EFFECT OF 2, 4-D HERBICIDE ON THE STOMATAL CHARACTERISTICS OF WHEAT (TRITICUM AESTIVUM L.)

Saima Ashraf* and Ghulam Murtaza

Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan *Corresponding auther's email: s.ashraf084@gmail.com

ABSTRACT

Herbicides are used for the eradication of weeds. 2,4-D is the post emergence herbicide, commonly used to kill unwanted plants. The present study was carried out to determine the effect of different concentrations of 2,4-D herbicide on stomatal characteristics of flag leaf of wheat (*Triticum aestivum* L.). The field experiment was conducted during the year 2013-14 and 2014-15. The experiment was laid out in a randomized complete block design (RCBD). At tillering stage of wheat, 2,4-D herbicide was sprayed and at milking stage wheat samples were collected to analysed the effect of 2,4-D on stomatal characteristics of flag leaf of wheat. High stomatal length of adaxial epidermis and abaxial epidermis was noted in plots treated with 0 M, 0.01 and 0.03 Mconcentrations of 2,4-D. Concentration 0.03 M showed highest stomatal width of adaxial epidermis and non-significant effect of different concentrations of 2,4-D herbicide was noted on stomatal width of abaxial epidermis. Maximum stomatal density of adaxial epidermis and abaxial epidermis was observed by application of 0.01 M and 0.03 M concentrations of 2,4-D herbicide. Concentration 0.04 M showed highest stomatal index of adaxial epidermis while 0.01 M and 0.03 Mconcentrations showed maximum stomatal index of abaxial epidermis.

Key words: 2,4-D, herbicides, wheat, concentrations, anatomy, stomata

INTRODUCTION

An herbicide is a pesticide used to kill unwanted plants. The herbicide causes the anatomical change in plants. Plant biochemical and physiological processes are affected by herbicides (Yang *et al.*, 2006; Warabi *et al.*, 2001; Jung *et al.*, 2004; Ha *et al.*, 2003), causing morphological and anatomical modifications (Kamble, 2007; Guh and Kuk, 1997).

Herbicide application in plants caused considerable changes in the leaf anatomy. Stomatal length, width, number of stomata mm² and stomatal index greatly effected by applications of Isoxaflutole, imazamox, Flurochloridone and Alachlor herbicides (Prakash *et al.*, 1978; Anastasov, 2010a; Anastasov, 2010b; Semerdjieva *et al.*, 2015). Herbicide 2,4-D also caused anatomical variations in leaf, stem, root and petiole of *Cassia tora* (Kamble, 2013). Herbicides like 2,4,5-T, 2,4-D and MCPA in *Stachytarpheta* found to decrease the potassium accumulation in guard cells and also stopped wide opening of stomata (Pemadasa and Jeyaseelan, 1976). Wheat (*Triticum aestivum* L.) is one of the main food crops of Pakistan that leads all agronomic crops with respect to area and production. About one third population depends on wheat for protein and caloric supplies. It contributes to 10.3% in agriculture and 2.2% to GDP (GOP, 2013-14). No information has been available on the effect of 2, 4-D herbicide on stomatal characteristics of crops. This studydescribe the effect of 2,4-D herbicide on stomatal characteristic in the flag leaves of the wheat.

MATERIALS AND METHODS

The experiment was conducted during year 2013-14 and 2014-15 in a split plot design (RCBD)with three replicate, using five varieties of wheat viz, Punjab-2011, AAS-2011, NARC-2011, Millat-2011 and NARC-2009, treated with four different concentrations (0 M, 0.01 M, 0.03 M and 0.04 M) of 2,4-D herbicide. The herbicide was applied by foliar spray at tillering stage using manual pump. For analysis of stomatal characteristics fully developed flag leaves of wheatwere collected at milking (Zadoks scale 70) stage (Zadoks *et al.*, 1974).

Stomatal characteristics of flag leaves of wheat were determined by following the method of Rajendra *et al.* (1977). The epidermis of sample flag leaf was peeled off and transferred into slide along with cover slip. The number of stomata and the number of other epidermal cells were counted at 100X magnification (10 X objective and 10 X ocular) from whole fields of view from each of individual leaf surface using Swift 7000D microscope. The stomatal density was calculated as the number of stomata per square millimeter (Stace, 1965). Stomatal index was

calculated which relates the number of stomata per unit area (S) to the number of epidermal cells per unit area (E) (Salisbury, 1927).

Stomatal index (SI) = $[S / (E + S)] \times 100$.

Stomatal length and stomatal width were measured from five randomly selected stomata in each field of view using an ocular micrometer under microscope (10 X objective and 10 X ocular). The stomatal size was converted to micrometer and then averaged was taken. The data were subjected to analysis of variance using MSTAT-C program and Duncan's multiple Range test was applied to differentiate means (Steel *et al.*, 1997).

RESULTS AND DISCUSSION

Wheat varieties showed significant results by the application of 2,4-D in case of stomatal length (μ m) on adaxial epidermis of flag leaves during 2013-14 and 2014-15 (Table. 1). Maximum stomatal length (52.79 μ m) was observed in plants treated with 0 M concentration of 2,4-D herbicide while 0.04 M concentration contained lowest stomatal length of about 51.27 μ m. In second growing season (2014-15), different concentrations of 2, 4-D herbicide (0 M, 0.01 M, 0.03 M and 0.04 M) showed non-significant effect on stomatal length (Table 1).

Application of 2,4-D herbicide effected stomatal length of abaxial epidermis. Concentrations of 2,4-D herbicide revealed significant effect during both growing seasons (Table 2). During 2013-14, maximum stomatal length (58.02 μm) was noted in plants treated with 0 M (58.02 μm) and 0.01 M (57.51 μm) concentrations of 2,4-D herbicide. During 2014-15, maximum stomatal length (58.11 μm) was noted in plants treated with 0.01 M concentration of 2,4-D herbicide and lowest was found in plants treated with 0.04 M (55.76 μm) and 0.03 M (55.64 μm) concentrations of 2,4-D herbicide ((Table 2).Our results are in accordance with (Anastasov, 2010a; Anastasov, 2010b). They investigated that herbicide application reduced stomatal length. Variability in stomatal length by cultivers was also confirmed from the results of Ferreira *et al.* (2007).

Effect of 2,4-D herbicide was observed on stomatal width of adaxial epidermis of five varieties of wheat during 2013-14 and non-significant ($p \le 0.05$) results was noted during 2014-15 (Table 3). Plants treated with 0.03 M (16.16 μ m) concentration of 2, 4-D herbicide showed maximum stomatal width and minimum was noted in plants treated with 0.04 M (14.84) concentration of 2, 4-D herbicide (Table 3).

During both growing seasons (2013-14 and 2014-15), application of 2,4-D herbicide showed non-significant effect on wheat varieties in case of stomatal width of abaxial epidermis (Table 4). Our results are in agree with the results of Anastasov (2010 a) who reported that the stomatal width of adaxial epidermis decreased with the high concentration (100 ml/dka) of herbicide oxyfluorfenin in *Nicotiana tabacum* L. The decrease in stomatal width may be due to adversed effect of application of herbicide on physiological events such as respiration and photosynthesis in plant (Anastasov, 2010 a).

Stomatal density was effected by application of 2,4-D herbicide. Genotypes of wheat found to be significantly different from each other in case of stomatal density of adaxial epidermis during both growing seasons (Table 5). The effect of different concentrations of 2, 4-D herbicide was observed during 2013-14 and 2014-15. During 2013-14, plants treated with 0.03 M and 0.01 M 2,4-D showed maximum stomatal density. In next year (2014-15), 0.03 M (392.00 number/mm²) concentration had high stomatal (Table 5).

Statistically significant effect was noted in five genotypes of wheat under application of 2,4-D herbicide in term of stomatal density of abaxial epidermis during 2013-14 and 2014-15 (Table 6). Plants treated with 0.01 M 2,4-D herbicide had highest stomatal density while lowest stomatal density was noted with 0.04 M concentration of 2, 4-D herbicide during first growing season. During 2014-15, maximum stomatal density (424.73 number / mm²) was noted in plot treated with 0.03 M concentration. Lowest stomatal density was observed with 0.04 M concentration (Table. 6). High concentration of 2,4-D herbicide reduced the stomatal density. Our results are agreed with the results of Anastasov (2010a) and Semerdjieva *et al.* (2015). They stated that stomatal number/mm² was decreased with application of herbicides. Variation in stomatal density amonge cultivers was also demonstrated from the results of Ferreira *et al.* (2007). It may be due to adversed effect on physiological events such as respiration and photosynthesis (Cali, 2009).

During both the growing seasons (2013-14 and 2014-15), a significant difference was noted in varieties and different concentrations of 2, 4-D herbicide with respect to stomatal index of adaxial epidermis (Table 7). Plants treated with 0.04 M and 0.01 M revealed highest stomatal index significantly followed by 0 M (18.71) and 0.03 M (18.57) concentration of 2, 4-D herbicide respectively during 2013-14. Plants treated with 0.04 M (19.30) 2,4-D had maximum stomatal index and lowest was noted in plants treated with 0.01 M (18.93) 2,4-D during 2014-15 (Table 7).

2.4-D Concentrations/ Year 2013-2014 Year 2014-2015	Year 2013-2014	-2014				Year 2	Year 2014-2015		1		
varieties	0 M	0.01 M	. 0.03 M	0.04 M	Means	0 M	0.01 M	4 0.03 M	0.04 M	Means	Ì
Aas-2011	54.67 ^{NS}	55.0	54.33	53.33	54.33 A	51.67 ^{NS}	52.33	52.33	52,33	52.17 B	1
Punjab-2011	53.56	52.67	53.43	52.78	53.11 B	52.56	50.67	51.11	51.11	51.36 B	
NARC-2011	54.22	53.55	52.89	50.89	52.89 B	58.22	57.55	57,89	\$7.22	57.72 A	
NARC-2009	54.11	52,33	52.55	51.56	52.64 B	52.33	52.11	52.55	52.11	52.28 B	
Millat-2011	47.33	48.56	48.67	47.78	48.08 C	48.44	49.22	49.67	50.44	49,44 C	
Means	52.79 A	52.42 A	52.38 A	51.27 B		52.65 VS	85.05	5271	23.62		1
Table 2. Effect of 2,4-	D herbicide or	Any two means carrying the same letter(s) in a row or column are non-significant at P=0.05 by Duncan's Multiple Range Test (DMRT). NS= non-significant Table 2. Effect of 2,4-D herbicide on stomatal length of abaxial epidermis (µm) of wheat varieties during years 2013-14 and 2014-15.	or column a	ial epiderm	is (μm) of τ	wheat variet	ies during ye	ltiple Range ars 2013-14	ind 2014-15.	ngis-non = XV	ificant
2,4-D Concentrations/ Year 2013-2014 Year 2013-2014	D herbicide or	er(s) in a rov	al length of abax Year 2013-2014	ial epiderm	is (µm) of v	vheat variet	ics during ye	ars 2013-14	and 2014-15.	vs= non-sign	ificant
2,4-D Concentrations/ varieties	D herbicide or	er(s) in a rov Stomatal le Yea 0.01 M	ngth of abaxi 2013-2014 0.03 M	ial epidermis	is (µm) of v	of wheat variet	ics during ye	ars 2013-14 :	and 2014-15. Year 2014-2015	0.04 M	ificant
2,4-D Concentrations/ varieties Aas-2011	Dherbicide or O M 59.44 KS	er(s) in a row Yeau 0.01 M 59.78	2013-2014 0.03 N	ial epidermi	is (µm) of v	of wheat variety Means S8.67 A	o M	ars 2013-14 ars 20	ear 2014-15. ear 2014-2013 0.03 M	o.04 M	Mean Mean 58.1:
2,4-D Concentrations/ varieties Aas-2011 Punjab-2011	Dherbicide or O M 59.44 NS	stomatal le Year 0.01 M 59.78	2013-2014 0.03 N 57.78	ial epidermi 1 0.04 l 57.68	is (μm) of ν M Mi S8	of wheat variety Means S8.67 A 57.08 A	0 M 56.78 b-f 59.68 b	0.01 M 64.44 a 58.33 bc	ear 2014-2015 (ear 2014-2015 0.03 M 55.78 c-g 57.22 b-e	0.04 M 55.68 c-g 57.44 b-c	Mean 58.11
2,4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011	Dherbicide or 0 M 59.44 NS 58.67 58.34	er(s) in a row Yeau 0.01 M 59.78 57.00 58.67	2013-2014 2013-2014 0.03 N 57.78 56.22	ial epiderm 1 0.041 57.68 56.44	is (μm) of ν M M S8	of wheat variety Means S8.67 A 57.08 A	0 M 56.78 b-f 59.68 b	11tple Range ars 2013-14 i 0.01 M 64.44 a 58.33 bc 58.44 bc	ear 2014-15. (ear 2014-2013 0.03 M 55.78 c-g 57.22 b-e 57.33 b-e	0.04 M 55.68 c-g 57.44 b-c 56.33 b-g	Mean 58.11 58.11
2,4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011 NARC-2009	0 M 59.44 NS 58.67 58.34 57.89	er(s) in a row Year 0.01 M 59.78 57.00 58.67	2013-2014 2013-2014 0.03 N 57.78 56.22 57.67	ial epiderm f 0.041 57.68 56.44 56.89	is (μm) of ν M Ma S8 S7 S7	of wheat variety Means S8.67 A 57.08 A 57.83 A	0 M 56.78 b-f 58.00 bed 54.44 d-g	0.01 M 64.44 a 58.33 bc 58.34 bc 53.33 fg	ear 2014-2015 'ear 2014-2015 0.03 M 55.78 c-g 57.22 b-e 57.33 b-e 53.22 g	0.04 M 55.68 c-g 57.44 b-c 53.89 efg	Mean 58.11 57.53 57.53
2,4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011 NARC-2009 Millat-2011	0 M 59.44 Ns 58.67 58.34 57.89	er(s) in a row Year 0.01 M 59.78 57.00 58.67 56.44	2013-2014 2013-2014 0.03 N 57.78 56.22 57.67 56.33	ial epiderm 57.68 56.44 56.89 55.22	is (µm) of v M M S8 57 57 56	of wheat variety Means S8.67 A 57.08 A 57.83 A 56.89 AB 55.25 B	ics during ye 0 M 56.78 b-f 59.68 b 58.00 bcd 54.44 d-g	11tpte Range ars 2013-14 i 0.01 M 64.44 a 58.33 bc 58.34 bc 53.33 fg 56.00 c-g	sind 2014-15. bear 2014-2015 0.03 M 55.78 c-g 57.22 b-e 57.33 b-e 53.22 g 54.66 d-g	0.04 M 55.68 c-g 57.44 b-c 56.33 b-g 55.44 c-g	Means 58.17 A 58.17 A 57.53 A 53.72 B

	2100 1100	V-2013 2014	
--	-----------	-------------	--

2.4-J) Concentrations/ Year 2013-2014 Year 2014-2015		Y	Year 2013-2014	14				Year 2014-2015	015	
varicties	M 0	0.01 M	0.03 M	04 M	Means .	M O	0.01 M	0.03 M	0.04 M.	Means
Aas-2011	15.89 NS	16.22	16.33	15.89	16.08 A	15.33 NS	17.00	17.11	17.67	16.78 NS
Punjab-2011	15.33	15.33	15.45	14.55	15.17 C	17.56	16.44	16,45	17.55	17.00
NARC-2011	15.00	16.22	16.67	14.33	15.56 BC	17.00	16.22	16.33	15.67	16.31
NARC-2009	16.33	16.00	16.00	14.55	15.72 AB	14.67	16,00	18.33	16.22	16.31
Millat-2011	15.78	16.11	16.33	14.89	15.78 AB	16.78	15.78	17.33	17.56	16.86
Means										
	the same letter	AB er(s) in a row	16.16 A or column	14.84 C are non-sign	ficant at P=	Means 15.67 B 15.98 16.16 A 14.84 C 16.27 NS 16.28 17.11 16.93 AB Any two means carrying the same letter(s) in a row or column are non-significant at P= 0.05 by Duncan's Multiple Range Test (DMRT). NS = non-significant at P= 0.05 by Duncan's Multiple Range Test (DMRT). NS = non-significant at P= 0.05 by Duncan's Multiple Range Test (DMRT). NS = non-significant at P= 0.05 by Duncan's Multiple Range Test (DMRT).	. 16.28 can's Multiple	17.11 Range Test (16.93 DMRT). ^{NS} =	non-significa
Table 4.Effect of 2.4-D	15.67 B the same lett	AB er(s) in a row	16.16 A or column	14.84 C are non-signi epidermis (µ	ficant at P=	16.27 NS .	16.28 n's Multiple g years 2013	17.11 Range Test (-14 and 2014	16.93 DMRT), ^{KS} =	non-significa
Table 4.Effect of 2.4-D herbicide on stomatal width of abaxial epidermis (μm) of wheat varieties during years 2013-14 and 2014-15 2,4-D Concentrations/ Year 2013-2014 Year 2014-2015	the same lette herbicide on s	AB er(s) in a row tomatal widt	16.16 A 14.8 or column are n h of abaxial epid Year 2013-2014	14.84 C are non-signi epidermis (µ 2014	ficant at P= (m) of wheat	16.27 NS .	16.28 n's Multiple g years 2013	17.11 16. Range Test (DMI -14 and 2014-15. Year 2014-2015	16.93 DMRT), ^{NS} = -15. 2015	non-significa
Table 4.Effect of 2.4-D 2,4-D Concentrations/ varieties	the same letter therefore on s	15.98 - AB er(s) in a row	16.16 A or column i of abaxial Year 2013-2	14.84 C are non-signi epidermis (µ 0.04 M	m) of wheat	16.27 NS . 0.05 by Dunca varieties durin	16.28 n's Multiple g years 2013 0.01 M	17.11 Range Test (Pear 2014- Year 2014- 0.03 M	16.93 DMRT), ^{AS} = 2015 0.04 M	non-significa
Table 4.Effect of 2.4-D 2,4-D Concentrations/ varieties Aas-2011	the same lette herbicide on s 0 M	15.98 - AB et(s) in a row lomatal widt 0.01 M 24.78 a-c	16.16 A or column i h of abaxial Year 2013-2 0.03 M 25.67 a	14.84 C are non-signi epidermis (µ 0.04 M 24.89 a-c	m) of wheat Means 25.11 A	0.05 by Duncar varieties during	16.28 n's Multiple g years 2013 0.01 M 22.78	17.11 Range Test (Range Test (14 and 2014- Year 2014- 0.03 M 23.67	16.93 DMRT), ^{NS} = 1-15. 2015 0.04 M 21.22	non-significa Means 22.28 A
Table 4 Effect of 2.4-D 2.4-D Concentrations/ varieties Aas-2011 Punjab-2011	the same lette herbicide on s 0 M 25.11 ab	15.98 - AB er(s) in a row tomatal widt 0.01 M 24.78 a-c	16.16 A or column a h of abaxial s Year 2013-2 0.03 M 25.67 a 23.33 def	14.84 C are non-signif epidermis (µn 014 0.04 M 24.89 a-c	m) of wheat Means 25.11 A	16.27 NS . 3.05 by Dunca varieties durin 0 M 21.44 NS 20.44	16.28 n's Multiple g years 2013 0.01 M 22.78 21.22	17.11 Range Test (Range Test (14 and 2014- Year 2014- 0.03 M 23.67	16.93 DMRT), ^{NS} = 2015 0.04 M 21.22 21.44	non-significa Means 22.28 A
Table 4.Effect of 2.4-D 2,4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011	the same lette herbicide on s 0 M 25.11 ab 23.11 cf	15.98 · AB er(s) in a row tomatal widt 0.01 M 24.78 a-d 24.56 a-d	16.16 A or column i h of abaxial Year 2013-2 0.03 M 25.67 a 23.33 def	14.84 C are non-signi epidermis (µ 0014 0.04 M 24.89 a-c 23.63 c-f	m) of wheat Means 25.11 A 23.78 B	16.27 NS . 10.05 by Dunca varieties durin 0 M 21.44 NS 20.44	16.28 n's Multiple g years 2013 0.01 M 22.78 21.22	17.11 Range Test (Range Test (14 and 2014 Year 2014-3 0.03 M 23.67 20.66	16.93 DMRT), ^{NS} = 1-15. 2015 0.04 M 21.22 21.44 21.89	non-significa Means 22.28 A 20.94 B
Table 4.Effect of 2.4-D 2.4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011	the same letter the same lette	15.98 - AB er(s) in a row lomatal widt 0.01 M 24.78 a-c 24.58 a-d 24.56 a-d	16.16 A or column i h of abaxial Year 2013-2 0.03 M 25.67 a 23.33 def	14.84 C are non-signif epidermis (µn 014 0.04 M 24.89 a-c 24.11 b-f 23.63 c-f	m) of wheat Means 25.11 A 23.78 B	16.27 NS . 0.05 by Dunca varieties durin 20 M 21.44 NS 20.44 20.33	16.28 n's Multiple g years 2013 0.01 M 22.78 21.22 21.56	17.11 Range Test (-14 and 2014- Year 2014- 0.03 M 23.67 20.66	16.93 DMRT), ^{NS} = -15. 2015 0.04 M 21.22 21.44 21.89	non-significa Means 22.28 A 20.94 B 21.36 AB
Table 4 Effect of 2.4-D 2.4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011	the same lette herbicide on s 0 M 25.11 ab 23.11 cf 24.95 abc	15.98 - AB er(s) in a row tomatal widt 0.01 M 24.78 a-c 24.58 a-d 24.56 a-d 23.03 f	16.16 A or column a h of abaxial I Year 2013-2 0.03 M 25.67 a 23.33 def 24.33 a-f 23.29 def	14.84 C are non-signii epidermis (µ 0.04 M 24.89 a-c 23.63 c-f 23.89 b-f	m) of wheat m) of wheat Means 25.11 A 23.78 B 23.61 B	16.27 NS . 20.5 by Dunca varieties durin 0 M 21.44 NS 20.44 20.33	16.28 n's Multiple g years 2013 0.01 M 22.78 21.22 21.56 20.89	17.11 Range Test (Range Test (14 and 2014- Year 2014- 0.03 M 23.67 20.66 21.66	16.93 DMRT), ^{NS} = 2015 0.04 M 21.22 21.44 21.89	mon-significa Means 22.28 A 20.94 B 21.36 AB 21.22 B
Table 4.Effect of 2.4-D 2.4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011 NARC-2009 Millat-2011	the same lette herbicide on s 0 M 25.11 ab 23.11 cf 24.95 abc 24.22 b-f 24.33 a-f	15.98 - AB er(s) in a row tomatal widt 0.01 M 24.78 a-c 24.58 a-d 24.56 a-d 23.03 f 25.11 ab	16.16 A or column of abaxial Year 2013-7 9.03 M 25.67 a 24.33 a-f 23.29 def 25.11 ab	14.84 C 14.84 C are non-signi epidermis (µ 0.04 M 24.89 a-c 23.63 c-f 23.89 b-f 24.44 a-e	m) of wheat m) of wheat Means 25.11 A 23.78 B 24.37 AB 23.61 B	16.27 NS . 20.05 by Dunca varieties durin 0 M 21.44 NS 20.44 20.33 21.55	16.28 n's Multiple g years 2013 0.01 M 22.78 21.22 21.56 20.89	17.11 Range Test (Range Test (14 and 2014- Year 2014- 0.03 M 23.67 20.66 21.66 21.00	16.93 DMRT). ^{NS} = 2015 0.04 M 21.22 21.44 21.89 21.89	mon-significa Means 22.28 A 20.94 B 21.36 AB 21.22 B

1	þ
1	
4	
20	ĺ
and 20	
5	
4	
*	
=	
2	
25	
ě	
2	9
Ē	
E	
4	
ě,	
e	
57	
2	
53	
-	
ofv	
of	
3	
E	
2	
e	
50	
5	
5	
120	
E	
derm	
piderm	
I epiderm	
cial epiderm	
faxial epiderm	
adaxial epiderm	
of adaxial epiderm	
y of adaxial epiderm	
sity of adaxial epiderm	
ensity of adaxial epiderm	
density of adaxial epiderm	
tal density of adaxial epiderm	
natal density of adaxial epiderm	
tomatal density of adaxial epiderm	
stomatal density of adaxial	
on stomatal density of adaxial	
on stomatal density of adaxial	
ide on stomatal density of adaxial	
ide on stomatal density of adaxial	
ricide on stomatal density of adaxial	
ricide on stomatal density of adaxial	
ricide on stomatal density of adaxial	
ricide on stomatal density of adaxial	
f2, 4-D herbicide on stomatal density of adaxial	3
ricide on stomatal density of adaxial	
rt of 2, 4-D herbicide on stomatal density of adaxial	
f2, 4-D herbicide on stomatal density of adaxial	
Effect of 2, 4-D herbicide on stomatal density of adaxial	
e 5.Liffect of 2, 4-D herbicide on stomatal density of adaxial	The second secon
ble 5.Liffect of 2, 4-D herbicide on stomatal density of adaxial	The second secon
e 5.Effect of 2, 4-D herbicide on stomatal density of adaxial	The second secon

2,4-D		Y	Year 2013-2014	4				Year 2014-2015	15	
Concentrations/ varieties	M o	0.01 M	0.03 M	0.04 M	Means	0 M	0.01 M	0.03 M	0.04 M	Means
Aas-2011	. 358.33 N.S	368.33	373.33	368.33	. 365.83 C	386.67 c-e	386.67 c-e	393.33 b .	390,00 b-d 389.17 B	389.17 B
Punjab-2011	366.67	375.00	373.33	371.67	371.67 B	383.33 e-g	384,67 d-f		386.67 c-e 390.00 b-d	386.17 BC
NARC-2011	363.33	376.67	373.33	370.00	370.83 B	383.33 c-g	378.33g	388.33 b-c	388.33 b-c 391.67 bc	385.42 BC
NARC-2009	373.33	389.00	381.67	376.67	377.92 A	380.33 fg	373.33 h	391.67 bc	388.33 b-e	383.33 C
Millat-2011	376.67	383.33	386,67	381.67	382.08 A	393.33 b	391.67 bc	400.00 a	398.33 а	395.83 A
Means	367.67 C	376.67 A	376.67 A 377.67 A 372.67 B	372.67 B		385.33 B	382.93 C	392.00 A	391.67 A	

Any two means carrying the same letter(s) in a row or column are non-significant at P= 0.05 by Duncan's Multiple Range Test (DMRT). NS= non-significant

Table 6. Effect of 2.4-D herbicide on stomatal density of abaxial epidermis (number/mm2) of wheat varieties during years 2013-14 and 2014-15,

2,4-D Concentrations/	1		Year 2013-2014	014	Year 2013-2014 Year 2014-2015			Year 2014-2015	100	
varieties	0 M	0.01 M	0.03 M	0.04 M	Means	0 M	0.01 M 0.03 M	0.03 M	0.04 M	Means
Aas-2011	408.33 N.S	420.67	423.33	415.00	416.83 A	428.33 bc	433.33 ab	431.67 b	425.00 cd	429.58 B
Punjab-2011	411.67	417.67	408.67	405.00	410.75 AB	420,00 d-f	420.00 d-f 415.00 e-g 420.00 d-f 413.00 fg	420.00 d-f	413.00 fg	417.00 C
NARC-2011	406.67	405,00	410.00	399.00	405.17 B	420.33 de	416.67 c-g		416.33 e-g 415.00 c-g	417.08 C
NARC-2009	410.67	410.33	407.33	402.67	407.75 B	419.67 d-g 412.67 g	412.67 g	416.33 c-g	416.33 c-g 416.67 e-g	416.33 C
Millat-2011	412.33	419.00	418.00	416.67	416.50 A	431.67 b	435.00 ab	439,33 a	425.00 cd	432.75 A
Means	469.93 BC 414.53	414.53 A	413.47 AB	407.67 C		424.00 A	422.53 A	424,73 A	418.93 B	

Any two means carrying the same letter(s) in a row or column are non-significant at P= 0.05 by Duncan's Multiple Range Test (DMRT). "N= non-significant

2,4-D Concentrations/ Year 2013-2014 Year 20	112/1/20		Year 2013-2014	3-2014				Year 2014-2015	2015	
varieties	0 M	0.01 M	0.03 M	0.04 M	Means -	MO	0.01 M	0.03 M	0.04 M	M Means
Aas-2011	18.85 N.S	18.95	18.75	19.00	N 68'81	19.41 NS	19.33	19.34	19.41	
Punjab-2011	18.69	18.80	18.53	18.75	18,69 B	19.16	18.82	19.16	19.31	19.11 B
NARC-2011	18.59	18.85	18.43	18.75	18.65 BC	18.86	19.58	19.18	19.24	18,97 B
NARC-2009	18.43	18.59	18.27	18.75	18.51 C	19.03	18.61	18.87	19.11	18.91 B
Millar-2011	19.00	19,06	18.85	19.16	19.02 A	19.35	19.28	19.46	19.44	19.39 A
ATTOMIC TANAL B										
Means Any two means carrying Table 8.Effect of 2.4-D	18.71 B g the same lette herbicide on st	18.85 A	18.85 A · 18.57 C	18.88 A are non-sig	nificant at P= 0	19.16 A .05 by Duncar	18.93 B	19.20 A Range Test (D	19.30 A	A non-significa
Means Any two means carrying Table 8.Effect of 2.4-D	18.71 B g the same lette herbicide on st	18.85 A	· 18.57 C	18.88 A are non-sig epidermis c	nificant at P= 0	19.16 A 05 by Duncar s during year	18.93 E	19.20 A Range Test (I d 2014-15.	19.30 MRT), ^{KS}	A non-significa
Means Any two means carrying Fable 8.Effect of 2.4-D 2,4-D Concentrations/	18.71 B g the same lette herbicide on st	18.85 A	v or column are x of abaxial epic Year 2013-2014	18.88 A are non-sig epidermis c	nificant at P= 0	19.16 A 05 by Dunca es during year	18,93 E 's Multiple 3 2013-14 ar	19.20 A Range Test (I d 2014-15. ear 2014-201	19.30 MRT). ^{NS}	A non-significa
Means Any two means carrying Table 8.Effect of 2.4-D 2,4-D Concentrations/	g the same lette herbicide on st	18.85 A er(s) in a rov omatal inde	· 18.57 C · or column · or abaxial · car 2013-2 0.03 M	18.88 A are non-sig epidermis c :014	nificant at P=0 f wheat varieti Means	19.16 A 05 by Duncar es during year 0 M	18.93 E 's Multiple 2013-14 ar	B 19.20 A Range Test (D)	MRT). NY 5	A non-significa
Means Any two means carryin Table 8.Effect of 2.4-D 2,4-D Concentrations/ varieties Aas-2011	18.71 B gifte same lette herbicide on st	18.85 A rr(s) in a rov omatal inde	· 18.57 C vor column vor dabaxial vof abaxial cear 2013-2 0.03 M 21.08	are non-sig epidermis c 0.04 M 20.60	nificant at P= 0 f wheat varieti Means 20.76 NS	19.16 A 05 by Duncar s during year 0 M 19.79 NS	18,93 E 's Multiple 2013-14 ar 0.01 M	19.20 A Range Test (I d 2014-15. ear 2014-201 0.03 M 20.17	MRT). NS = 0.04 M 19.83	A non-significa Means 20.01 NS
Means Any two means carryin Table 8.Effect of 2.4-D 2,4-D Concentrations/ varieties Aas-2011 Punjab-2011	18.71 B g the same lette herbicide on st 20.22 % 19.58	18.85 A 9(s) in a rov omatal inde 0.01 M 21.15	· 18.57 C v or column x of abaxial x of abaxial (car 2013-2 0.03 M 21.08	18.88 A are non-sig epidermis c 014 0.04 M 20.60	nificant at P= 0 f wheat varieti Means 20.76 NS	19.16 A 05 by Duncar s during year 0 M 19.79 NS	18.93 E 's Multiple 2013-14 ar 20.01 M	19.20 A Range Test (I d 2014-15. ear 2014-201 0.03 M 20.17	MRT). NS	A non-significa Means 20.01 NS
Means Any two means carryin Table 8.Effect of 2.4-D 2,4-D Concentrations/ varieties Aas-2011 Punjab-2011 NARC-2011	18.71 B g the same lette herbicide on st 0 M 20.22 NS	18.85 A rr(s) in a rov omatal inde 0.01 M 21.15 21.30	18.57 C or column x of abaxial (car 2013-2 0.03 M 21.08 19.27	18.88 A are non-sig epidermis c 19.04 M 20.60 19.08	nificant at P=0 f wheat varieti Means 20.76 NS	19.16 A 05 by Duncar s during year 0 M 19.79 NS	18.93 E 18.93 E 19.70	19.20 A Range Test (I d 2014-15. ear 2014-201 0.03 M 20.17 19.86	5 0.04 M 19.83 19.74	A non-significa Means 20.01 NS
Means Any two means carryin Table 8.Effect of 2.4-D 2,4-D Concentrations/ varietics Aas-2011 Punjab-2011 NARC-2011	18.71 B g the same lette herbicide on st 0 M 20.22 vs 19.58	18.85 A 18.85 A 18.85 A 20.01 M 21.15 21.30 23.13	18.57 C v or column v of abaxial v of abaxial v car 2013-2 0.03 M 21.08 19.27 20.50	18.88 A are non-sig epidermis c 0.04 M 20.60 19.83	nificant at P= 0 wheat varieti Means 20.76 NS 19.81 20.14	19.16 A 05 by Duncar 8 during year 19.79 NS 19.70 19.66	18.93 E 's Multiple 2013-14 ar 20.01 M 20.25 19.70	19.20 A Range Test (I d 2014-15, car 2014-20 0.03 M 20.17 19.78 19.86	5 0.04 M 19.83 19.49 19.63	A non-significa Neans 20.01 NS 19.79 19.71
Means 18.71 B 18.83 A · 18.57 C 18.88 A 19.02 A 19.02 A 19.35 B 19.20 A 19.30 A 19.41 A 19.30 A 19.41 A 19.30 A 19.41 A 19.30 A 19.42 A 19.43 A 19.44 A 19.30 A 19.44 A 19.30 A 19.44 A	18.71 B g the same lette herbicide on st 0 M 20.22 vs 19.58 20.31 20.10	18.85 A 97(s) in a rov omtal inde 21.15 21.30 19.92 23.13 20.80	18.57 C v or column v of abaxial v of abaxial v car 2013-2 0.03 M 21.08 19.27 20.50 20.55	18.88 A are non-sig epidermis c 0014 0.04 M 20.60 19.08 19.83 19.83	mificant at P= 0 of wheat varieti Means 20.76 NS 19.81 20.77	19.16 A 05 by Duncar 8 during year 19.70 19.70 19.66	18.93 E 's Multiple 32013-14 at 0.01 M 20.25 19.70 19.70	19.20 A Range Test (I d 2014-15, ear 2014-20 0.03 M 20.17 19.78 19.86 19.55	A 19.30 DMRT), KS, 19.83 19.74 19.83 19.63 19.63	A non-significa non-significa 20.01 NS 19.79 19.71 19.60 19.60

All factors (except concentrations of 2,4-D herbicide during 2014-15), showed non-significant ($p \le 0.05$) results during both growing seasons in terms of stomatal index of abaxial epidermis (Table 8). During 2014-15, significant effect was noted with the application of 2,4-D herbicide. The plants treated with 0.01 M (19.90) concentration showed maximum stomatal index and minimum was noted in plants treated with 0.04 M (19.70) concentration of 2,4-D herbicide (Table 8). Prakash *et al.*, (1978) investigated that the applications of flurochloridone and alachlor herbicides reduced stomatal index.

Acknowledgments

This work was a part of Ph.D. thesis of the 1stauthor. Authors thank HEC for financial support for research work

REFERENCES

- Anastasov, H. (2010a). Influence of oxyfluorfen on some anatomic indeces in the leaves of Virginia tobacco plant (*Nicotiana tabacum* L.). *Biotechnol. Biotech.* Eq., 24: 33-35.
- Anastasov, H. (2010b). Influence of imazamox on some anatomic indeces in the leaves of sunflower plant (*Helianthus annuus* L.). *Gen. Appl. Plant Physiol.*, 36: 64-68.
- Cali, O.L. (2009). The effect of fosetyl-Al application on stomata in tomato (*Lycopersicon esculentum* Mill.) plant. *J. Plant Breeding Crop Sci.*, 1(3): 045-048.
- Ferreira, E.A.,M.C. Ventrella,J.B. Santos, M.H.P. Barboso, A.A. Silva, S.O. Procopio and E.A.M. Silva (2007). Leaf blade quantitative anatomy of sugarcane cultivars and clones. *Planta Daninha*, 25: 25-34.
- GOP (2013). Economic Survey of Pakistan. 2013-14. Finance and Economic Affairs Division, Islamabad. p.15
- Guh, J.O and Y.I. Kuk (1997). Difference in absorption and anatomical responses to protoporphyrinogen oxidaseinhibiting herbicides in wheat and barley. *Korean J. Crop Sci.*, 42: 68-78.
- Ha, S.B., S.B. Lee, D.E. Lee, O.J. Guh and K. Back (2003). Transgenic rice plants expressing *Bacillus* protoporphyrinogen oxidase gene show low herbicide oxyfluorfen resistance. *Biol. Plant*, 47: 277-280.
- Jung, S., Y. Lee, K. Yang, S.B. Lee, S.M. Jang, B. Ha and K. Back (2004). Dual targeting of *Myxococcus xanthus* protoporphyrinogen oxidase into chloroplast and mitochondria and high level oxyfluorfenresistance. *Plant Cell Environ.*, 27: 1436-46.
- Kamble, S.I (2007). Effect of spray application of oxyfluorfen on anatomical characters of *Hibiscus cannabinus* Linn. *Biosci. Biotech. Res. Asia*, 4: 671-674.
- Kamble, S.I (2013). Effect of agrochemical (2,4-D) on anatomical aspects of *Cassia tora* Linn. *Biosci. Biotech. Res. Asia*, 10(2): 885-89.
- Pemadasa, M.A and K. Jeyaseelan (1976). Some effects of three herbicidal auxins on stomatal movement. *New Phytol.*, 77: 569-573.
- Prakash, J., S. Barber and S.K. Pahwa (1978). Effect of some herbicides on the epidermis of *Vicia sativa* L. *Weed Res.*, 18: 379-380.
- Rajendra, B.R., K.A. Mujeeb and L.S. Bates (1977). A modified technique for stomatal study of the leaf epidermis in Triticeae. *Stain Technol.*, 52(1): 9-12.
- Salisbury, E.J. (1927). On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. *Philos. Trans. Royl Soc.*, 216: 1-65.
- Semerdjieva, I., S. Kalinova, M. Yanev and E. Yankova-Tsvetkova (2015). Anatomical changes in tobacco leaf after treatment with isoxaflutole. *Intr. J. Curr. Res. Biosci. Plant Biol.*, 2(7): 51-56.
- Stace, C.A (1965). Cuticular studies as an aid to plant taxonomy. Bull. British Museum (Nat. Hist) Bot., 4: 1-78.
- Steel, R.G.D., T H. Torrie and D.A. Dickey (1997). *Principles and Procedures of Statistics*. 3rd Ed. McGraw Hill, New York.
- Warabi, E., K. Usui, Y. Tanaka and H. Matsumoto (2001). Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. *Pestic. Manage Sci.*, 57: 743-748.
- Yang, K., S. Jung, Y. Lee and K. Back (2006). Modifying *Myxococcus xanthus* proto-porphyrinogen oxidase to plant codon usage and high level of oxyfluorfen resistance in transgenic rice. *Pestic. Biochem. Physiol.*, 86: 186-194.
- Yilmaz, G. and F. Dane (2013). Phytotoxic effects of herbicide attribut and surfactant bioPower on the root, stem, and leaf anatomy of *Triticum aestivum* Pehlivan. *Turk. J. Bot.*, 37: 886-893.
- Zadoks, J.C., T.T. Chang and C.F. Konzak (1974). A decimal code for growth stages of cereals. *Weed. Res.*, 14: 415-421.

(Accepted for publication September 2016)