brain organoid protocols, and discuss 

improvements that would allow them to become reliable tools to investigate complex features of human brain 

development and disease. 

Of particular interest has been the study of global-electrocortical activity of brain. The author wrote his Ph. D. 

dissertation (Kamal, 1989) on generalization of model developed by Wright and Kydd (1984). The work was 

published as series of papers during 1989-1997 (Kamal et al., 1989; 1992a; b; Kamal and Siddiqui, 1997). Study of 

group structure of covariant model of global-electrocortical activity provided a mathematical definition of brain 

death (Siddiqui et al., 1993). Review presentations were given in national and international conferences on modeling 

(Kamal, 1993; Siddiqui, 1995; Siddiqui and Kamal, 1992; Siddiqui and Khan, 1993; Siddiqui et al., 1990) and 

simulation (Khan and Siddiqui, 1993; 1995) of global-electrocortical activity. 

Author’s research students studied magnetobiology of the covariant and the generalized-coupling models 

(Naeem, 1990), in particular, effects of weak gravitational field on the electrocortical activity of brain (Ahmed, 

1990), published as a paper few years later as theoretical estimate of EEG in weightlessness (Ahmed et al., 1997). 

More recently, Klein et al. (2019) attempted to identify a possible link between changes in brain blood flow and 

neuronal activity during microgravity. Bradford et al. (2016) investigated role of electrocortical activity in 

distinguishing between uphill and level walking in humans. Indahlastari et al. (2020) modeled transcranial electrical 

stimulation in the aging brain. Finkenzeller et al. (2018) studied Impact of maximal physical exertion on 

interference control and elctrocortical activity in well-trained persons. 
 

Wright and Kydd’s Linear Model 

Their model rests on many simplifications and overlooks issues of cell-to-cell coupling as well as details of 

anatomy, etc. (Wright and Kydd, 1984). Essential theoretical features of this model may be summarized as:  

a. Electrocortical recordings represent the transformed spatial average of cortical potentials.  

b. The telencephalon is considered to be a wave medium, which is assumed to be linear, with regard to the gross 

wave potentials. It must be borne in mind that the underlying microscopic interactions turn out to be extremely 

nonlinear.  

c. Boundary conditions (closed and constant) cause the linear waves to produce activity at many resonant 

modes, each having a constant natural frequency.  

d. The values for the natural modes of the resonant frequencies are bunched about central values, in accordance 

with Cramer's Central Limit Theorem.  

e. Ascending inhibitory systems work in part to suppress resonant activity and in part as generators of noise-like 

driving signals. 

A mass of unit sources, which are coupled to one another may be described by a set of n equations (n is the number 

of synaptic connections of the order of )1015 representing driven-harmonic oscillators
a
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i, j run from 1 to n excluding j  i (no self-coupling). The symbol, , denotes summation, i represent electrical 

potentials in sections of the dendritic tree and t is time in the laboratory frame. ,)(),( ii tNtD )(
j
i tK are free parameters 

equivalent to damping coefficients, natural frequencies and coupling constants, respectively. These parameters are 

assigned physiological interpretation based on the assumptions: 

i. All )](),([)(
j
iii tKtDtN have a finite variance ],[ KDN  about a mean ].,[ KDN No particular type of 

distribution for )(),(,)(
j
iii tKtDtN is assumed. 

ii. All )(),(,)(
j
iii tKtDtN are stochastically independent, as each represents processes being perturbed by very 

complicated nonlinearities in the interactions of the linked oscillatory sources, with diverse input signals. 

Based on the above-mentioned assumptions about the parameters, the Central Limit Theorem of Cramer is appli-

cable as n tends to be a large number. Hence, it is justified to replace all )(),(,)(
j
iii tKtDtN  by their respective means 
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.,, KDN The model system could be visualized as a linear system, which is time invariant. Equation (1) may be put in a 

different form by introducing a set of variables },{ kz defined by 

 

(2a)  ,kk z if k is an odd number 

(2b) ,1-kk z otherwise 
  

This equation is expressed as 

(3)  zA
z

WK
dt

d
   

where ;][ kzz k = 1, 2,...., m is an 1m column vector WKA is the Wright and Kydd's state-transition matrix, having 

the elements  

     ┌                                                      ┐ 
 

0 
 

1 0 0 0 ----------- 0 0 

2
1N  1D  2

1K  0 3
1K  ----------- n

1K  0 
 

0 
 

0 0 1 0 ----------- 0 0 

1
2K  0 2
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0 0 0 0 ----------- 0 0 
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0 0 0 0 ----------- 0 0 

--------------------------------------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------------------------------------- 
1
nK  0 2

nK  0 3
nK  ----------- 2

nN  nD  

     └                                                      ┘ 

The elements in Wright and Kydd's state-transition matrix all have different dimensions, which is evident by looking at 

the units of 1D [dimension: (time)
–1

] and
2
1N [dimension: (time)

–2
]. In the following section, the system of equations 

(3) is going to be re-written so that all the elements of the state-transition matrix are dimensionless. The transfer function 

comes out to 
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The Covariant Model 

The covariant model introduces comoving frame of the signal for the purpose of writing equations describing 

the time variation of potential of a dendritic tree; the frame is strapped down to the potential wavefront of dendrite 

(Kamal, 1989; Kamal et al., 1989). Upon transformation of this equation into the laboratory frame a magnetic vector 

potential appears along with the electrostatic potential. In the comoving frame, a mass of unit sources coupled to 

each other are described by the set of equations 

(5) 



d
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ΦΦΦΦΦ   KND  

where ),(,)( ii  ND )(
j
i K being 44 matrices with eigenvalues ),(,)(

μ
i

μ
i  ND );(

jμ
i K   0, 1, 2, 3, respectively,  

representing time in the comoving frame, t time as measured in the laboratory frame. In this covariant model 
 

(6a) ,)()( i
μ
i  DD  if 0  

(6b)                 ,0  otherwise 

 

 
Similar relations describe )(

μ
i N and ).(

jμ
i K However, the eigenvalues for µ = 1, 2, 3 may be nonzero (Kamal et al., 

1992a). The numbers, ),(
μ
i D ),(

μ
i N )(

jμ
i K may be considered to be free parameters representing damping coefficients, 
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natural frequencies and coupling constants, respectively. iΦ is a 14 column vector with the first entry as the only 

nonzero entry representing the electrical potential, . Using Lorentz transformation as a similarity transformation, 

with i as the transformation matrix, the four-dimensional-spacetime-vector field iΦ and the matrices ),(,)( ii  ND  

)(
j
i K assume the following form 

 

(7a) iiii ΦAΦ   

(7b)                                                
~
iΔ  )()()( iiii DD   

(7c)                                               
~
i )()()( iiii NN   

(7d)                                               ~
i )()()(

j
ii

j
i

j
i KK   

 

where  ggg~ , is the metric tensor (µ,  = 0, 1, 2, 3) with ,0,1,3,2,1;1 μν00rr  ggrg otherwise. Later 

on, equation (7e), which appears after equation (15), as well as equation (7f), which appears after equation (22), shall be 

added to this set. Equation (5), therefore, transforms as 

(8) 
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iA ’s are in fact ),(
μ
i A,A  the components of four-dimensional-spacetime-potential-vector field

b
. A dimensionless 

parameter,



scalet (the scaling parameter  is introduced to make all the elements of the covariant-state-transition 

matrix dimensionless
c
) and a set of new variables }{ kZ are defined to construct the covariant-state-transition matrix, 

.COVA The coördinates, therefore, become 
 

(9a)  ,kk AZ  if k is an odd number 

(9b) ,
d scale

1-k
k

t

dA
Z  otherwise 

In terms of ,kZ the system of equations (8) may be written as 

(10) ZA
Z

COV
dt

d
 

where  kZZ is a column vector. The covariant-state-transition matrix, ,COVA is a function of D’s, N’s, K’s and . 

New variables are defined as N , D , K . 2 The covariant-state-transition matrix, ,COVA is a linear transfor-

mation. In fact, it is a set of matrices. Different matrices could be generated by assigning different values to D’s, N’s,  K’s.  
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Each entry in this covariant-state-transition matrix, ,COVA is itself a 44 matrix. The transfer function comes out to 
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Group Structure of the Covariant Model 

Siddiqui et al. (1993) studied group structure of the covariant model by considering symmetries of the 

covariant-state-transition matrix, .COVA  The matrix is neither symmetric nor hermitian. The matrix is transformed by 

interchanging alternate columns, bringing the first in place of second and so on. By block diagonalization, a nonsingular 

matrix, A, is constructed. The determinant of A   is the negative of determinant of .AWK One notes that each term is of 

degree 2n having a degree k in powers of 2
iN and a degree )2( kn in powers of products of ,

j
iK where k takes values 

from 0 to 2n. A general determinant can be expressed as a polynomial in N’s and K’s with the coefficients K’s obtained 

by the irreducible representations of classes of the permutation group S (2n). The class containing identity can be 

recognized as the positive term .N
2
i The next term has a negative sign. The sign alternates with the classes with the 

exception that the last class, always, has negative sign. Therefore, one concludes:  

a. A nonsingular matrix, A, can, always, be constructed out of the covariant-state-transition matrix, .COVA    

b.iThe determinant does on depend on the damping coefficients, D’s. The determinant being the product of eigen-

values, these eigenvalues themselves do not depend on damping coefficients. 

The set of covariant-state-transition matrices, {A
i
}, satisfies all the conditions for forming a group under the binary 

operation of matrix multiplication: 

Closure Property — Taking 2 matrices A
1

and A
2

and examining the product A
1

A
2

one notes that the elements of 

the first row are of the form 0, 1, 0, 0, ….., 0. In the second row, there appear D’s, N’s and zeros. The third row, then, 

contain 0, 0, 0, 1, ….., 0. Since the operation of matrix multiplication retains the form of A, this set is closed under matrix 

multiplication.      
Associativity — Since A’s are mm matrices, they must satisfy the properties of matrix algebra, in particular, the 

associativity property of matrix multiplication.  

Existence of Identity — The identity is obtained by taking ,12
i N 0,i D 0.

j
i K  

Existence of Inverse — It was shown earlier that the matrix, A, is nonsingular, implying existence of inverse. The 

inverse is, also, a member of the set of nonsingular matrices constructed from the covariant-state-transition matrices, 

.COVA   
 

Mathematical Interpretation of Brain Death 

The identity of this group, obtained by taking ,12
i N 0,i D 0,

j
i K could be identified with the physiological 

state of brain death. The first condition means that there is no interaction present among the neighboring neurons. In 

other words, the neurons are decoupled. The second condition states that there is no damping present. The condition 

on
2
i gives the eigenvalues of natural frequency as .i iN  In the solution of system of equations (8), the expression 

 iiNexp with the eigenvalue of i as i does not represent a physiological situation (see the next section), whereas the 

eigenvalue i represents a decaying exponential. On the EEG this would correspond to brain death — a biological state 

manifested by absence of all muscle activity and absolute unresponsiveness to all stimuli, accompanied by an isoelectric 

electroencephalogram for 30 minutes, all in the absence of hypothermia or intoxication by central nervous system 

depressants.  
 

Physical Interpretation of Brain Death 

The rising exponential, with the eigenvalue of i as ,i cannot represent a physiological situation, as a rising 

exponential would imply that energy is supplied externally to the system, which is not possible in the situation under 

discussion. Physically, one may visualize identity of the group in the presence of a strong magnetic field. Such a 

field should decouple the neurons causing all
j
iK ’s to vanish. The neurons, then, act independently and have zero 

interaction with the neighboring neurons. For such independent oscillators Cramer’s Central Limit Theorem is not 

applicable. There’ll be no resonance and the oscillations should die out quickly as suggested by the eigenvalue i  in 

the expression  .iNexp i Damping may, also, be modeled by considering a single neuron in the temperature bath of 
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other neurons. In the absence of any nearest-neighbor interaction, one expects no damping indicated by vanishing of 

the coefficients Di’s.

 

 
 

The Generalized-Coupling Model 

In the linear model of Wright & Kydd (1984) the electrical potentials i ’s are coupled to j ’s through coupling 

parameters ).(
j
i tK However, one notes that a change in potential, ,i

i
dt

d
  induces a magnetic field because of flow of 

current. A magnetic field shall, in turn, exert Lorentz force on a charged particle and hence, in general, ,i shall 

influence .i In the covariant model (Kamal et al., 1989) the dependence of iA ’s on jA ’s was also suggested, when 2 

covariant-state-transition matrices were multiplied, which generated nonzero coefficients for iA ’s (Kamal and Siddiqui, 

1997).  

Based on the above arguments, Wright & Kydd's damped-coupled-harmonic-oscillator equations are re-written 

to include generalized coupling, which, also, depends on i ’s. 

(12)  
j

j
j
ij

j
ii

2
iiii ])()([)()(   tMtKtNtD

 

Compare this equation with equation (1). )(
j
i tM are free parameters equivalent to generalized-coupling constants, which 

have a finite variance M about a mean .M  No particular type of distribution for )(
j
i tM is assumed. All )(

j
i tM are 

stochastically independent. Hence Cramer’s Central Limit Theorem is applicable and it is justified to replace )(
j
i tM

 by .M

 

In terms of the variables defined in equations (2a, b), the system of equations (12) may be expressed as 

(13) zA
z

GC
dt

d
 

Compare this equation with equation (3). GCA is the generalized-coupling-state-transition matrix, whose elements are 

     ┌                                                      ┐ 
 

0 
 

1 0 0 0 ----------- 0 0 
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1N  1D  2

1K  
2
1M  3

1K  ----------- n
1K  

n
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0 0 1 0 ----------- 0 0 

1
2K  
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2M  
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2K  ----------- n
2K  

n
2M  
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0 0 0 0 ----------- 0 0 
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3M  2
3K  
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3N  ----------- n
3K  
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0 0 0 0 ----------- 0 0 

--------------------------------------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------------------------------------- 
1
nK  

1
nM  
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nK  

2
nM  

3
nK  ----------- 2

nN  nD  

     └                                                      ┘ 

GCA is a linear transformation and the set of all such matrices forms a group under the operation of matrix 

multiplication. The transfer function comes out to 

(14) 
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Compare this with equation (4). 

 
 

The Covariant-Generalized-Coupling Model 
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To set up a covariant formulation, one writes the electrical potential variation for a mass of unit sources coupled 

to each other in the comoving frame of signal passing through a segment of the dendritic tree as  
 

(15)   
j

j
j
ij

j
ii

2
iiii ])()([)()( ΦΦΦΦΦ   MKND  

where )(
j
i M ’s are 44 matrices having eigenvalues ).(

jμ
i M Admissible values of   are given after equation (7d). No 

particular type of distribution for )(
jμ
i M is assumed. A similarity transformation under i transforms the various 

spacetime vector fields and matrices as given in equations (7a-d). )(
j
i M ’s transform as 
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Equation (15), therefore, becomes 
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Compare equation (16) with equation (8). Introducing the generalized coördinates defined in equations (9a, b), one 

obtains an eigenvalue equation 

(17) ZA
Z

CGC
dt
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Compare this equation with equation (10). CGCA is the covariant-generalized-coupling-state-transition matrix, which is a 

function of D’s, N’s, K’s, M’s and .. If one introduces M )()(
j
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j
i   to make all the elements dimensionless, the 

covariant-generalized-coupling-state- transition matrix, ,CGCA becomes 
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CGCA is a linear transformation and the set of all such matrices forms a group under the operation of matrix 

multiplication. The transfer function comes out to 
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Compare this with equation (11). 

  

ENHANCED COUPLING IN GLOBAL-ELECTROCORTICAL ACTIVITY 
 

In the generalized-coupling model, electrical potentials are coupled to other electrical potentials and their time 

rates of change. If this rate of change is uniform, this should produce a steady state, which is exhibited during 

regular operations of the brain. However, during epileptic seizures and such other phenomena, there is an avalanche 

of electrical activity and the rate shall not be uniform. To cover this situation, the second time derivative of electrical 
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potential is included in the model and the coupling is named as enhanced coupling. The model of global-

electrocortical activity generated using this assumption is termed as the enhanced-coupling model.  
 

The Enhanced-Coupling Model 
Wright & Kydd's damped-coupled-harmonic-oscillator equations are re-written to include enhanced coupling, 

which depends on i ’s, i ’s and i ’s.  
 

(19)
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Compare equation (19) with equations (1) and (12). )(
j
i tL are free parameters equivalent to enhanced-coupling constants, 

which have a finite variance L about a mean .L  No particular type of distribution for )(
j
i tL is assumed. All )(

j
i tL are 

stochastically independent. Hence Cramer’s Central Limit Theorem is applicable and it is justified to replace )(
j
i tL by .L  

In terms of the variables defined in equations (2a, b), the system of equations (19) may be expressed as 

(20)  zA
z

EC
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Compare this equation with equations (3) and (13). GCA is the enhanced-coupling-state-transition matrix, whose 

elements are 
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ECA is a linear transformation and the set of all such matrices forms a group under the operation of matrix 

multiplication. The transfer function comes out to
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Compare this equation with equations (4) and (14).  
 

The Covariant-Enhanced-Coupling Model 

To set up a covariant formulation, one writes the electrical potential variation for a mass of unit sources coupled to 

each other in the comoving frame of signal passing through a segment of the dendritic tree as  
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L ’s are 44 matrices having eigenvalues ).(

jμ
i

L Admissible values of   are given after equation (7d). No 

particular type of distribution for )(
jμ
i

L is assumed. A similarity transformation under i transforms the various 

spacetime-vector fields and matrices as given in equations (7a-e). )(
j
i
L ’s transform as 
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(7f)   ~
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Equation (22), therefore, becomes 

(23)  
j

j
i
jj

i
jj

i
ji

2
iiii ])()()([)()( AAAAAΔA    

Compare equation (23) with equations (8) and (16). Introducing the generalized coordinates, defined in equations (9a, b), 

one obtains an eigenvalue equation 

(24) ZA
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Compare this equation with equations (10) and (17). CECA is the covariant-enhanced-coupling-state-transition matrix, 

which is a function of D’s, N’s, K’s, M’s, L’s and .. If one introduces L )()(
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j
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  to make all the elements 

dimensionless, the covariant-enhanced-coupling-state-transition matrix, ,CECA becomes 
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The transfer function comes out to
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Compare this with equations (11) and (18). 
 

Group Structure of the Covariant-Enhanced-Coupling Model 

The covariant-enhanced-coupling-state-transition matrix, ,CECA is a linear transformation. If one considers the set 

of covariant-enhanced-coupling-state-transition matrices, ,CECA one finds out that it forms a group under the binary 

operation of matrix multiplication. The group identity corresponds to the physiological state of brain death. The 

mathematical working is similar to the one presented in Siddiqui et al. (1993) — see the section ‘Group Structure of 

the Covariant Model’. 
 

Magnetobiology  

In this section, the effects of a uniform weak magnetic field extB
1610( ~ tesla) are considered. Since the ambient 

magnetic field noise is much greater than
1610 tesla, a magnetically shielded room is required to perform any measure-

ment related to these weak fields. The magnetic field, not varying with time, is generated by a vector potential such 

that extext AB  In order to calculate the shifts in frequencies based on a certain form of magnetic-vector potential, a 

magnetic field corresponding to that potential can always be determined using the above equation
d
. The four- 

dimensional-spacetime-vector-potential field is .extA In the presence of this field the natural frequencies )(
μ
i N are 
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modified to ).(
μ

i N  However, the damping coefficients and couplings of the individual iA ’s, iA ’s and iA ’s remain 

unchanged. Klitzing (1989) has shown that the effects of weak magnetic fields on the EEG of man are large enough to be 

measured. Therefore, equation (23) takes the following form in the laboratory frame 
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where .AAA extii  Since the signal velocities are very small as compared to the velocity of light, c, in free space, 
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Applying the transformation iiii N  ~
i etc. to write equation (27) in the comoving frame of the signal, one 

gets  
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Admissible values of  r are given after equation (7d). The symbol c is explained after equation (26). 

The same result was obtained in the covariant model (Kamal et al., 1992a) and the covariant-generalized-coupling 

model (Kamal and Siddiqui, 1997). One notes that all the factors related to enhanced coupling with iA and iA have 

canceled out. Therefore, it is concluded that a weak, uniform, stationary magnetic field shall give the same first-order 

shift in frequencies in the presence of enhanced coupling.  

 

DISCUSSION AND CONCLUSION 
 

Amrose Bierce, in The Devil’s Dictionary, gave the following definition of ‘mind’: 

MIND, n. — A mysterious form of matter created by the brain. Its chief activity consists in the 

endeavour to ascertain its own nature, the futility of the attempt being due to the fact that it has 

nothing but itself to know itself with. 

This is the challenge! Despite the scale and the complexity of the problem, there have been attempts to understand 

function of the mind and, eventually, the brain. To give a little idea of the complexity handled by the power of 

mathematics, in the year 1987 the author started modeling global-electrocortical activity (when he enrolled for his 

PhD in Nuerophysics) and set up the problem as an eigenvalue problem, with the covariant-state-transition matrix as 

a matrix of the order of ,1010 1616 
e
 this giant matrix could not even be read (forget about processing) by the fastest 

supercomputer available in the world at that time in Los Alamos National Laboratory, New Mexico, United States. 

Of course, the problem can be handled using cloud computing, shared memory, etc., these days. Now, we are at such 

a stage, where we can construct simple mathematical models and test their predictions, sometimes even in humans. 
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Our brains could be visualized as great supercomputers, arranging and organizing our daily activities. Neurons in a 

given layer transmit signals, as electrical impulses, to the next layer. These signals are of two types — signals, 

which activate downstream cells, are called excitatory signals; signals, which suppress their activity, are termed as 

inhibitory signals. In this paper, various models of global-electrocortical activity are described. These include 

Wright and Kydd’s linear model, the covariant model, the generalized-coupling model and the covariant-

generalized-coupling model, which are explained from the perspective of a mathematical physicist turned computer 

scientist. In this exercise, a mathematical definition of brain death has been obtained by studying the group structure 

of the covariant model. It is of interest that the first magnetoecephalogram was obtained in the Johns Hopkins 

Hospital, Baltimore, Maryland, United States, by Dr. Fowzia Siddiqui, currently working at the Aga Khan 

University Hospital, Karachi, Pakistan. The first theoretical explanation of magnetoencephalogram (the covariant 

model) was, also, given by a Johns Hopkins graduate (the author). A new model, the covariant-enhanced-coupling 

model of global-electrocortical activity, was put forward in this work, in which the electrical and the magnetic 

potentials in a synaptic connection, not only, depend on potentials from neighboring connections, but also, on the 

first and the second time derivatives of these potentials. Researcher of the future should be able to generalize this 

model to include contributions from the n
th

 derivative of the electrical and the magnetic potentials by employing 

mathematical identities. These efforts may, not only, be able to improve health care through efficient and effective 

treatment of nervous and psychiatric disorders, but also, lead us towards intelligent computing machines. The future 

of neuroscience, therefore, seems to be very promising.  

 

KEY POINTS 
  

• Global-electrocortical activity of the human brain was modeled as a system of driven harmonic oscillators; the 

equations were written in a covariant form using tensorial notation, in the commoving frame of the signal and 

transformed back to laboratory frame, which introduced magnetic fields along with electric fields. 

• Group structure of the covariant model suggested link between identity of the group and the phenomenon of 

brain death. 

• The generalized-coupling model employed generalized coupling dependent on both the electrical potentials and 

their time rates of change. 

• The enhanced-coupling model incorporated enhanced coupling dependent on the electrical potentials, their rates 

of change as well as second (time) derivatives of the electrical potentials. 

• The covariant versions of generalized-coupling and enhanced-coupling models had dependence of the magnetic 

vector potentials and their time rates of change, in addition to the electrical potentials. 

 

DEDICATION  
  

This paper is dedicated to the loving memory of my most revered teacher and mentor Professor 

Dr. S..A. (Shaikh Ansar) Husain (1933-2011). Professor Husain earned his B..Sc. from Lucknow 

University, India (1952), M..Sc. from University of Karachi (1955), another M..Sc. (1965) and Ph..D. 

(1968) from University of Alberta, Canada. His Ph..D. dissertation was entitled, ‘Sulfur Isotope 

Exchange Reactions’.  

He joined Department of Physics, University of Karachi in 1955 and retired in 1993 after 

reaching the age of superannuation (Lecturer 1955-1958; Assistant Professor 1958-1969; Associate 

Professor 1969-1979; Professor 1979-1993; Chairman during 1970s, 1980s and 1990s; Secretary, 

Affiliation Committee 1979-1987).  

A poet and a very dynamic personality, he was author of physics textbooks for Class XII and B. Sc. As a young 22-

year old faculty member, he arranged visit to Department of Physics of Nobel Laureate Arthur Holly Compton (shared 

1927 Physics Nobel Prize ‘for his discovery of the effect named after him’ with Charles Thomson Rees Wilson) during his 

stopover in Karachi in 1955. Among the many awards and honors he received, I’ll mention Gold Medal (1973), Scientist 

for 1988 (Forum of the Old Karachi University Social Students) and inclusion of name in 5000 Personalities of the World, 

the American Bibliographical Institute, 2
nd

 Edition, 1988-1989. He was President of the Karachi Physics Society and the 

Albert Einstein Society (Karachi) as well as Member of the American Physical Society, the Pakistan Association of 

Scientists and Scientific Professions and Board of Advanced Studies and Research of University of Karachi. 

Title of a paper, presented in 1986 (Siddiqui and Kamal, 1986), was taken from a lecture of the legendary professor in 

1974, when the author was a student of B..Sc. (Honors), First Year in University of Karachi. During the International 

Conference on Physics and the World of Today in the Memory of Professor Dr. Shaikh Ansar Husain held in Department 

of Physics, University of Karachi, the author delivered Professor Dr. Shaikh Ansar Husain memorial lecture (Kamal, 

2011).  
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SAK had the honor to share authorship with his beloved teacher in 7 peer-reviewed journal papers (2 of them 

Springer Nature Journals, having Thomson-Reuters Impact Factor — Kamal et al. 1989; 1992b) and 7 conference 

presentations
f
. The author had the good fortune to complete his masters’ thesis (Kamal, 1978) and doctoral dissertation 

(Kamal, 1989) under the guidance and supervision of this torchbearer of learning. 

 

ENDNOTES  

a
Equations (1) are given in Wright and Kydd (1984) as 
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 The expressions on the right-hand side of the equations (as given in paper of Wright and Kydd) 
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seem to have typos, since indices appearing as superscript (contravariant indices) are summed with indices appearing as 

subscript (covariant indices), according to the rules of tensor analysis. In this work, these equations are written in compact 

form as equations (1) using sigma notation, x’s replaced by ’s, common notation to represent electrical potentials in 

electromagnetism. In the tensorial notation, used in differential geometry, equations (1) are written in Einstein convention 

(in which sigma is avoided) as 

j
j
ii

2
iiii )()()(  tKtNtD    

In this convention, it is understood that repeated indices (also called dummy indices) denote summation. Such a 

representation is ideal for advanced computational neuroscience, where covariant models have to be developed based on 

the tensorial representation, which should be invariant under the scaled-Poincaré transformations, the most general 

coördinate transformations put forward 11-year ago (Kamal, 2009). 
b
The components of iA contain both the electric potential and the magnetic-vector potential. 

c
  has the unit of time, its value is taken as the average time of travel of a signal between two neurons. 

d
Although the EEG sources are not equivalent to isolated oscillating charges in a dielectric medium, an equivalent 

potential in four-dimensional-spacetime-vector-field formulation can be found out for the electric fields in the brain. In fact, 

EEG gives the average effect and hence the effects of interaction of an external magnetic field with this equivalent potential 

field could be computed. 
e
The average number of synaptic connections

1510 are obtained by multiplying the number of neurons
1110 with the 

connections emanating from each neuron ;104 another factor of 10 introduced because the problem was formulated in the 

commoving frame with 4 components of the generalized potential — 1 component as the electrical potential + 3 

components of the magnetic vector potential 
f
Those related to neuroscience appear in reference section of this paper (Ahmed et al., 1997; Kamal et al., 1989; 

1992a; b; Siddiqui et al., 1993); complete list is included in the memorial lecture (Kamal, 2011). 
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