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Abstract 

This paper examines the joint lot sizing problem for minimizing inventory costs for several products of 

constant demand made on one machine with zero cost setups but with setup times. If total demand 

requirements do not exceed available capacity then there is always a feasible schedule for any cycle 

sequence using different lot sizes.  The paper describes a four-stage solution procedure, which builds upon 

the concept of not having any idle time or carryover inventory.  The paper demonstrates that, quite often, 

unequal lot sizes can reduce inventory costs over equal lot sizes in the zero inventory case.   

 

Key Words: Lot-Sizing, Scheduling, Setup Time. 

 

Introduction 
 

Researchers have been examining, for a number of years, the multi-product lot sizing and scheduling 

problem for a workstation with level demands, which Maxwell (1961) first formulated. Early efforts 

viewed this problem as how to make many products on one resource, one product at a time, with level 

known demands, linear holding costs, positive setup times, and costs independent of previous product 

produced.  This approach ignored any raw material holding costs.  The primary goal was, first, to determine 

lot sizes that would meet overall demand over time and, second, to develop a feasible cycle schedule using 

these lot sizes that would meet all demands without any backordering. The secondary objective was to 

minimize the setup costs and total inventory holding for finished goods amongst all feasible cycles.    

 

This approach is quite straightforward with a common cycle production process, where there is a simple 

cycle of all products produced once each cycle. The advantage of such an approach is that it assures 

feasibility if there is enough available capacity for total production and setup times. If capacity is 

insufficient, it is a simple matter to increase the size of the lots and thereby reduce the proportion of time 

spent on setups. The reverse of this is reducing the size of lots until they just meet demand with full 

capacity and no idle periods.  However, smaller lot sizes, and thus lower inventory holding costs, involve 

more setups and thus higher setup costs.    

 

Unfortunately, this approach of trying to balance the setup and inventory holding costs using a simple cycle 

is not always so straightforward.  It may be desirable, in order to reduce costs, not to produce products with 

lower demands quite as often as other products and thereby save setup costs. However, while such an 

approach can reduce total costs, it can also produce infeasible schedules that do not meet demand all the 

time due to generated gaps in the schedule. Firms can easily rectify such problems if capacity is in 

abundance by scheduling production in the downtime gaps. The problem becomes more difficult to solve 
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with constrained capacity.  Researchers have published numerous schemes for swapping products from one 

part of the mini-cycle to another to solve this problem.  Unfortunately, these schemes usually assume that 

lot sizes must be constant from one mini-cycle to another because of the quadratic nature of the combined 

inventory and setup cost structure.  That is they assume that costs would probably increase for unequal lot 

sizes.  

 

All these problems arise because of the assumption that setup costs exist.  However, it is rational to assume 

in many cases that the firm will pay its labor regardless of whether they are producing products, performing 

setups, or are idle and that there are no specific setup costs such as cleaning fluids and scrap.  So, instead of 

assuming that each setup requires both a cost and a time, this paper assumes that there are no variable costs 

to setups, as Pinto and Mabert (1986) or Kim, Mabert, and Pinto (1993) did.  

 

This assumption often occurs in real life, where there are no additional, short-term costs to doing a setup 

over production, or such a cost is far less than inventory costs.  A typical example is an aerosol filling line 

that fill both wax and scent aerosols with widely differing fill rates.  The main variable cost of production 

and thus inventory costs are the costs of aerosols.  Setup mainly consists of removing the previous liquid 

from the filling lines, which takes a period of time. This setup time varies from lengthy for cleaning wax 

from the lines to a short period for clearing scent from the lines.  As line operators carry out the setups, 

there are no additional varying setup costs.  In addition, when one makes the same product all the time, 

there is a ramp-up effect.   In lines with ramp-up effects, one can account for this by using a longer setup 

time for the lower initial output cycles.  Another example is a four-wheel drive transfer gearbox assembly 

line, where the line operators do the setup.  As they assemble the same products all the time with level 

demands, there is no ramp-up effect.  There is a setup time but not a setup cost. 

 

As a result, the nature of the problem has changed, leaving inventory holding costs as the only variable 

cost.  Now, the cost structure has changed from quadratic to linear.  Also, the notion of constant lot sizes as 

preferable no longer holds sway.  So, solutions can use unequal lot sizes for the same product, which we 

will show greatly simplifies the feasibility problem. 

 

Example of Unequal Lot Sizes 

 
We now show pictorially how unequal lot sizes in a complex cycle can improve inventory.  This example is 

for three products A, B, and C on one workcenter.  Figure 1 shows the inventory level for each product 

over the life of a simple cycle.  This cycle has sequence ABC and the workcenter makes each product just 

once a cycle.  

Setup A

Produce A

Setup B

Produce B

Produce C

Figure One - Simple Cycle Inventory Levels
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Figure 2 shows the inventory levels for products during a complex cycle (with two subcycles).  This 

complex cycle has a sequence ABCB with equal lot sizes for B.  This cycle is complex as the workcentre 

makes B more than once a cycle.  This demonstrates that B has excess inventory as the workcentre makes 

A.  

 

Setup A

Produce A

Setup B

Produce B

Produce C

Figure Two - Equal Lot Size Cycle Inventory Levels
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Figure 3 shows the inventory levels for cycle ABCB with unequal lot sizes for B.   Inventory profiles for A 

and C are the same in all three cycles.  However, total inventory for B is less in Figure 3 than in the first 

two cycles.  This shows that in this example, unequal lot sizes in a complex cycle can result in lower 

inventory costs than a simple cycle or equal lot sizes in a complex cycle. 

 

Setup A

Produce A

Setup B

Produce B

Produce C

Figure Three - Unequal Lot Size Cycle Inventory Levels
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Thus, the first purpose of this paper is to demonstrate how any production sequence is feasible with 

unequal lot sizes.  After describing past research and stating the overall problem, the paper demonstrates an 

optimizing procedure for minimizing inventory-holding costs whilst giving feasible lot sizes for each part 

of a given cycle.  Having demonstrated that any sequence can be feasible, the problem arises of what is the 

best sequence to minimize inventory costs.  So, the second purpose of this paper is to show how to 

determine a good sequence.  This involves a three-stage procedure that gives a good cycle sequence that 

quite often lowers inventory costs as compared to a simple cycle for a given problem.  We base our 

procedure on the belief that good schedules should have no idle periods and each product’s inventory 

should run out just as production of that product resumes.  We will demonstrate the simple schedule 

procedure with example problems.  We then show solutions for these example problems using unequal lot 

sizes and compare them to simple schedule solutions.  

 

Previous Work 
 

Pinto and Mabart (1986), called henceforth P&M, developed a procedure to determine lot sizes for multi-

product single workstations that uses non-repetitive sequencing for the zero cost setup case.  Erenguc and 

Mercan (1989) criticized P&M for producing non-feasible schedules, the result of assuming equal lot sizes 

for each product over time.  Later, Zipkin (1991) showed that constant lot sizes were not optimum for all 

problems with setup costs and put forward a procedure, based on Dobson’s procedure (1987) to solve the 

similar problem with setup costs.  Allahverdi, Gupta, and Aldowaisan (1999) reviewed much of the earlier 

setup time literature. Sox and Gao (1999) considered setup carryover. Miller, Nemhauser, and Savelsbergh 

(2000), and Miller and Wolsey (2001) formulated and solved real problems with setup times and costs. 

Meanwhile, Ozdamar and Bozyel (2000), and Robinson and Sahin (2001) used overtime to handle the setup 

time problem. 

 

Edstrom and Olhager (1987) started with the equal lot size model when investigating the value of setup 

time reductions.  They pointed out, that for a rotating cycle with each product made each cycle, the 

minimum inventory holding cost comes when there is no idle time; that is, cycle time equals the sum of 

setup times plus the sum of production times needed for each product’s demand over the cycle time.  They 

developed the following equation for deriving minimum cycle time, 

  T = j (Sj) / [1 - j

 
(pj  dj)],             (1) 

 

where T is the duration of main cycle, j is the sum for all products, Sj is the setup time, pj is the 

processing time, and dj is the demand rate for product j 

 

Luss and Rosenwein (1990) used subcycles within the major cycle to schedule components made on one 

machine for a common assembly.  They did not, though, vary their lot sizes for a given product and thus 

their procedure can lead to excessive inventory levels during certain periods.  The research to find solutions 

to the joint lot sizing problem with zero setup costs has not examined using unequal lot sizes for a product 

in different subcycles in the production cycle. 

   

Formulation of the Overall Problem 
 

The Problem Restated  

 

The study investigates how to plan the lot sizes and the sequence that will minimize the total inventory 

holding costs for a single machine with level deterministic demand of several products over a long time.  

The machine has a fixed capacity and for each product there is only one production rate.  The planner 

knows all the setup and processing times.  These are constant and not affected by sequence.  There are no 

machine breakdowns or other unknown events.  All costs except for holding costs are fixed costs since 

there are no extra setup costs as a result of machine operators doing the setups.  Products need not have 
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constant lot sizes over time.  The workcentre does not need to make every product every subcycle.  The 

firm must meet all demand with no back orders.  The study assumes that sufficient inventories exist to 

allow the first cycle to begin.  The problem is to find a feasible sequence and the corresponding lot sizes 

that minimize inventory costs. 

 

Symbols Used 
 

In order to help develop this procedure, this paper and attachments will use the following symbols 

throughout in its equations and writings, 

 

A is the number of production hours in a year 

AHCj is the total annual inventory holding cost for product j 

AIj is the average inventory for product j 

Cj is the inventory holding cost for product j per cycle 

dj is the demand rate per hour for product j 

Dj is the annual demand for product j 

eij is the idle time after producing product j in subcycle i 

hj is the holding cost rate in $s per hour for product j 

Hj is the annual holding cost rate in $s for product j 

Iij is total inventory for product j from subcycle i to subcycle i + yj 

Ij is total inventory for product j over the cycle 

i is the subcycle number in the cycle 

j is the product number or name 

k is the sequence number 

kij is the value of sequence number k for product j in subcycle i        

lij is the lot size for product j in subcycle i 

m is the number of products 

n is the number of subcycles in the main cycle, = max(zj) = zmax 

p
j
 is the production rate per hour for product j  

ptj is the processing time in hours to make one product j        

rij is the time, in hours, from the end of making product j in subcycle i, until the start of making product j 

again, which is not necessarily in the next subcycle. 

Sj is the setup time, in hours, for product j 

i means the sum for all subcycles from i = 1 to i = n 

j means the sum for all products from j = 1 to j = m 

tij is the production time in hours for product j's lot in subcycle i 

T is the total time in hours of the main cycle  

T
max

 is the maximum total time in hours of the main cycle allowed 

TAHC is the total annual inventory holding cost for all products 

xij is whether product j is made in subcycle i; xij = 1 if yes, xij = 0 if no 

yj is the number of subcycles until product j is next made, as defined by P&M 

y is the vector of yjs, viz., [ y
1
, y

2
, . . . .  , y

m
]  

zj is the number of times in a cycle product j is made; = S xij 

z is the frequency vector of zjs, viz. , [ z
1
, z

2
, . . . .  , z

m
] 

z is the infeasible optimum frequency vector [ z
1
, z

2
, ... , z

m
]  

z is the long cycle frequency vector [ z
1
, z

2
, ... , z

m
] that gives the lowest bound  

z
max is the largest zj. 
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Formulation 
 

We will first formulate the overall problem assuming no idle time using the symbols defined above.  

Appendix A reformulates the problem for cases with idle time.  In a complex cycle there are several 

subcycles in each cycle.  The firm makes each product every cycle but not necessarily every subcycle.  A 

product appears at most once each subcycle.  The objective function is minimizing inventory cost per time, 

MIN j (hj  Ij /T)      (2) 

The machine makes product j for time tij in subcycle i.  A time rij passes before the machine begins to 

make j again just as j's inventory runs out.  Over this time, the total inventory is peak inventory multiplied 

by the period between the starts of producing j, tij + rij, divided by 2.   Inventory built up during period tij 

dissipates during period rij.   This is because any excess inventory existing when production restarts will 

add to the unnecessary inventory holding costs and not enough inventory will lead to stock-outs.  So, the 

peak inventory of product j is the maximum inventory built up.  In equation form, it is, 

 (p
j
 - d

j
)  tij   = dj  rij         (3) 

Thus, total inventory for product j between productions is, 

 Iij = [tij + (pj - dj)  tij /dj]  (pj - dj)  tij/2     (4) 

Iij = [pj  (pj - dj)  tij
2

] / (2 dj).      (5) 

Thus for product j, the holding cost per cycle is the sum of the inventories for each buildup multiplied by 

the holding cost, 

 Cj =  hj pj  [(pj - dj)/(2   dj)]  i {tij
2

}    (6) 

 Since the total holding cost rate for the schedule is the sum of the product holding costs divided by the 

cycle length, the objective function minimizes the sum of the results of average inventories multiplied by 

their holding cost rates.  Thus, it is necessary to solve, 

 MIN j [hj  pj  (pj - dj)/(2 dj) i (tij
2

/T)],    (7) 

where the cycle length, T, is the sum of setup times and production periods,  

 T = j (zj  Sj + i tij)       (8) 

 zj = i (xij) >= 1, integer, for all j      (9) 

where xij is whether product j is produced in subcycle i and each product must be made at least once each 

cycle. 

There must be a balancing of demand and production.  So reformulating equation (3) gives, 

 tij = dj  rij / (pj - dj) for all tij      (10) 

where the period the inventory built up for product j in subcycle i is the total of all setups and production 

periods until product j is in production again in subcycle q, 

                k=kiq-1  

 rij = k {(tij + xij  Sj),  with i and j from kij}    (11) 

                k=k
ij

+1 

Finally, one converts production periods into lot sizes,  

 lij = pj  tij for all i, for all j      (12) 

 

We consider that this formulation is not soluble in one stage as it involves circular constraints.  This is 

especially true as the number of subcycles, n, and cycle length, T, will tend to infinity for the optimum 

solution.  Since the cost improvement decreases as n increases, and since there is often a practical limit to 

T, a good solution often has an n less than this optimal n.  So we propose that having a maximum limit to 

cycle length, Tmax, is reasonable.  This is because demand rates and product mixes in the long run are 

likely to change.  So, rather than attempting to solve this problem in one step, we suggest that a more 

reasonable approach is to solve the problem in two steps.  First, choose a maximum cycle length and decide 

on how many lots of each product in each cycle and their sequence.  We will next demonstrate the use of 
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our four-stage procedure for this step and the rationale behind it.  Second, find the minimum lot sizes for 

this sequence that are feasible.  We will later show how one can find the minimum feasible lot sizes for any 

given sequence.   

 

Determining a Realistic Cycle Sequence  
 

The fact, shown later, that a feasible schedule exists for any sequence leads to the necessity of finding the 

best sequence.  Due to the continuous nature of the lot sizes and the discrete nature of the setup time, this 

can be a difficult problem.  However, the following procedure offers a good solution.  This procedure uses 

the fact that for any one product then equal lot sizes at equal spacing will always give a lower cost for that 

product than unequal lot sizes.  However, often this would lead to more than one product being scheduled 

at the same time or alternately product either running out before resumption of product or else inventory 

not running out just as production restarts.  One wants inventory to run out as production restarts or else 

one has stored product from one production run to the next.  This creates unwanted holding costs.  Thus, in 

many cases equal lot sizes for anything more complicated than a simple cycle are infeasible.  Thus, one has 

to stretch what is cheapest for each product to get an overall feasible schedule that has a low cost.  The next 

section outlines the procedure, while later sections discuss each part of this procedure in more detail.  

 

General Procedure 
 

The proposed procedure consists of the four stages, outlined below: 

 

1) Find the optimum frequency vector, z.  That is one decides what is the ratio of product lots in a cycle, 

assuming equal lot sizes for each product over a very large Tmax.  As one is dealing with frequencies, this 

stage takes no account of the limitation that one can only make one product at a time or that one wants 

inventory to just run out as production restarts.  It also does not produce integer number of lots per cycle. 

So it can be an infeasible frequency vector.  Convert this z* to a feasible but extremely long z+ by multiply 

by a large factor, like 1000, until all the zj*s are integer zj
+s.  The cost of this z becomes the lowest cost 

bound.  

 

2) Find a good frequency integer vector, z, from  with a suitable T.  That is one decides how many times 

a cycle to produce each product.  The cost of this z with equal lot sizes becomes the lower bound of this 

frequency vector.  This lower bound is normally infeasible.  One should repeat the second stage if the gap 

between the lowest bound and the lower bound is too large.  These lower bounds are quick checks to ensure 

one is on the right track, since the equal lot size calculations are quick although they normally produce 

infeasible solutions.  

 

3) Use the determined frequency vector, z, to find a good and practical sequence.  The firm can find this 

sequence manually using a near equal spacing procedure or with some procedure like that of Zipkin (1991).  

 

4) Find the minimum cycle length, T, and the feasible lot sizes for that sequence when there is no idle time.  

Then one compares the cost with the lower bound cost for that z.  One should repeat the third stage if the 

gap is too large.  

 

Determining the Frequency Vector, z* 
 

The derivation of the following equations, (12) to (16), which find z* for a given Tmax, is in Appendix 2 

because of its length. 

   MIN j (bj/zj
*)                 (13)  

where bj = Hj  (1 - dj/pj j      (14) 
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 Such that,  

 zj
* >= 1 , for all j        (15) 

 j (Sj  zj
*) <= Tmax [1 - j (dj/pj)]       (16) 

 

For the case with a common setup time, S, the constraint (16) becomes, 

 

 j (zj
*) <= Tmax  [1 - j (dj/pj)] / S      (17) 

 

These equations find a frequency vector, z*, which minimizes annual inventory costs for a cycle of length 

Tmax.  These equations find the ratios of zjs while assuming that all the tij for each product j are the same.  

This assumption makes the problem easily solvable but usually the tijs will not be the same.  The value of 

Tmax does not matter as long as it is large because it is only the ratio of the zj
*s that matters at this stage.  

Then multiply z* by a constant to get z+ whose zj
+ are all integer.  One can get the cost of the feasible 

lowest bound if one assumes equal lot sizes for this z. 

 

Determining the Frequency Vector, z 
 

Make all the final zj integers by manually rounding the resulting non-integer zj
*s.  One rounds the zj

*s 

results in most cases for a very small cost rise, as the cost structure is relatively robust.  The rounded zj
*s 

gives the zjs that forms the trial zs.  One can calculate the lower bound for any z by assuming equal lot 

sizes. This is because unequal lot sizes for any z will cost more than equal but unfeasible lot sizes.  The 

upper bound cost is the cost of a simple sequence.  The optimal feasible solution must be worse than the 

lowest bound.  A good z is as a result defined as a z whose lower bound cost is less than that of the simple 

cycle solution cost and that is not too much above the lowest bound cost.  

 

Determining sequence from frequency vector, z 
 

The best sequence would minimize the inventory holding costs such that products just run out of inventory 

as production restarts.  Thus, to find lot sizes, solve the following equations, 

         MINj [cj   i (tij
2

)] such that (10), (11), and (12) are true,                                      (18) 

 where   cj = Hj  pj  (pj - dj) / dj      (19) 

 

There are several different possible sequences for each z. To compare the possible sequences, it is 

necessary to compute for each sequence, the feasible lot sizes and the resultant inventory holding cost.  We 

suggest that one chooses a sequence manually by trying to space product runs such that the period between 

production restarts, rij’s, for each j are near to the same as possible. One does this by scheduling the 

products with the highest cjs with as near to equal lot sizes as possible, then fitting in the others.  This 

method is works well for small zs and a small number of products.  Zipkin’s (1991) procedure for a multi-

product case would also work for this case if one lets his u and an equal zero.  Pair-wise exchange 

techniques can also produce variation on an initial sequence.  We found that our examples had little cost 

variations with different sensible sequences for the same z.  Appendix 2 determines the lower bound cost,  

 which is T j (bj/zj) / 2.        (20) 

 

Development of the Cycle Length Equation 
 

The minimum feasible cycle length for a given cycle is when all products run out just as their product 

restarts.  This minimum feasible cycle length minimizes the holding costs as a longer cycle will lead to 
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larger lot sizes and thus inventory costs and a smaller length will lead to stock outs.  With this cycle length 

there is no idle time.  So, one calculates the total cycle setup time for the given cycle sequence.  The annual 

available time for setups is the available capacity minus the total processing time for the total annual 

demand of all products.  One obtains the number of cycles per year (N) by dividing the total annual setup 

time available by the required cycle setup time. The cycle’s total length, T, is the annual available capacity, 

A, divided by the number of cycles,  

 

 T = A/N =  j {(Sj  zj)  A / [A -  j (Dj/pj)]}                  (21) 

 

Determining the lowest cost feasible lot sizes for a cycle sequence 
 

Use the equations (8), (10), (11), and (12) to produce the minimum lot sizes for the chosen sequence.  One 

repeats this for several sequences derived from z and chooses the lowest cost sequence.  We demonstrate 

this procedure with the following sample problems. 

 

Examples 
 

Sample Problems 

 

We will use P&M’s two example problems’ input data to show how to use these equations for actual 

problems.  P&M’s first example problem has equal setups with different holding and demand rates for each 

of the five products.  We shall call this PMF for P&M’s ‘Fixed’ setup example.  P&M’s second example 

has unequal setup times but has all other numbers the same as problem PMF.  We call this problem PMV 

for P&M’s ‘Variable’ setup example.  Table 1 shows P&M’s input data. 

 

Table 1 - P&M’s Problems’ Input Data 

Product Annual Demand Setup Time Annual Holding Cost 

j Dj Sj  (PMV) Hj 

 Units hours $/unit 

1 18,050 6 66 

2 34,020 10 84 

3 35,980 4 87.84 

4 13,404 12 60 

5 24,576 8 60 

S for PMF is 8 hours to setup for all products; A is 3480 capacity hours per year. 

Note; for simple cycles the total setup time per cycle is 40 hours for both PMV and PMF.   

 

PMF has a cycle time, using (21), of, 

 T =  j (8  zj  3480 / 615.5)  =  45.2  
j
 (zj)             (22) 

Thus, if  j (zj) = 5 (i. e., equal lot sizes with all zj = 1) then T = 226 hours.     

PMV has a cycle time, using (21), of,  

T = 5.65  (6z
1 + 10z

2 + 4z
3 + 12z

4 
+ 8z

5
)     (23) 

If all zj = 1, then T = 226 hours for PMV. 

 

Fixed Lot Schedule 
 

A simple cycle, which has no subcycles and has each product made only once each cycle, results if it is 

necessary, for logistical or other reasons, to have fixed size lots for each product over time, i.e. all zj = 1.  T 

for the fixed lot condition comes from (21).  As with simple cycles the lot size must meet demand for the 

whole cycle then calculate lot sizes, lj, using, 
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 lj = dj T for all j       (24) 

For a simple cycle, as average inventory is half the maximum inventory and maximum inventory is lj  (pj 

- dj)/pj, then product annual holding cost is from, 

 

AHCj = Hj  lj  (pj - dj) / (2  pj)                  (25) 

 

For these particular problems, PMF and PMV, since the lot sizes are identical, the constant lot size solution 

gives a feasible schedule with a annual inventory cost of $249,016.  This is the cost that we will use as an 

upper bound for future comparisons.  

 

Unequal lot schedule results for P&M's examples 
 

This procedure gives feasible solutions with unequal lot sizes to the two P&M problems.  We solved, by 

giving non-integer zj
*s, these nonlinear equations for optimality for a Tmax of half a year.  We rounded the 

resulting zj
*s to give feasible zs with integer zjs.  We then choose sequences for each problem, calculated 

lot sizes, and thus annual inventory costs for these sequences.  

 

Results for example PMF 
 

The solution for the PMF example is a non-integer answer z+, 

 z+ = [6.62, 9.63, 10.04, 5.53, 7.18]     

We converted this z+ into a good but not very practicable integer z*, by multiplying zj
+ by 100, which 

keeps the same ratio of production lots per cycle, 

 z* = [662, 963, 1004, 553, 718] 

This z* would require 3900 setups per cycle and take 50.7 years.   

 

We thus converted the original infeasible z+ to the following four feasible zs, which are more practical than 

z*, by rounding the original zj
*s.  The total number of subcycles in a cycle is made equal to the largest zj.  

We first chose a z with five subcycles then further rounded to get one with four subcycles.  This rounding 

continued until we had a z of two subcycles.  We manually chose for each z the following associated 

sequences that keep a particular product’s spacing as constant as possible.  This is because for any 

particular product and cycle length equal spacing minimizes holding costs.  These sequences may not be 

the optimum sequences for these particular zs.  We also worked out a sequence for P&M’s original solution 

for comparison. 

 

P&M had for the PMF problem, after their rounding, a subcycle interval vector of y = [2, 1, 1, 3, 1].  zmax 

is the smallest integer from P&M's y of which all yj are integer factors.  This gives a zmax of 6.  We 

converted y to a frequency vector, z = [3, 6, 6, 2, 6], by using zj = zmax/yj.    We selected possible 

sequences based on this frequency vector, which are listed in Table 2. 

 

Table 2 - Possible Sequences for PMF Problem 

Name Frequency Vector Subcycles Chosen Sequence 

Short cycle z = [1, 2, 2, 1, 1], n = 2 325  3214 

Medium cycle z = [2, 3, 3, 2, 2], n = 3 2314  2351  2345 

Medium-long cycle     z = [3, 4, 4, 2, 3], n = 4 2315  2315  2341  2354 

Long cycle  z = [3, 5, 5, 3, 4], n = 5 2354 2351 2354 2351 2314 

P&M’s cycle z = [3, 6, 6, 2, 6], n = 6 3251 325 3251 3254 3251 3254 
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For each z, we found the lower bound using equation (20).  For each sequence, we found the cycle length 

and average inventory holding rate using equations (7), (8), (10), (11), and (12).  Annual holding cost is 

inventory holding rate multiplied by the annual capacity.  Table 3 shows the results, which Figure 4 

graphically presents.   

 

Table 3 - Summary of results for PMF problem 

Subcycles T Annual Inventory Cost ($) 

n hours Lower Bound Actual Comments 

1 226 249,016 249,016 Upper bound 

2 317 243,061 243,879 Best actual 

3 543 238,548 244,036  

4 724 238,172 250,049  

5 905 238,168 255,180 Best lower bound 

6 1041 n.a. 263,653 P&M’s solution 

1004 176,338 237,090 237,090 Lowest  bound 

             
Comments on PMF’s results 
 

The lower bound did become lower with more subcycles but the improvement rapidly became small.  The 

lowest bound gave a 4.8 % improvement over a simple cycle.  However, the lowest bound is not feasible.  

Thus, one must use one of the feasible, non-optimal sequences.  Interestingly, the gap between the actual 

cost and the lower bound cost increased as the number of subcycles increased, possibly due to the discrete 

aspects of the problem.  The lowest actual cost found was for a sequence of two subcycles, which gave a 

2.1 % improvement over the simple sequence.  This improvement is almost half of the maximum possible.   

P&M’s solution was 5.8 % worse than a simple cycle. 

 

Results for example PMV 
 

The solution for the PMV example is a non-integer  z+, 

 

  z+ = [7.84, 8.83, 14.55, 4.63, 7.37].  
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We converted this by multiplying by 100 into a z = [784, 883, 1455, 463, 737] with an impracticable cycle 

time of 50 years.  We produced from this zand the three practicable and feasible zs by continually 

rounding.   

 

P&M used a subcycle spacing vector y = [3, 2, 1, 7, 2] for the unequal setup time problem, PMV.  We 

changed P&M’s y
4
 to 6 from 7 for this paper as P&M had already rounded up their original y = [29, 16, 10, 

69, 21].  Using their y would have resulted in 42 subcycles and a cycle time of over a year and a half, 

which we considered as too long.  This y gave a frequency vector z = [2, 3, 6, 1, 3].  We chose manually for 

each z the following sequences in Table 4, where product spacing is as constant as possible. 

 

Table 4 - Possible Sequences for PMV Problem 

Name Frequency Vector Subcycles Chosen Sequence 

Short   cycle     z = [1, 1,  2, 1, 1],   n = 2 12345 3 

Medium cycle z = [2, 2, 3, 1, 2],    n = 3 325 312 3541 

Long  cycle       z = [2, 2,  4, 1, 2],    n = 4 134 235 13 235 

P&M’s solution z = [2, 3, 6, 1, 3],     n = 6 321 35 32 351 32 354 

 

As with problem PMF, we found the lower bound for each z.  For each sequence, we found the cycle length 

and average inventory holding rate and compared the actual and lower bound holding costs for each 

sequence.  We tabulate the results in Table 5 and graphically present them in Figure 5. 

 

Table Five - PMV Summary Results 

Subcycles   T Annual Inventory Cost ($) 

     n hours Lower Bound Actual      Comments 

1 226 249,016 249,016 Upper bound 

2 317 230,770 231,221  

3 407 222,067 226,729  

4 724 221,961 226,567 Best Actual 

6 577 274,758 n.a. P&M’s solution 

1455 17416 219,812  Lowest bound 

Figure Five - Inventory Holding Costs for PMV for Different Number of 

Subcycles
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Comments on PMV’s Results 
 

This example shows that an unequal lot sequence in this instance gives a saving of $22,167 over the simple 

cycle’s cost.  The lower bound became lower with more subcycles, but the improvement rapidly became 

small with a lowest lower bound of an 11.7 % improvement over a simple cycle.  The gap between the 

actual cost and the lower bound cost increased as the number of subcycles increased.  The best actual 

lowest cost found was for a four subcycle sequence.  The difference, however, between the three and four 

subcycle costs was minimal.  This result gave a 9 % improvement over the simple sequence.  This is over 

three-quarters of the maximum possible improvement. P&M’s feasible solution was 10.3 % worse than the 

simple cycle solution in this instance.  

 

Finding lot sizes and annual holding cost 
 

We now show the details of finding the cycle length and annual holding cost for one sequence as an 

example in Table 6.  

 

Table Six - Example: Detailed Results for PMV with short cycle 

Cycle sequence is 12345 3 

Period  

tij 

Run 

Hours 

pj - dj 

units/hr 

tij + rij 

hours 
Subcycle 

Inventory 

Average 

Inventory 

H j 

($) 

Annual 

j's InvCost 

Lot           

Size 

t13 26. 33 33. 66 112. 03 49637    1158 

t23 32. 15 33. 66 136. 81 74032 496. 98 $87. 84 $43,655 1415 

t12 55. 31 34. 22 248. 84 235513 946. 438 $84. 00 $79,501 2434 

t11 29. 35 38. 81 248. 84 141746 569. 623 $66. 00 $37,595 1291 

t15 39. 93 36. 94 248. 84 183503 737. 429 $60. 00 $44,246 1757 

t14 21. 77 40. 15 248. 84 108762 437. 074 $60. 00 $26,224 958 

Setups 44. 00        

Total 248. 84      $231,221 9013 

 

Conclusions 
 

This paper demonstrates that there exists a feasible set of lot sizes for all sequences with zero setup costs.  

Using zero setup costs often makes more sense in many instances rather than assigning variable setup costs.  

The procedure nearly minimizes inventory costs in all but special instances for the zero setup cost case.  

One should consider unequal lot sizes to helping generate solutions in other scheduling problems as 

sequences with unequal lot sizes will usually give reduced inventory costs over equal lot size sequences.  

 

A more complicated sequence, where a product is not in production every subcycle, can lessen costs.  A 

much more complicated sequence, however, may not be worthwhile.  Although the lower bound cost 

decreases with longer cycle times, the actual achieved costs may not decrease.  This is because it is more 

difficult, with more complex frequency vectors to approach the lower bound schedule.  It may not be 

worthwhile because of this, and because of the rapid tailing off of the cost improvement with extra 

subcycles, to look at very long cycle times.  Although all the example problems had the same processing 

times, this procedure will work with different processing times for each product.  

 

There are also numerous extensions to the principle demonstrated in this paper; for example, overtime, 

setup time reduction, variable production rates, and idle time.  It should also be possible to examine the 

multiple machine case in the same way.  This procedure lets one calculate the inventory cost savings using 

overtime for all cases.  Preliminary results not reported in this paper showed that extra overtime lessened 

inventory-holding costs but at a declining rate.  These results showed that it is worth using overtime even 

when the machine was apparently not operating at full capacity.   
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Similarly, one can use this procedure to value setup time reduction and to find out which product’s setup 

time to reduce.  It is often worth reducing setup times even when not it appears the plant is not producing at 

full capacity.  In the extreme with very small setup times, one can have lot sizes of one and thus minimal 

inventory costs. 

 

Appendix 1 - Adapting the procedure for idle time or carryover inventory 
 

Having an idle period after a small lot and before a large lot can help to lower average inventory by 

increasing the preceding small lot.  This can reduce inventory costs for the product of that small lot if that 

lot was relatively small compared with other lot sizes of the same product.  Lowering the average inventory 

for that product causes this.  That maximum will hold sway over a smaller portion of a longer cycle time 

although the maximum inventory may remain the same or even increase.  Enlarging the small lot will 

increase the size of all the other product lots that it overlaps.  There will be further subsequent effects 

caused by these increasing lot sizes.   

 

The cycle time must increase by more than the idle time inserted in the schedule.  The savings, if any, from 

the idle time for one product will be in many cases less than the extra costs for the other products that have 

to have larger lot sizes.  One could consolidate the idle periods to allow a setup and a new production 

period that will reduce inventory costs.  One will in this case be changing the sequence.  We consider that if 

one can reduce the inventory cost by using idle time then there is probably a better sequence available.  So, 

one should not have planned idle time.  

 

If however one wants idle times, eijs, one can still obtain a feasible schedule.  Equation (11) now becomes, 

  rij = eij + i j (tij + xij  Sj)       (25) 

 

This gives ( zj + the number of eijs) unknowns in (zj) equations.  One could use an objective function if 

one wanted to minimize cycle length, 

 

MIN T = i j (tij + eij) +  j (zj  Sj)                (26) 

 

The formulation includes any needed carryover inventory.  Any extra carryover inventory acts as safety 

stock and thus does not affect the decision-making. 

 

Appendix 2 – Derivation of a formulation to find z 
 

One wants to minimize total inventory cost.  So for product j in subcycle i,  

 

Maximum Iij = (pj - dj) tij      (27) 

 

Total inventory over period i from start of production of product j until we next start to make product j is 

maximum inventory times time between production starts divided by two, 

Iij = (pj - dj) tij  (tij + rij)/2      (28) 

Total inventory for product j over the cycle of length T is the sum of all subcycle inventories, 

 

 Ij = i [(pj - dj)  tij  (tij + rij)] /2       (29)  

 

Average inventory for product j is total inventory divided by time T, 

 Ij = i [(pj - dj) tij (tij + rij)] /(2  T)       (30) 

The total annual cost of holding inventory for product j is the average inventory for j times the annual 

holding cost, Hj,     
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 AHCj = i [(pj - dj) tij  (tij + rij)] / (2  T)     (32)  

Total inventory holding cost is the sum of all the individual product holding costs, 

 TAHC = j {Hj  (pj - dj) i [tij  (rij + tij)]} / (2  T)               (33) 

Now, demand during time, rij equals net production in time tij,  

 (pj - dj) tij = dj   rij  for all i and for all j              (3) 

Rearranging (3),  

 rij = (pj/dj  - 1) tij for all i and for all j       (34) 

Substituting (34) in (33),  

  TAHC = j {[Hj  (pj - dj)  pj/dj i (tij
2)] / (2  T)}   (35) 

Total setup time per cycle = j (Sj  zj)                        (36) 

Total production time per cycle = j (dj/pj)  T                 (37) 

Adding (36) and (37) gives T, 

  T = j (Sj  zj) + j (dj/pj)  T      (38) 

Rearranging (38), 

  j {(Sj  zj) = T  [1 - j (dj/pj)]}       (39) 

Thus rearranging (39), 

 T = j {(Sj  zj) / [1 - j (dj/pj)]}       (40) 

So problem using (33) becomes, 

 MIN   j {[Hj  (pj - dj) pj/dj i (tij
2)] / (2  T)}   (41) 

 Such that, 

 T = j {(Sj  zj) / [1 - j (dj/pj)]}      (40) 

 zj >= 1 and is integer for all j       (9) 

 

Simplification 
 

We try to find a minimum lower bound case to solve this problem.  This is the minimum i (tij
2

), which is 

when all tij for one product j are equal to tj as i (tij) in a cycle is a constant.  This is usually not a feasible 

solution.  So, we assume tij = tj, for all j.  Thus substituting, 

 i (tij
2

) = zj  tj
2
 for all j        (42) 

Now in each cycle, 

 zj  tj  pj = dj  T   (production = demand for each j)   (43) 

Rearranging (43), 

 tj = dj  T / ( pj zj)        (44) 

Substituting (44) in (42), 

 i tij
2

 = zj  [dj  T / (pj  zj)]
2

 

 = dj
2

  T
2

 / (pj
2
  zj)                        (45) 

So (41) becomes after the substitution of (45) in the objective function, 

MIN (T/2)  [Hj  dj  (pj - dj) / (pj zj)]                           (46) 

So the problem becomes by substituting bj (14) in objective function (46), 

MIN (T/2)j (bj/zj)                (47) 

 Such that, 

j (Sj  zj) = T [1 -j (dj/pj)]              (40) 

zj >= 1, integer, for all j                 (9)  
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