POTENTIAL BIOACTIVE PHYTOCONSTITUENTS IN CARTHAMUS OXYCANTHA M. BIEB. ROOT

Arshad Javaid, Muhammad Rafiq and Amna Shoaib

Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.

*Corresponding author's email: aamnaa29@yahoo.com

ABSTRACT

Carthamus oxycantha M.Bieb. roots were extracted in methanol and GC-MS analysis showed presence of 130 natural compounds in the extract. The predominant compound was (R*,S*)-2,3-Dihydroxybutanoic acid, tris(trimethylsilyl) deriv. (73.28%) Followed by l-Isoleucine, N-trifluoro acetyl- (10.93%), 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (0.66%), Pimelic acid, 2TMS derivative (0.59%), Silane, dimethyl(4-(2-phenylprop-2-yl)phenoxy) tridecyloxy-(0.13%), 9-Hexadecenoic acid, methyl ester, (Z)- (0.12%) and 2-Keto-l-gluconic acid, Penta (O-trimethylsilyl)-(0.11%). Peak areas of remaining 123 compounds were below 0.11%. Among the compounds identified in the present study, many are known to possess antibacterial, antifungal, antioxidant, anticancer, hemolytic, anti-androgenic, hypocholesterolemic and nematicidal activities.

Keywords: Bioactive compounds, *Carthamus oxycantha*, GC-MS analysis, Methanolic extract, Root,

INTRODUCTION

Asteraceae is a large dicotyledonous family of angiosperms that includes more than 32,913 accepted plant species distributed around the world (Kew, 2018). Mostly, it includes herbs or shrubs but rarely trees or climbers (Salem *et al.*, 2014). Many plants in this family possess allelopathy and show herbicidal, antimicrobial and other bioactivities (Bashir *et al.*, 2012; Banaras *et al.*, 2017). *Carthamus oxycantha* M. Bieb, a weed, belongs to this family is found in open places and in barren lands mostly in Afghanistan, Iran, Pakistan, and Tajikistan. It is a medium sized herb with orange yellow flowers (Ravikumar *et al.*, 2007). This plant has a wide range of medicinal applications and its flowers are used to treat cerebral thrombosis, rheumatism, male infertility and bronchitis (Zick *et al.*, 2008).

C. oxycantha is being used in pharmaceutical industry to prepare medicines for the treatment of ulcer, itching and as a pain relief agent especially in case of swelling trauma. The medicines obtained from other species of genus Carthamus are traditionally used for many health problems (Hassan et al., 2010). The other member of genus such as C. tinctorius is used as anti-pyretic, purgative and for treatment of abdominal colic, asthma, bronchitis, jaundice, rheumatism (Bukhari 2013). C. lanatus is used to reduce stress and as anti-tumour agent. Some species of this genus have pharmacological properties like C. oxycantha for cholinomimetic, and C. tinctorius for antihypertensive, antioxidant, calcium antagonistic and anti-cancer activities. C. lanatus have been reported effective antibacterial, antifungal, analgesic, anti-inflammatory as well as a cytotoxic agent (Raza et al., 2015).

The chemical analysis of different parts of *C. oxycantha* i.e. leave, stem, and flowers have uncovered the presence of several bioactive compounds belonging to tinctormine, quinochalcone, and phenols (Arslan and Tarikahya, 2018). Recently, important glycosides and flavonoids have been reported which have vital biological importance (Zhou *et al.*, 2008; Jiang *et al.*, 2010). The seeds of the *C. oxycantha* are also being used for liver diseases and as antioxidant (Ellahi *et al.*, 2014; Khalil and Alahmed, 2017). Keeping in view the importance of this weed species, the current study was conducted to find out the potential bioactive compounds present in roots of *C. oxycantha* through GC-MS.

MATERIALS AND METHODS

During June 2017, plants of *C. oxycantha* were collected from Lahore Pakistan. Roots were separated, cut into small pieces, dried and crushed thoroughly. Five grams of crushed roots were soaked in 100 mL methanol for two weeks. The material was passed through filter paper and stored in a glass vial for performing GC-MS.

Analysis of GC-MS was done by following the Rafiq *et al.* (2017) procedure. Then, this extract was dried for a night in a speed Vac system as it was shifted into GC vials. Extract was passed through methoximation with methoxyamine hydrochloride for the duration of 90 minutes at 30 °C. Afterwards, the sample was passed through the process of silvation with BSTFA/TCMS (sigma) at the temperature of 60 °C for 30 minutes. It was exposed to

ARSHAD JAVAID ET AL.,

gas chromatography-mass spectrometry (GC-MS) on an Agilent 7890C gas chromatograph in tandem with a 5975C MSD. Program of GC oven initiated at 80 °C and it was done for 1 minute, then temperature was increased 15 °C per minute. Identification and quantification was done by using AMDIS by the manually curated retention indexed GC-MS Library and additional identification was carried out by using the NISt17 and Wiley 11 GC-MS spectral libraries.

RESULTS AND DISCUSSION

A total of 130 phytoconstituents were identified in methanolic root extract of *C. oxycantha* belonging to diverse groups of natural compounds. GC-MS chromatogram of the extract is shown in Fig. 1. Names of identified compounds along with their names, retention time (RT), molecular mass, molecular formula and peak area percentage are presented in Table 1. The predominant compound was (R*, S*)-2,3-Dihydroxybutanoic acid, tris(trimethylsilyl) derivative (1) with 73.28% peak area. The second most abundant constituent was 1-Isoleucine, N-trifluoro acetyl- (2) showing 10.93% peak area. Compounds 3 to 7 namely 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (3), Pimelic acid, 2TMS derivative (4), Silane, dimethyl(4-(2-phenylprop-2-yl)phenoxy)tridecyloxy- (5), 9-Hexadecenoic acid, methyl ester, (Z)- (6), and 2-Keto-1-gluconic acid, Penta (O-trimethylsilyl)- (7) were less abundant with peak areas ranging from 0.11 to 0.66. Compound 3 is also known as furaneol. For the first time, it was identified in pineapple as an aroma component. Later on, it was also identified in a number of other fruits including grape, strawberry, kiwi, raspberry, mango and tomato (Buttery *et al.*, 1995; Lavid *et al.*, 2002; Schwab, 2013). This compound is known to exhibit a number of biological activities including antioxidant (Sasaki *et al.*, 1998), antifungal and antibacterial (Sung *et al.*, 2006).

Table 1. Compounds identified from methanolic root extract of Carthamus oxycantha through GC-MS analysis.

	Names of compounds	Formula	Weight	Retention time (min)	Peak area (%)
1	(R*,S*)-2,3-Dihydroxybutanoic acid,	$C_{13}H_{32}O_4Si_3$	336.16	7.00	73.28
	tris(trimethylsilyl) deriv.				
2	l-Isoleucine, N-trifluoro acetyl-	$C_8H_{12}F_3NO_3$	227.07	6.48	10.93
3	2,5-Dimethyl-4-hydroxy-3(2H)-furanone	$C_6H_8O_3$	128.04	4.30	0.66
4	Pimelic acid, 2TMS derivative	$C_{13}H_{28}O_4Si_2$	304.15	9.09	0.59
5	Silane, dimethyl(4-(2-phenylprop-2-yl) phenoxy) tridecyloxy-	$C_{30}H_{48}O_2Si$	468.34	17.37	0.13
6	9-Hexadecenoic acid, methyl ester, (Z)-	$C_{17}H_{32}O_2$	268.24	11.27	0.12
7	2-Keto-l-gluconic acid, penta(O-trimethylsilyl)-	$C_{21}H_{50}O_{7}Si_{5}$	554.24	10.55	0.11
8	Heptadecanoic acid	$C_{17}H_{34}O_2$	270.26	12.28	0.10
9	Levoglucosenone	$C_6H_6O_3$	126.03	4.87	0.10
10	Bis(2-ethylhexyl) phthalate	$C_{24}H_{38}O_4$	390.27	15.11	0.10
11	4-Hydroxy-2,2',4',6'-tetrachlorobiphenyl, trimethylsilyl ether	$C_{15}H_{14}Cl_4OSi$	377.95	16.11	0.10
12	Benzoic acid, 4-hydroxy-3-methoxy-, methyl ester	$C_{10}H_{12}O_4$	196.07	8.47	0.10
13	Pyridine, 2-pentyl-	$C_{13}H_{13}N$	183.10	5.64	0.10
14	2-methylidene-6,10,14-trimethylpen2- methylidene-6,10,14-trimethylpentadecanoic acid silyated	$C_{22}H_{44}O_2Si$	368.31	11.72	0.10
15	5-Amino-8-hydroxyquinoline, N,O-bis(trimethylsilyl)-	$C_{15}H_{24}N_2OSi_2$	304.14	16.35	0.10
16	3-Vanilpropanol, bis(trimethylsilyl)-	$C_{16}H_{30}O_{3}Si_{2}$	326.17	10.74	0.10
17	Pentadecanoic acid	$C_{15}H_{30}O_2$	242.22	10.94	0.10
18	Azelaic acid	$C_9H_{16}O_4$	188.10	9.34	0.10
19	9-Octadecenamide, (Z)-	$C_{18}H_{35}NO$	281.27	14.10	0.10
20	N,N-Bis(2-hydroxyethyl)-p-toluidine	$C_{11}H_{17}NO_2$	195.12	14.38	0.10
21	9-Octadecenoic acid, (E)-, TMS derivative	$C_{21}H_{42}O_2Si$	354.29	13.26	0.10
22	2,3-Butanediol, 2TMS derivative	$C_{10}H_{26}O_{2}Si_{2}$	234.14	4.08	0.10
23	DL-Glyceraldehyde, tris(trimethylsilyl) ether	$C_{12}H_{30}O_3Si_3$	306.15	9.71	0.10

24 Benzoic acid, 34-bis[(trimethylsily]oxy]-, trimethylsily] ester C ₁₀ H ₃₀ Q ₁ 314.24 12.95 0.10						
25 Decamedioic acid, dibutyl ester C ₂₀ H ₃₁ O ₄ PSi ₅ 590.21 14.69 0.10	24		$C_{14}H_{24}O_4Si_2$	312.12	10.76	0.10
DeRibofuranose, 23.5-fris-O- (trimethylsilyl), bis(trimethylsilyl) phosphate (trimethylsilyl) phosph	25		CILO	214.24	12.05	0.10
(trimethylsily), bis(trimethylsily) phosphate 27 Dodecanoic acid 28 2-Furoic acid, TMS derivative 29 Malic acid 1-ethyl ester, 2TMS 20 Malic acid 1-ethyl ester, 2TMS 21 Malic acid 1-ethyl ester, 2TMS 22 Malic acid 1-ethyl ester, 2TMS 23 Octadecanoic acid, 3-trimethylsilyloxy, 24 C ₁₂ H ₂₃ O ₅ Si ₂ 306.13 25 Octadecanoic acid, butyl ester 27 CapHa ₁₀ O ₅ Si ₂ 276.15 28 Cottadecanoic acid, butyl ester 29 CapHa ₁ O ₂ Si ₂ 340.33 20 Catadecanoic acid, methyl ester, (Z)- 20 CapHa ₁₀ O ₃ 340.33 21 3-Docosenoic acid, methyl ester, (Z)- 21 40 CapHa ₁₀ O ₃ 352.33 23 Catadecanoic acid, methyl ester, (Z)- 22 CapHa ₂ O ₃ 352.33 23 Catadecanoic acid, TMS derivative 23 CapHa ₂ O ₃ 352.33 24 CapHa ₂ O ₃ 352.33 25 CapHa ₂ O ₃ 352.33 26 CapHa ₂ O ₃ 352.33 27 CapHa ₂ O ₃ 352.33 28 CapHa ₂ O ₃ 352.33 29 CapHa ₂ O ₃ 352.33 20 CapHa ₂ O ₃ 352.33 20 CapHa ₂ O ₃ 352.26 20 CapHa ₂ O ₃ 352.23 20 CapHa ₂ O ₃ 352.25 20 CapHa ₂ O ₃ 322.11 20 CapHa ₂ O ₃ 322.12 20 CapHa ₂ O ₃ 322.23 20 CapHa ₂ O ₃ 322.23 20 CapHa ₂ O ₃						
27 Dodecanoic acid C ₁₃ H ₂ O ₅ 20.017 8.72 0.10 28 2-Froit acid, TMS derivative C ₂ H ₂ O ₅ Si ₃ 1306.13 8.214 0.10 29 Malic acid 1-ethyl ester, 2TMS C ₁₂ H ₂₀ O ₅ Si ₂ 276.15 6.59 0.10 30 Hexanoic acid, 3-trimethylsilyloxy, trimethylsilyl ester C ₂₀ H ₄₀ O 296.31 12.65 0.10 31 Phytol C ₂₀ H ₄₀ O 340.33 14.20 0.10 33 13-Docosenoic acid, methyl ester, (Z)- C ₂₁ H ₄₀ O ₂ 340.33 14.20 0.10 34 Octadecane C ₁₁ H ₂₈ O ₅ Si 254.30 10.52 0.10 35 L-Valine, 2TMS derivative C ₁₂ H ₂₀ O ₅ Si 282.11 8.42 0.10 36 o-Linolenic acid, 2TMS derivative C ₁₂ H ₂₀ O ₅ Si 282.11 8.42 0.10 37 Salicylic acid C2H ₂₀ O ₅ Si 282.1 8.42 0.10 38 Methyl 3-(3-4 bis (trimethylsityl)) xyl- butyl ester C ₁₂ H ₂₀ O ₅ Si 298.29 12.69 0.10	20	(trimethylsilyl)-, bis(trimethylsilyl)	$C_{20}\Pi_{51}O_8\Gamma SI_5$	390.21	14.09	0.10
28	27		СПО	200.17	9 72	0.10
Malic acid Lethyl ester, ZTMS C1H ₂ O ₂ Si ₂ 276.15 6.59 0.10						
Hexanoic acid, 3-trimethylsilyloxy, trimethylsilyl ester C ₁₂ H ₂₀ O ₃ Si ₂ 276.15 6.59 0.10						
trimethylsilyl ester 1 Phytol						
20 20 20 20 20 20 31 12 20 20 20 20 31 12 20 20 20 31 32 20 20 20 20 31 33 31 32 20 20 20 20 31 33 31 32 20 20 20 20 20 20 20	30		$C_{12} C_{12} C_{3} C_{12}$	270.13	0.39	0.10
32	31		СНО	206.31	12.65	0.10
33 13-Docosenoic acid, methyl ester, (Z)- C ₂₃ H ₄ O ₂ 352.33 14.84 0.10						
Octadecane						
35 L-Valine, ZTMS derivative C ₁₁ H ₂₇ NO ₅ Si ₂ 261.15 5.75 0.10 36 α-Linolenic acid, TMS derivative C ₁₃ H ₃₆ O ₅ Si 350.26 13.27 0.10 37 Salicylic acid, ZTMS derivative C ₁₃ H ₂₂ O ₅ Si ₂ 282.11 8.42 0.10 38 Methyl 3-(3,4-bis (tert butyldimethylsilyl) C ₂₂ H ₃₈ O ₄ Si ₂ 422.23 13.80 0.10 39 Methyl stearate C ₁₉ H ₃₈ O ₂ 298.29 12.69 0.10 40 Butane, 1,1-dibutoxy C ₁₂ H ₃₆ O ₂ 202.19 6.06 0.10 41 Butane, 1,1-dibutoxy C ₁₂ H ₃₆ O ₂ 202.19 6.06 0.10 42 Hexadecanoic acid, 4-{(trimethylsilyl) oxyl C ₂₃ H ₃₆ O ₅ Si ₂ 298.14 9.41 0.10 43 Vanillyl alcohol, ZTMS derivative C ₁₄ H ₂₆ O ₅ Si ₂ 281.12 9.31 0.10 44 Benzoic acid, 4-{(trimethylsilyl)oxyl-, C ₁₃ H ₂₃ NO ₅ Si ₂ 281.12 9.31 0.10 45 Salicylic acid C ₇ H ₆ O ₃ 138.03 6.61 0.10 46 Isopropyl myristate C ₁₇ H ₂₆ O ₃ 302.18 14.55 0.10 47 Androst-4-ene-3,17-dione, 15-hydroxy-, C ₁₉ H ₂₆ O ₃ 302.18 14.55 0.10 48 Butanoic acid, 3,4-bis[(trimethylsilyl)oxyl-, trimethylsilyl ester 49 Octahydro-1H-cyclopenta[b]pyridin-4-ol C ₂₈ H ₁₂ O ₂ 282.26 11.85 0.10 49 Octahydro-1H-cyclopenta[b]pyridin-4-ol C ₂₈ H ₃₀ O 141.12 4.26 0.10 50 Eicosane C ₁₈ H ₃₀ O ₂ 282.26 11.85 0.10 51 L-Proline, 5-oxo-1-(trimethylsilyl)-deriv. C ₁₈ H ₃₀ O ₂ 282.26 11.85 0.10 52 Acetoacetic acid, bis(trimethylsilyl)- deriv. C ₁₈ H ₃₀ O ₃ Si ₂ 290.17 7.11 0.10 53 Theyrole-2,5-dione, 3-ethyl-4-methyl- C ₁₈ H ₃₀ O ₃ Si ₂ 290.17 7.11 0.10 54 L-Proline, 5-oxo-1-(trimethylsilyl)- deriv. C ₁₈ H ₃₀ O ₃ Si ₂ 290.17 7.11 0.10 55 Trimethylsilyl ester C ₁₈ H ₃₀ O ₃ Si ₂ 304.18 8.05 0.10 66 2-Aminoethanol, N-acetyl-, O-TMS C ₁₄ H ₃₂ O ₃ Si ₂ 304.18 8.05 0.10 67 Ty-Di-tier-tbuyl-1-caspin(4,5)deca-6,9- C ₁₂ H ₃₆ O ₄ Si ₂ 290.27 12.55 0.10 68 9-Octadecenoic acid, methyl ester C ₁₁ H ₂₆ O ₄ Si ₂ 296.27 12.55 0.10						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
Salicylic acid, ZTMS derivative						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c} \text{oxyphenyl) prop-2-enoate} \\ \textbf{39} \text{Methyl stearate} \\ \textbf{40} \text{Butane, } 1,1-\text{dibutoxy-} \\ \textbf{21} \text{Hexadecanoic acid, } 4-[(\text{trimethylsilyl}) \text{oxy}] \\ \textbf{22} \text{Hexadecanoic acid, } 4-[(\text{trimethylsilyl}) \text{oxy}] \\ \textbf{23} \text{Hexadecanoic acid, } 4-[(\text{trimethylsilyl}) \text{oxy}] \\ \textbf{24} \text{Hexadecanoic acid, } 4-[(\text{trimethylsilyl}) \text{oxy}] \\ \textbf{25} \text{C}_{13} \text{H}_{23} \text{NO}_{3} \text{Si}_{2} \\ \textbf{298.} 14 \\ \textbf{40.} \textbf{33} \textbf{15.87} \\ \textbf{50.} \textbf{10} \\ \textbf{44} \text{Benzoic acid, } 4-[(\text{trimethylsilyl}) \text{oxy}] \\ \textbf{47} \text{Androst-} 4-\text{lencylingly} \text{ester} \\ \textbf{45} \text{Salicylic acid} \\ \textbf{46} \text{Isopropyl myristate} \\ \textbf{47} \text{Androst-} 4-\text{ene-} 3,17-\text{dione, } 15-\text{hydroxy-}, \\ \textbf{21} \text{C}_{13} \text{H}_{23} \text{NO}_{2} \text{Si}_{2} \\ \textbf{270.} 26 \\ \textbf{270.} 26 \\ \textbf{10.} 10 \\ \textbf{10.} \\ \textbf{10} \\ \textbf{47} \text{Androst-} 4-\text{ene-} 3,17-\text{dione, } 15-\text{hydroxy-}, \\ \textbf{C}_{19} \text{H}_{20} \text{O_{3}} \\ \textbf{302.} 18 \\ \textbf{14.} & \textbf{14.} \\ \textbf{50} \text{ciosanic acid, } 3,4-\text{bis}[(\text{trimethylsilyl}) \text{oxyl-}, \\ \textbf{crimethylsilyl ester} \\ \textbf{49} \text{Octahydro-1H-cyclopenta[b]pyridin-4-ol} \\ \textbf{C}_{18} \text{H}_{32} \text{O}_{42} \\ \textbf{282.} \\ \textbf{33} \textbf{31.} \\ \textbf{80} \textbf{0.} \\ \textbf{10} \textbf{10} \\ \textbf{50} \text{Eicosane} \\ \textbf{C}_{19} \text{H}_{32} \text{O}_{2} \\ \textbf{282.} \\ \textbf{282.} \\ \textbf{33} \textbf{11.} \\ \textbf{89} \textbf{0.} \\ \textbf{10} \\ \textbf{10} \textbf{14.} \\ \textbf{1.2} \textbf{4.} \\ \textbf{26} \textbf{0.} \\ \textbf{10} \\ \textbf{52} \text{Acetoacetic acid, bis(trimethylsilyl)- ceriv.} \\ \textbf{C}_{18} \text{H}_{32} \text{O}_{2} \\ \textbf{282.} \\ \textbf{282.} \\ \textbf{33} \textbf{11.} \\ \textbf{80} \textbf{10} \\ \textbf{10} \\ \textbf{11.} \\ \textbf{11.} \\ \textbf{11.} \\ \textbf{12.} \textbf{20.} \\ \textbf{11.} \\ \textbf{13.} \\ \textbf{0.} \textbf{10} \\ \textbf{10.} \\ \textbf{11.} \\ \textbf$						
Methyl stearate	38		$C_{22}\Pi_{38}O_4SI_2$	422.23	13.80	0.10
### Butane, 1,1-dibutoxy- ### Lexadecanoic acid, 4-[(trimethylsilyl) oxy] ### butyl ester ### Salicylic acid ### Buzonic acid, 4-[(trimethylsilyl) oxy]- ### salicylic acid ### Benzoic acid, 4-[(trimethylsilyl)oxy]-, C13H23NO2Si2 298.14 9.41 0.10 ### Benzoic acid, 4-[(trimethylsilyl)oxy]-, C13H23NO2Si2 288.12 9.31 0.10 ### Duzonic acid, 4-[(trimethylsilyl)oxy]-, C13H23NO2Si2 288.12 9.31 0.10 ### salicylic acid ### salicylic aci	39		$C_{19}H_{38}O_2$	298.29	12.69	0.10
Hexadecanoic acid, 4-[(trimethylsilyl) oxy] C ₂₃ H ₄₈ O ₃ Si 400.33 15.87 0.10 buryl ester 43 Vanillyl alcohol, 2TMS derivative C ₁₄ H ₂₆ O ₃ Si ₂ 298.14 9.41 0.10 trimethylsilyl ester 45 Salicylic acid C ₁₇ H ₂₃ NO ₂ Si ₂ 281.12 9.31 0.10 trimethylsilyl ester 45 Salicylic acid C ₁₇ H ₃₄ O ₂ 270.26 10.71 0.10 46 Isopropyl myristate C ₁₇ H ₃₄ O ₂ 270.26 10.71 0.10 10.00 1				202.19	6.06	0.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42			400.33	15.87	0.10
### Benzoic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester ### Salicylic acid ### C ₁₇ H ₃₀ O ₂ ### Salicylic acid ### C ₁₇ H ₃₀ O ₂ ### Salicylic acid ### C ₁₇ H ₃₀ O ₂ ### Salicylic acid ### C ₁₇ H ₃₀ O ₂ ### Salicylic acid ### C ₁₇ H ₃₀ O ₂ ### Salicylic acid ### C ₁₇ H ₃₀ O ₃ ### Salicylic acid		butyl ester	23 10 3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
45 Salicylic acid 46 Isopropyl myristate 47 Androst-4-ene-3,17-dione, 15-hydroxy-, (15α)- 48 Butanoic acid, 3,4-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester 49 Octahydro-1H-cyclopenta[b]pyridin-4-ol 50 Eicosane 51 Hexadecanoic acid, ethyl ester 52 Actoacetic acid, bis(trimethylsilyl)-, 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- 53 IH-Pyrrole-2,5-dione, 3-ethyl-4-methyl- 54 L-Proline, 5-oxo-1-(trimethylsilyl)-, 55 z-Trimethylsilyl ester 56 Dodecane 57 Cyclononasiloxane, octadecamethyl- 58 Cyclononasiloxane, octadecamethyl- 59 Fructofuranoside, methyl 1,3,4,6-tetrakis-O- (trimethylsilyl)-, alpha-D- 59 3-Trimethylsilyl ester 60 2-Aminoethanol, N-acetyl-, O-TMS 61 1-Hexacosene 62 Chondrillasterol 63 Galactopyranose, 5TMS derivative 64 C ₁₉ H ₃ O ₆ Si ₂ C ₂₉ H ₃ O ₆ Si ₅ C ₂₉ H ₃ O ₆ Si ₅ C ₂₉ H ₄ O ₆ C C ₁₉ H ₂ O ₆ Si ₂ C ₂₉ H ₃ O ₆ Si ₅ C ₂₀ H ₄ C C ₁₉ H ₂ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₉ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₂ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₃ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₃ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ Si ₃ C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O ₆ C C ₂₀ H ₅ C C ₁₀ H ₃ O C ₂₀ C C ₁₀	44		$C_{13}H_{23}NO_2Si_2$	281.12	9.31	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45		CHO	120.02	6.61	0.10
47 Androst-4-ene-3,17-dione, 15-hydroxy-, (15α)- (15α)- 48 Butanoic acid, 3,4-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester 49 Octahydro-1H-cyclopenta[b]pyridin-4-ol 50 Eicosane						
(15α)- 48 Butanoic acid, 3,4-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester 49 Octahydro-1H-cyclopenta[b]pyridin-4-ol 50 Eicosane C ₂₀ H ₄₂ C ₁₈ H ₃₀ O ₂ C ₁₈ H ₃₀ O ₂ C ₁₈ H ₃₀ O ₂ C ₂₀ H ₄₂ C ₂₈ C ₃₃ C _{11.85} C ₁₀ C ₁₈ H ₃₀ O ₂ C ₁₈ C _{46.11} C ₁₈ H ₃₀ O ₃ C ₁₀ C ₁₀ H ₂₀ O _{35i2} C ₁₀ C ₁₁ C ₁₁ H ₂₃ NO ₃ Si2 C ₁₁ C ₁₁ H ₂₃ NO ₃ Si2 C ₁₁ C ₁₁ H ₂₃ NO ₃ Si2 C ₁₁ C ₁₁ H ₂₃ NO ₃ Si2 C ₁₁ C ₁₂ H ₂₆ C ₁₂ H ₂₆ C ₁₂ H ₂₆ C ₁₃ H ₃₀ O ₃ Si2 C ₁₁ C ₁₁ H ₂₃ NO ₃ Si2 C ₁₁ C ₁₁ H ₂₃ NO ₃ Si2 C ₁₁ C ₁₁ C ₁₂						
48 Butanoic acid, 3,4-bis[(trimethylsilyl)oxy]-, trimethylsilyl ester C ₁₃ H ₁₂ O ₄ Si ₃ 336.16 7.72 0.10 trimethylsilyl ester 49 Octahydro-1H-cyclopenta[b]pyridin-4-ol C ₈ H ₁₅ NO 141.12 4.26 0.10 50 Eicosane C ₂₀ H ₄₂ 282.33 11.88 0.10 51 Hexadecanoic acid, ethyl ester C ₁₈ H ₃₄ O ₂ 282.26 11.85 0.10 52 Acetoacetic acid, bis(trimethylsilyl)- deriv. C ₁₀ H ₂₂ O ₃ Si ₂ 246.11 6.18 0.10 53 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- C ₇ H ₇ NO ₂ 137.05 5.90 0.10 54 L-Proline, 5-oxo-1-(trimethylsilyl)-, C ₁₁ H ₂₃ NO ₃ Si ₂ 273.12 8.51 0.10 55 2-Trimethylsilyloxyheptanoic acid, C ₁₃ H ₃₀ O ₃ Si ₂ 290.17 7.11 0.10 56 Dodecane C ₁₂ H ₂₆ 170.20 5.55 0.10 57 Cyclononasiloxane, octadecamethyl- C ₁₈ H ₃₆ O ₉ Si ₉ 666.16 10.71 0.10 59 3-Trimethylsilyloxale, enthyl 1,3,4,6-tetrakis-O-	47		$C_{19}H_{26}O_3$	302.18	14.55	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	Butanoic acid, 3,4-bis[(trimethylsilyl)oxy]-,	$C_{13}H_{32}O_4Si_3$	336.16	7.72	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40		C-HNO	141 12	4.26	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
53 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- C ₇ H ₇ NO ₂ 137.05 5.90 0.10 54 L-Proline, 5-oxo-1-(trimethylsilyl)-, trimethylsilyl ester C ₁₁ H ₂₃ NO ₃ Si ₂ 273.12 8.51 0.10 55 2-Trimethylsilyloxyheptanoic acid, trimethylsilyl ester C ₁₃ H ₃₀ O ₃ Si ₂ 290.17 7.11 0.10 56 Dodecane C ₁₂ H ₂₆ 170.20 5.55 0.10 57 Cyclononasiloxane, octadecamethyl- C ₁₈ H ₃₆ O ₉ Si ₉ 666.16 10.71 0.10 59 Fructofuranoside, methyl 1,3,4,6-tetrakis-O- (trimethylsilyl)-, alphaD- C ₁₉ H ₄₆ O ₆ Si ₄ 482.23 10.55 0.10 59 3-Trimethylsiloxyoctanoic acid, trimethylsilyl ester C ₁₄ H ₃₂ O ₃ Si ₂ 304.18 8.05 0.10 60 2-Aminoethanol, N-acetyl-, O-TMS C ₇ H ₁₇ NO ₂ Si 175.10 5.64 0.10 61 1-Hexacosene C ₂₆ H ₅₂ 364.41 13.09 0.10 62 Chondrillasterol C ₂₉ H ₄₈ O 412.37 19.41 0.10 63 Galactopyranose, 5TMS derivative						
 L-Proline, 5-oxo-1-(trimethylsilyl)-, trimethylsilyl ester 2-Trimethylsilyl ester 2-Trimethylsilyloxyheptanoic acid, trimethylsilyl ester Dodecane C₁₂H₂₆ 170.20 5.55 0.10 Cyclononasiloxane, octadecamethyl- C₁₈H₅₄O₉Si₉ 666.16 10.71 0.10 Fructofuranoside, methyl 1,3,4,6-tetrakis-O- (trimethylsilyl)-, alphaD- 3-Trimethylsiloxyoctanoic acid, trimethylsilyl ester 2-Aminoethanol, N-acetyl-, O-TMS C₁₄H₃₂O₃Si₂ 304.18 8.05 0.10 trimethylsilyl ester C₁₆H₅₂ 364.41 13.09 1-Hexacosene C₂₆H₅₂ 364.41 13.09 0.10 Chondrillasterol C₂₉H₄₈O 412.37 19.41 0.10 Galactopyranose, 5TMS derivative C₂₁H₃₂O₆Si₅ 540.26 17.97 0.10 9-Octadecenoic acid, methyl ester, (E)- C₁₉H₃₆O₂ 296.27 12.55 0.10 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9- C₁₇H₂₄O₃ 276.17 11.47 0.10 9-Octadecenoic acid (Z)-, 2,3- bis[(trimethylsilyl)oxylpropyl ester 						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		trimethylsilyl ester				
56 Dodecane C₁₂H₂₆ 170.20 5.55 0.10 57 Cyclononasiloxane, octadecamethyl- C₁ଃH₂₆ฝ匁Si₃ 666.16 10.71 0.10 59 Fructofuranoside, methyl 1,3,4,6-tetrakis-O- (trimethylsilyl)-, .alphaD- C₁ցH₄₆O₆Si₄ 482.23 10.55 0.10 59 3-Trimethylsiloxyoctanoic acid, trimethylsilyl ester C₁₄H₃₂O₃Si₂ 304.18 8.05 0.10 60 2-Aminoethanol, N-acetyl-, O-TMS C₁H₁¬NO₂Si 175.10 5.64 0.10 61 1-Hexacosene C₂₆H₅₂ 364.41 13.09 0.10 62 Chondrillasterol C₂₆H₃₂ 364.41 13.09 0.10 63 Galactopyranose, 5TMS derivative C₂₁H₃₂O₆Si₂ 540.26 17.97 0.10 64 9-Octadecenoic acid, methyl ester, (E)- C₁gH₃₃O₂ 296.27 12.55 0.10 65 2-Methylpentacosane C₂₆H₃₄ 366.42 14.31 0.10 66 2-Ethylhexanol, TMS derivative C₁₁H₂₀OSi 202.17 4.66 0.10 <th< th=""><th>33</th><th></th><th>$C_{13}\Pi_{30}O_3SI_2$</th><th>290.17</th><th>7.11</th><th>0.10</th></th<>	33		$C_{13}\Pi_{30}O_3SI_2$	290.17	7.11	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56		CuHar	170.20	5 55	0.10
 Fructofuranoside, methyl 1,3,4,6-tetrakis-O- (trimethylsilyl)-, alphaD- 3-Trimethylsiloxyoctanoic acid, trimethylsilyl ester 2-Aminoethanol, N-acetyl-, O-TMS C₁H₁₇NO₂Si 175.10 64 1-Hexacosene C₂₆H₅₂ 364.41 13.09 0.10 Chondrillasterol C₂₉H₄₈O 412.37 19.41 0.10 Galactopyranose, 5TMS derivative C₂₁H₅₂O₆Si₅ 540.26 17.97 0.10 9-Octadecenoic acid, methyl ester, (E)- C₁₉H₃₆O₂ 296.27 12.55 0.10 2-Ethylhexanol, TMS derivative C₁₁H₂₆OSi 202.17 4.66 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9- diene-2,8-dione 9-Octadecenoic acid (Z)-, 2,3- bis[(trimethylsilyl)oxy]propyl ester C₁₇H₂₆O₈Si₂ 500.37 16.14 0.10 						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3)		C191146O6S14	402.23	10.55	0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59		C14H32O3Si2	304.18	8.05	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			11 32 3 2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	2-Aminoethanol, N-acetyl-, O-TMS	C ₇ H ₁₇ NO ₂ Si	175.10	5.64	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61	1-Hexacosene	$C_{26}H_{52}$	364.41	13.09	0.10
64 9-Octadecenoic acid, methyl ester, (E)- C ₁₉ H ₃₆ O ₂ 296.27 12.55 0.10 65 2-Methylpentacosane C ₂₆ H ₅₄ 366.42 14.31 0.10 66 2-Ethylhexanol, TMS derivative C ₁₁ H ₂₆ OSi 202.17 4.66 0.10 67 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9- C ₁₇ H ₂₄ O ₃ 276.17 11.47 0.10 diene-2,8-dione C ₂₇ H ₅₆ O ₄ Si ₂ 500.37 16.14 0.10 bis[(trimethylsilyl)oxy]propyl ester	62	Chondrillasterol	$C_{29}H_{48}O$	412.37	19.41	0.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63	Galactopyranose, 5TMS derivative	$C_{21}H_{52}O_6Si_5$	540.26	17.97	0.10
 2-Ethylhexanol, TMS derivative C₁₁H₂₆OSi 202.17 4.66 0.10 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9- C₁₇H₂₄O₃ 276.17 11.47 0.10 diene-2,8-dione 9-Octadecenoic acid (Z)-, 2,3- C₂₇H₅₆O₄Si₂ 500.37 16.14 0.10 bis[(trimethylsilyl)oxy]propyl ester 	64	9-Octadecenoic acid, methyl ester, (E)-	$C_{19}H_{36}O_2$	296.27	12.55	0.10
 67 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-	65	2-Methylpentacosane	$C_{26}H_{54}$	366.42	14.31	0.10
 67 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-	66			202.17	4.66	0.10
68 9-Octadecenoic acid (Z)-, 2,3- $C_{27}H_{56}O_4Si_2$ 500.37 16.14 0.10 bis[(trimethylsilyl)oxy]propyl ester	67	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-		276.17		
bis[(trimethylsilyl)oxy]propyl ester						
	68		$C_{27}H_{56}O_4Si_2$	500.37	16.14	0.10
69 1-Monopalmitin, 21MS derivative $C_{25}H_{54}O_4S1_2$ 4/4.35 15.29 0.10	(0		O 11 O 0.	474.25	15.20	0.10
	69	1-Monopalmitin, 2TMS derivative	$C_{25}H_{54}O_4S_{12}$	474.35	15.29	0.10

70	Squalene	$C_{30}H_{50}$	410.39	16.48	0.10
	1H-Indole-2-carboxylic acid, 1-	$C_{18}H_{31}NO_3Si_3$	393.16	11.54	0.10
71	(trimethylsilyl)-5-[(trimethylsilyl)oxy]-,				
	trimethylsilyl ester				
72	Bohlmann k2631	$C_{15}H_{20}O_2$	232.14	11.92	0.10
73	Hydracrylic acid, 2TMS derivative	$C_9H_{22}O_3Si_2$	234.11	5.02	0.10
74	cis-13-Eicosenoic acid, methyl ester	$C_{21}H_{40}O_2$	324.30	13.75	0.10
75	Pentadecanoic acid, methyl ester	$C_{16}H_{32}O_2$	256.24	10.71	0.10
76	cis-12-Octadecenoic acid methyl ester	$C_{19}H_{36}O_2$	296.27	12.55	0.10
77	1-Hexadecene	$C_{16}H_{32}$	224.25	8.98	0.10
78	Traumatic acid, (E)-, 2TMS derivative	$C_{18}H_{36}O_4Si_2$	372.21	12.39	0.10
79	4-Methoxybenzyl alcohol, TMS derivative	$C_{11}H_{18}O_2Si$	210.10	7.42	0.10
80	D-Fructose, 5TMS derivative	$C_{21}H_{52}O_6Si_5$	540.26	6.71	0.10
81	5-O-Coumaroyl-D-quinic acid, 5TMS	$C_{31}H_{58}O_8Si_5$	698.29	17.32	0.10
82	1H-Indole, 1-(trimethysilyl)-2,5-	$C_{17}H_{31}NO_2Si_3$	365.16	10.94	0.10
02	bis[(trimethylsilyl)oxy]-	01/21311102013	202.10	10.5	0.10
83	Tetradecanoic acid	C14H28O2	228.21	10.24	0.10
84		C14H28O2 C19H32O3	308.24	6.00	0.10
84 85	3-(1-ethoxyethoxy)-1-phenyl-6-heptene		612.30	11.83	0.10
85	1,2,3,4,5,6-Hexa-O-trimethelsilyl-myo- inositol	$C_{24}H_{60}O_6Si_6$	012.30	11.65	0.10
86	8a-Methyl-3,5-	$C_{15}H_{20}O_2$	232.14	11.79	0.10
	dimethylenedecahydronaphtho[2,3-b]furan-	10 20 2			
	2(3H)-one				
87	n-Tetracosanol-1	$C_{24}H_{50}O$	354.38	14.23	0.10
88	Phenylethyl Alcohol, TMS derivative	$C_{11}H_{18}OSi$	194.11	5.87	0.10
89	Eicosanoic acid, methyl ester			13.86	
		$C_{21}H_{42}O_2$	326.31		0.10
90	Monomethyl succinate, trimethylsilyl ester	$C_8H_{16}O_4Si$	204.08	5.35	0.10
91	3-Hydroxy-2,3-dihydromaltol, 2-O-TMS	$C_{12}H_{24}O_4Si_2$	288.12	7.89	0.10
92	Phosphoric acid, dioctadecyl ester	$C_{18}H_{39}O_4P$	350.26	13.01	0.10
93	cis-13-Octadecenoic acid	C18H34O2	282.26	12.78	0.10
94	5-Hydroxymethylfurfural	C6H6O3	126.03	5.96	0.10
95	Benzeneacetamide, TMS derivative	$C_{11}H_{17}NOSi$	207.10	7.95	0.10
96	Xylonic acid, 2,3,4-tris-O-(trimethylsilyl)-, .	$C_{14}H_{32}O_5Si_3$	364.15	9.42	0.10
, ,	δ lactone, D-	- 1432 - 33			
97	Vitispirane	$C_{13}H_{20}O$	192.15	6.40	0.10
98	Hexacosane	$C_{26}H_{54}$	366.42	13.76	0.10
99	Glycerol, 1,2-di (TMS)-	$C_9H_{24}O_3Si_2$	236.12	5.55	0.10
100		$C_7H_{21}O_4PSi_2$	256.07	5.42	0.10
100	Phosphoric acid,	C ₇ 11 ₂₁ O ₄ 1 S1 ₂	230.07	3.42	0.10
101	bis(trimethylsilyl)monomethyl ester	CHN	240.15	10.05	0.10
101	5-Propyl-10,11-dihydro-5H-dibenzo [a, d]	$C_{18}H_{19}N$	249.15	12.85	0.10
	cyclohepten-5,10-imine hydrochloride				
102	Picoxystrobin	$C_{18}H_{16}F_3NO_4$	367.10	12.96	0.10
103	Methyl tetradecanoate	$C_{15}H_{30}O_2$	242.22	9.99	0.10
104	Hexadecanoic acid, butyl ester	$C_{20}H_{40}O_2$	312.30	13.05	0.10
105	Hexadecanoic acid, methyl ester	$C_{17}H_{34}O_2$	270.26	11.40	0.10
106	Oleic acid, butyl ester	$C_{22}H_{42}O_2$	338.31	13.83	0.10
107	Pantothenic acid tritms	$C_{18}H_{41}NO_5Si_3$	435.22	11.97	0.10
108	Heptadecane, 3-methyl-	$C_{18}H_{38}$	254.30	10.32	0.10
109	L-Valine, TMS derivative	$C_8H_{19}NO_2Si$	189.11	4.53	0.10
110	Benzeneacetic acid	$C_8H_8O_2$	136.05	6.07	0.10
111	Heneicosanoic acid, methyl ester	$C_{8}H_{8}O_{2}$ $C_{22}H_{44}O_{2}$	340.33	14.41	0.10
112	D-Glucose, 2,3,4,5,6-pentakis-O-	$C_{22}H_{55}NO_6Si_5$	569.28	11.42	0.10
112	(trimethylsilyl)-, O-methyloxime	С. И МО	285 14	16.99	0.10
113	Piperine	$C_{17}H_{19}NO_3$	285.14		
114	2,4-Thiazolidinedione	$C_3H_3NO_2S$	116.99	5.06	0.10
115	2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-	$C_{14}H_{20}O_2$	196.07	8.08	0.10
117	dimethylethyl)-	CHOC.	210.14	10.22	0.10
116	Phloretic acid, 2TMS derivative	$C_{15}H_{26}O_{3}Si_{2}$	310.14	10.32	0.10

117	Piperidine, 1-[5-(1,3-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]-, (Z, Z)-	$C_{17}H_{19}NO_3$	285.13	16.19	0.10
118	Octadecanoic acid	$C_{18}H_{36}O_2$	284.27	12.90	0.10
119	2,2'-Bipyridine	$C_{10}H_8N_2$	156.07	7.89	0.10
120	n-Hexadecanoic acid	$C_{16}H_{32}O_2$	256.24	11.65	0.10
121	Benzoic acid, 3,4,5-tris (trimethylsiloxy)-, trimethylsilyl ester	$C_{19}H_{38}O_5Si_4$	458.17	11.73	0.10
122	Docosanoic acid, methyl ester	$C_{23}H_{46}O_2$	354.35	14.95	0.10
123	Xylitol, 5TMS derivative	$C_{20}H_{52}O_{5}Si_{5}$	512.26	10.07	0.10
124	Phenol, 4-ethenyl-2,6-dimethoxy-	$C_{10}H_{12}O_3$	180.08	8.85	0.10
125	Octacosane	$C_{28}H_{58}$	394.45	16.28	0.10
126	2-O-Glycerolalphad-galactopyranoside, hexa-TMS	$C_{27}H_{66}O_{8}Si_{6}$	686.33	13.99	0.10
127	Benzene, [(3-butynyloxy) methyl]-	$C_{11}H_{12}O$	160.09	17.08	0.10
128	γ-Sitosterol	$C_{29}H_{50}O$	414.39	19.41	0.10
129	Triethylene glycol, 2TMS derivative	$C_{12}H_{30}O_4Si_2$	294.16	8.30	0.10
130	Benzyl alcohol, TMS derivative	$C_{10}H_{16}OSi$	180.10	5.17	0.10

Table 2. Potential bioactive phytoconstituents in methanolic root extract of Carthamus oxycantha.

Compound No.	Names of compounds	Property	Reference
3	2,5-Dimethyl-4-hydroxy-3(2H)-furanone	Antioxidant, antifungal, antibacterial	Sasaki <i>et al.</i> (1998), Sung <i>et al.</i> (2006)
10	Bis(2-ethylhexyl) phthalate	Antimicrobial	Habib and Karim (2009)
27	Dodecanoic acid	Antifungal, antibacterial	McGraw et al. (2002)
31	Phytol	Antibacterial, antifungal, anticancer, anti-inflammatory	Hema <i>et al.</i> (2011), Tyagi and Agarwal (2017)
50	Eicosane	Antifungal	Ahsan et al. (2017)
51	Hexadecanoic acid, ethyl ester	Antioxidant, Hemolytic, Anti-androgenic, Hypocholesterolemic, Nematicide	Tyagi and Agarwal (2017)
75	Pentadecanoic acid, methyl ester	Antibacterial, antifungal	Chandrasekaran et al. (2011)
77	1-Hexadecene	Antibacterial, antifungal, antioxidant	Hsouna <i>et al.</i> (2011), Yogeswari <i>et al.</i> (2012), Mou <i>et al.</i> (2013)
83	Tetradecanoic acid	Antifungal, antibacterial, larvicidal	McGraw <i>et al.</i> (2002), Sivakumar <i>et al.</i> (2011)
98	Hexacosane	Antimicrobial	Rukaiyat et al. (2015)
104	Hexadecanoic acid, butyl ester	Antimicrobial, antioxidant	Prakash <i>et al.</i> (2011), Sujatha <i>et al.</i> (2014)
105	Hexadecanoic acid, methyl ester	Antibacterial, antifungal, antioxidant, anti- inflammatory	Chandrasekaran <i>et al.</i> (2011), Hema <i>et al.</i> (2011)
114	2,4-Thiazolidinedione	Antimicrobial	Alagawadi and Alegaon (2011)
118	Octadecanoic acid	Antifungal, antibacterial	Rahuman <i>et al.</i> (2000), McGraw <i>et al.</i> (2002)
120	n-Hexadecanoic acid	Antifungal, antibacterial, mosquito larvicide, Anti- inflammatory, antioxidant,	Rahuman <i>et al.</i> (2000), McGraw <i>et al.</i> (2002), Kumar <i>et al.</i> (2010), Aparna
120	G'r r	nematicide, pesticide.	et al. (2012)
128	γ-Sitosterol	Antimicrobial	Karthikeyan et al. (2014)

Compounds **8** to **130** were least abundant with peak areas less than 0.11%. Among these, many compounds are known to exhibit various biological activities including antibacterial, antifungal, anticancer, anti-inflammatory, nematicidal, hemolytic, anti-androgenic and hypocholesterolemic activities. Compounds namely Heptadecanoic acid (**8**), Pentadecanoic acid (**17**), Dodecanoic acid (**27**), Tetradecanoic acid (**83**), Octadecanoic acid (**118**) and *n*-Hexadecanoic acid (**120**) belonge to fatty acid group. Many fatty acids including Tetradecanoic acid, *n*-

Hexadecanoic acid, Octadecanoic acid and Dodecanoic acid are also known to show antifungal and antibacterial activities (McGraw *et al.*, 2002). *n*-Hexadecanoic acid is a compound with a variety of bioactivities including hypocholesterolemic, antioxidant, nematicide, pesticide, hemolytic (Kumar *et al.*, 2010), anti-inflammatory (Aparna *et al.*, 2012), and mosquito larvicide (Rahuman *et al.*, 2000). Lipids kill bacteria and fungi by disrupting their cellular member (Lampe *et al.*, 1998). Lipids can enter in extensive network of peptidoglycane in cell wall and reach bacterial membrane leading to its disintegration (Ismail *et al.*, 2014). Likewise, antifungal fatty acids increase fluidity of fungal membrane resulting in leakage of cellular components and death of fungal cell (Pohl *et al.*, 2011).

Fig. 2. Structures of bioactive compounds in methanolic root extract of Carthamus oxycantha.

Many other least abundant compounds namely Bis(2-ethylhexyl) phthalate (10), Phytol (31), Eicosane (50), Hexadecanoic acid, ethyl ester (51), 1-Hexadecene (77), Hexacosane (98), Hexadecanoic acid, butyl ester (104), 2,4-

Thiazolidinedione (114) and γ -Sitosterol (128) are known to possess various biological activities such as antifungal, antibacterial, anti-androgenic, hypocholesterolemic, nematicide antioxidant, anticancer and anti-inflammatory as shown in Table 2 (Habib and Karim, 2009; Alagawadi and Alegaon, 2011; Hema *et al.*, 2011; Mou *et al.*, 2013; Karthikeyan *et al.*, 2014; Sujatha *et al.*, 2014; Rukaiyat *et al.*, 2015; Ahsan *et al.*, 2017; Tyagi and Agarwal, 2017).

Fig. 1. GC-MS chromatograms of methanolic root extract of Carthamus oxycantha.

Various compounds namely 9-Hexadecenoic acid, methyl ester, (Z)- (6), 9-Octadecenoic acid, methyl ester, (E)- (64), cis-13-Eicosenoic acid, methyl ester (74), Pentadecanoic acid, methyl ester (75), cis-12-Octadecenoic acid methyl ester (76), Eicosanoic acid, methyl ester (89), Hexadecanoic acid, methyl ester (105), Heneicosanoic acid, methyl ester (111) and Docosanoic acid, methyl ester (122) belong to fatty acid methyl esters (FAME) group. Most of the fatty acid methyl esters are known to exhibit antifungal, antibacterial or both the properties (Chandrasekaran et al., 2011; Hema et al., 2011). FAME in sunflower and soybean oils showed remarkable antifungal activity against Paracoccidioides brasiliensis and P. lutzii (Pinto et al., 2017). Agoramoorthy et al. (2007) stated that FAME extract of Excoecaria agallocha has the ability to control growth of different Candida and bacterial species. Similar effect of FAME extract of Quercus leucotrichophora was reported by Sati et al. (2017) against certain bacterial species. A mixture of FAME of sunflower and essential oil of Mentha piperita exhibited herbicidal activity against Chenopodium album (Synowiec et al., 2017).

The present study concludes that root of C. oxycantha is a store house of potent bioactive compounds including fatty acids, fatty acid methyl esters, furaneol, γ -Sitosterol, phytol and others which possess antifungal, antibacterial, antioxidant, anticancer, anti-inflammatory and various other bioactive properties.

REFERENCES

Agoramoorthy G., M. Chandrasekaran, V. Venkatesalu and M.J. Hsu (2007). Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. *Brazilian Journal of Microbiology*, 38:739-742.

Ahsan, T., J. Chen, Z.X. Xiuxiang, M. Irfan and Y. Wu (2017). Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by *Streptomyces* strain KX852460 for the biological control of *Rhizoctonia solani* AG-3 strain KX852461 to control target spot disease in tobacco leaf. *AMB Express*, 7:54.

Alagawadi, K.R. and S.G. Alegaon (2011). Synthesis, characterization and antimicrobial activity evaluation of new 2,4-thiazolidinediones bearing imidazo [2,1-b][1,3,4] thiadiazole moiety. *Arabian Journal of Chemistry*, 4: 465-472.

Aparna, V., K.V. Dileep, P.K. Mandal, P. Karthe, C. Sadasivan and M. Haridas (2012). Anti-inflammatory property of *n*-hexadecanoic acid: Structural evidence and kinetic assessment. *Chemistry and Biology of Drug Design*, 80: 434-439.

Arslan, Y. and H.B. Tarikahya (2018). Seed fatty acid compositions and chemotaxonomy of wild safflower(*Carthamus* L., Asteraceae) species in Turkey. *Turkish Journal of Agricuture and Forestry*, 42: 45-54.

ARSHAD JAVAID ET AL.,

Banaras, S., A. Javaid, A. Shoaib and E. Ahmed (2017). Antifungal activity of *Cirsium arvense* extracts against a phytopathogenic fungus *Macrophomina phaseolina*. *Planta Daninha* 35: e017162738.

- Bashir, U., A. Javaid and R. Bajwa (2012). Allelopathic effects of sunflower residue on growth of rice and subsequent wheat crop. *Chilean Journal of Agricultural Research*, 72: 326-331.
- Bukhari, I.A. (2013). The central analgesic and anti-inflammatory activities of the methanolic extract of *Carthamus oxycantha*. *Journal of Physiology and Pharmacology*, 64: 369-375
- Buttery, R.G., G.R. Takeoka and L.C. Louisa (1995). Ling furaneol: odor threshold and importance to tomato aroma. *Journal of Agricultural and Food Chemistry*, 43:1638-40.
- Chandrasekaran, M., A. Senthilkumar and V. Venkatesalu (2011). Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of *Sesuvium portulacastrum* L. *European Review for Medical and Pharmacological Sciences*, 15: 775-780.
- Ellahi, B., A.M. Salman, S.A. Sheikh and E. Summra (2014). Hepatoprotective and hepatocurative properties of alcoholic extract of *Carthamus oxyacantha* seeds. *African Journal of Plant Sciences*, 8: 34-41.
- Habib, M.R. and M.R. Karim (2009). Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol- 3-acetate isolated from *Calotropis gigantea* (Linn.) flower. *Mycobiology*, 37: 31-36.
- Hassan, Z., V.U. Ahmad and J. Hussain (2010). Two new carthamosides from *Carthamus oxycantha*. *Natural Product Communication*, 5: 419-422.
- Hema, R., S. Kumaravel and Alagusundaram (2011). GC/MS determination of bioactive components of *Murraya koenigii*. *Journal of American Science*, 7: 27.
- Hsouna, A.B., M. Trigie, R.B. Mansour, R.M. Jarraya, M. Damak, S. Jaoua (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of *Ceratonia siliqua* essential oil with preservative effects against Listeria inoculated in minced beef meat. *Inter. J. Food Microbiol.* 148: 66-72.
- Ismail, K., S. Abdullah and K. Chong (2014). Screening for potential antimcrobial compounds from *Ganoderma* boninense against selected food borne and skin disease pathogens. *International Journal of Pharmacy and Pharmaceutical Sciences*, 6: 771-774.
- Jiang J, He J, Feng Z, Zhang P (2010). Two new quinochalcones from the florets of *Carthamus tinctorius*. *Heal*, 15: 951-954.
- Karthikeyan, S.C., S. Velmurugan, M.B.S. Donio, M. Michaelbabu and T. Citarasu (2014). Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster *Saccostrea glomerata*. *Annals of Clinical Microbiology and Antimicrobials*, 13: 332.
- Kew. (2018). The Plant List: Compositae". Royal Botanic Gardens Kew and Missouri Botanic Garden. Available at: http://www.theplantlist.org/1.1/browse/A/Compositae/. Retrieved 8 November 2018.
- Khalil, H. and A.A. Al-Ahmed (2017). Phytochemical analysis and free radical scavenging activity of *Carthamus oxyacantha* gowing in Saudi Arabia: a comparative study. *International Journal of Pharmaceutical Sciences Review and Research*, 45: 1-55.
- Kumar, P.P., S. Kumaravel and C. Lalitha (2010). Screening of antioxidant activity, total phenolics and GC-MS study of *Vitex negundo*. *African Journal of Biochemistry Research*, 4: 191-195.
- Lampe, M.F., L.M. Ballweber, C.E. Isaacs, D.L. Patton and W.E. Stamm (1998). Killing of *Chlamydia trachomatis* by novel antimicrobial lipids adapted from compounds in human breast milk. *Antimicrobial Agents and Chemotherapy*, 45: 1239-1244.
- Lavid, N., W. Schwab, E. Kafkas, M. Koch-Dean, E. Bar, O. Larkov, U. Ravid and E. Lewinsohn (2002). Aroma biosynthesis in strawberry: Sadenosylmethionine: furaneol O-methyltransferase activity in ripening fruits. *Journal of Agricultural and Food Chemistry*, 50: 4025e30.
- McGraw, L.J., A.K. Jager and S.J. Van (2002). Isolation of antibacterial fatty acids from *Schotia brachpetala*. *Fitoterapia*, 73: 431-433.
- Mou, Y. J. Meng, X. Fu, X. Wang, J. Tian, M. Wang, Y. Peng and L. Zhou (2013). Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus *Berkleasmium* sp. Dzf12. *Molecules*, 18: 15587-15599.
- Pinto M.E.A., S.G. Araújo, M.I. Morais, N.P. Sá, C.M. Lima, C.A. Rosa and L.A.R.S. Lima (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. *Anais da Academia Brasileira de Ciências*, 89: 1671-1681.
- Pohl, C.H., J.L.F. Kock and V.S. Thibane (2014). Antifungal free fatty acids: a Review. In: *Science against microbial pathogens: communicating current research and technological advances*. A. Méndez Vilas (Ed.). Formatex Publishers. pp. 61-71.

- Prakash, O., M. Gondwal, A.K. Pant (2011). Essential oils composition and antioxidant activity of water extract from seeds and fruit pulp of *Skimmia anquetilia*. *Indian Journal* of *Natural* Products *and Resources*, 2: 435-441.
- Rafiq, M., A. Javaid and A. Shoaib (2017). Possible antifungal and antibacterial constituents in inflorescence extract of *Carthamus oxycantha*. *Mycopath*, 15: 89-95.
- Rahuman, A.A., G. Gopalakrishnan, B.S. Ghouse, S. Arumugam and B. Himalayan (2000). Effect of *Feronia limonia* on mosquito larvae. *Fitoterapia*, 71: 553-555.
- Ravikumar, R.L., V.K. Roopa, C.D. Soregaon and D. Satish (2007). Molecular diversity in *Carthamus* species and development of inter-specific mapping population toward development of the first molecular map in safflower. In: *Proceedings of 7th International Safflower Conference*. Wagga Wagg, Australia, pp. 1-5.
- Raza, M.A., F. Mukhtar and M. Danish (2015). Cuscuta reflexa and *Carthamus oxyacantha*: potent sources of alternative and complimentary drug. Springerplus 4: 76-78.
- Rukaiyat, M., S. Garba and S. Labaran (2015). Antimicrobial activities of hexacosane isolated from *Sanseveria liberica* (Gerome and Labroy) plant. *Advancement in Medicinal Plant Research*, 3:120-125.
- Salem, N., K. Msaada, S. Elkahoui, G. Mangano, S. Azaeiz, I.B. Slimen, S. Kefi, G. Pintore, F. Limam and B.Marzouk (2014) Evaluation of antibacterial, antifungal, and antioxidant activities of safflower natural dyes during flowering. *Biomed Research International*, 2014: 1-10. (Article ID 762397).
- Sasaki, T., J. Yamakoshi, M. Saito, K. Kasai, T. Matsudo, T. Koga and K. Mori (1998). Antioxidative activities of 4-hydroxy-3(2H)-furanones and their anti-cataract effect on spontaneous cataract rat (ICR/f). *Bioscience, Biotechnology and Biochemistry*, 62: 1865-1869.
- Sati A., S.C. Sati, N. Sati and O.P. Sati (2017). Chemical composition and antimicrobial activity of fatty acid methyl ester of *Quercus leucotrichophora* fruits, *Natural Product Research*, 31:713-717.
- Schwab, W. (2013). Natural 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol). Molecules, 18: 6936-6951.
- Sivakumar, R., A. Jebanesan, M. Govindarajan and P. Rajasekar (2011). Larvicidal and repellent activity of tetradecanoic acid against *Aedes aegypti* (Linn.) and *Culex quinquefasciatus* (Say.) (Diptera: Culicidae). *Asian Pacific Journal of Tropical Medicines*, 4: 706-710.
- Sujatha, V. Karthika, Sivakamasundari, Mariajancyrani and M. Chandramohan (2014). GC-MS analysis of phytocomponents and total antioxidant activity of hexane extract of *Sinapis alba*. *International Journal of Pharmaceutical, Chemical and Biological Sciences*, 4: 112-117.
- Sung, W.S., H.J. Jung, I.S. Lee and H.S. Kim (2006). Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. *Journal of Microbiology and Biotechnology*, 16: 349-354.
- Synowiec A., W. Halecki, K. Wielgusz, M. Byczyńska and S. Czaplicki (2017). Effect of fatty acid methyl esters on the herbicidal effect of essential oils on corn and weeds. *Weed Technology*, 31:301-309.
- Tyagi, T. and M. Agarwal (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of *Pistia stratiotes* L. and *Eichhornia crassipes* (Mart.) solms. J. pharmacog. Phytochem., 6: 195-206
- Yogeswari S., S.N. Ramalakshmi and J.M. Muthu (2012). Identification and comparative studies of different volatile fractions from *Monochaetia kansensis* by GCMS. *Global Journal of Pharmacology*, 6: 65-71.
- Zhou, Y.Z., H. Chen and L. Qiao (2008) Two new compounds from *Carthamus tinctorius*. *Journal of Asian Natural Products Research*, 10: 429-433.
- Zick, S.M., B. Gillespie and K.D. Aaronson (2008). The effect of *Crataegus oxycantha* special extract WS 1442 on clinical progression in patients with mild to moderate symptoms of heart failure. *European Journal of Heart Failure*, 10: 587-593.

(Accepted for publication December 2018)