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1. Introduction 

The present study is based on time series forecasting of river flows 

data of Indus at Terbala river by applying adequate methods like Box-

Jenkins method (Sarjinder Singh, 2003). Autoregressive Integrated 

Moving Average (ARIMA) is widely used model for the analysis of 

stochastic time series models (Jam, 2013) , (Hipel, 1994) model.  

To apply the ARIMA it is assumed that time series is linear and 

follows a particular known statistical distribution (Hipel, 1994), (Adhikari 

K. & R.K., 2013) Moving Average (MA) (Seymour, Brockwell, & Davis, 

1997) and Autoregressive Moving Average (ARMA) (Mills, 2015) 

models. For seasonal time series forecasting, Box and Jenkins (Klose, 

Pircher, & Sharma, 2004) had proposed a quite successful variation of 

ARIMA model, viz. the Seasonal ARIMA (Elganainy & Eldwer, 2018). 

ARIMA is most famous and widely used model in time series analysis due 

to its flexibility to represent several varieties of time series with simplicity 

as well as the associated Box-Jenkins methodology (Since & Model, 

2008), (Naveena, Singh, Rathod, & Singh, 2017).  

1.1  Background of Study:  

After Box-Jenkins, neural systems are taken place as an efficient 

technique. In 1940s, the systems of neural nets have its birthplace  

(McCulloch, 1943) and (Hebb, 1949) which has been seen into systems of 

basic processing method that can be demonstrate/model neurological 

action and acquiring inside these systems, individually.  
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1.2  Problem Statement:  

The economical procedures based on the forecasting issues for 

slight over the improvement of methods. Statistical and Econometrical 

methods are generally used the information as a part of overseeing 

generation frameworks. These methods have additionally revealed 

common application in an variety of other issue ranges. In financial 

matters, there are numerous issues which require the utilization of large 

panel of time series.  

1.3  Significance/Justification of Study:  

The recent technique is the way toward utilizing likelihood to 

attempt to forecast the probability of specific occasions happening in the 

future.  

a) Operations management  

b) Marketing  

c) Finance & Risk management 

 

d) Economics  

e) Industrial Process Control Demography:  

f) forecast of population  

1.4  Objectives of Study  

We focus on the real-world problem in the Pakistan Tarbela River. 

The objects of this study to fit the Model, identification, estimation and 

forecasting as well as forecasting to use SARIMA.  
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1.5  Research Questions:  

1. How to identify the model?  

2. How to estimate model?  

3. How to forecast the model?  

1.6  Limitation of Study:  

There are some limitations regarding this study because its finding 

may not be generalized for the entire Pakistan Tarbela river flows due to 

the listed below reasons:  

It adopts recent techniques  

It is restricted to a specific data  

The status of its finding may vary from time to time 

2. Literature Review 

(Chatfield, 1996) a model is rarely pre-specified but rather is typically 

formulated in an iterative, collaborative way using the given time-series 

data. Empirically, it established that the more complicated models tend to 

give a better fit but forecasts. 

(Jones & Smart, 2005) demonstrated that Autoregressive modelling is used 

to explore the internal structure of long-term records of nitrate 

concentration for five karst springs in the Mendip Hills and found that there 

exists significant short term positive autocorrelation at three of the five 

springs due to the availability of sufficient nitrate within the soil store to 

sustain concentrations in winter revive for several months.  

(Cai, Lye, & Khan, 2009) have been provided flood warnings to the 

residents living along the various sections of the Humber River Basin, the 

Water Resources Management Division (WRMD) of the Department of 



353 

 

 

 

Environment and Conservation has calculated flow forecasts for this basin 

over the years by means of numerous rainfall-runoff models. 

 (Rbunaru & Cescu, 2013) provided the time series data formed in 

both dynamic and time series which differ from other data sets which are 

arranged according to the time variable. The important and essential 

component of time series are seasonal fluctuations along with trend, 

cyclical and random oscillations are seasonal fluctuations. They provided 

the suitable method for the analysis of seasonal fluctuations. 

 (Valipour, Banihabib, Mahmood, & Behbahani, 2013) presented in 

their present study of forecasting the inflow of Dez dam reservoir by using 

ARMA and ARIMA models and increased the number of parameters to 

enhance the accuracy of forecasting. They compared these models  with 

the static and dynamic ANNs.  

 (Jam, 2013) has tried to explore the adequate Auto Regressive 

Integrated Moving Average model by through Box-Jenkins methodology 

to predict the area of mangoes in Pakistan. In this present study time series 

data from 1961 to 2009 has been used for forecasting of area of mangoes.  

 (Merkuryeva & Kornevs, 2014) presented the methods for flood 

forecasting and simulation which are applied to a river flood analysis and 

risk prediction. They applied different models for different water flow 

forecasting and river simulation.  

 It was the time when the creation of (Box , 1976), ARIMA models, 

furthermore called Box–Jenkins models, have been an extremely 

understood kind of time course of action models used as a bit of hydro-

logical forecasting the values. For the recent appliances, see for instance 

(Maria Castellano , 2004).  
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3. Research Methodology 

Let
1 2 3, , ,..., ,...tY Y Y Y be the elements of time series and the mean and 

variance at time t are given by 

 t tE Y =  

( )
22

t t tE Y  = −
   

The covariance of ,t sY Y by 

( )( )( , )t s t t s sCov Y Y E Y Y = − −    

Definition 3.1 

If the mean, variance and covariances are independent of time the 

time series is called stationary, mathematically, 

, 1,2,3,...t t = =  

, 1,2,3,...t t = =  

, ,t s t s t s  −=   

Definition 3.2 

 In time series autocorrelation is used instead of covariances and it 

may be defined as 

  
( )( )

( )

,

2
0 0

t tt t

t

E Y Y

E Y

 


  


  

++

=

− −  = =
 −
 

 

Autoregressive Process AR(1) 3.3 

 Let 
t be white noise and 

tY is an AR(1) process if 

 ( )1 1t t tY Y where  −= +  

 ( )2 1t t t tY Y   − −= + +  

 
2

1 2t t t tY Y  − −= + +  
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 ( )2

1 3 2t t t t tY Y    − − −= + + +  

 
2 3

1 2 3t t t t tY Y    − − −= + + +  

 . . . . . 

  . . .  

 . . . . .  

 
2 3

1 2 3 ...t t t t tY      − − −= + + + +  

   0tE Y = ; It is independent of time. 

 Also, the autocorrelation is 

  ,k t t kE Y Y +=  

 
0 0

i i

k i it i t i
E    

 

= =− −

  =
     

 2

0

i k i

k i    
 +

=
=  

 2 2

0

Infk i i

k i   +

=
=   

 
2

21

k

k k


  


=

−
 where 

 
0

k
k





=  

 0,1,2,3,...k

k k = =  

 0, 1, 2, 3,...
k

k k = =     which is independent of 

time. Thus AR(1) is stationary process. 

Notation of Lag Operators 3.4 

 Consider the time series 
1 2 3, , ,..., tY Y Y Y then we define the lag 

operator represented by L as given below: 
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  ( ) 2 3

1 1 2 31 ... p

t t pLY Y if L L L L L    −= = − − − − −  

Then we may define AR(1) process as follow: 

  1 1 2 2 3 3 ...t t t t p t p tY Y Y Y Y    − − − −= + + + + +  where 
t is 

white noise. So, using lag operator, it may be written as  

  
2 3

1 2 3 ... p

t t t t p t tY LY L Y LY L Y    = + + + + +  

  ( )2 3

1 2 31 ... p

p t tL L L L Y    − − − − − =  

  ( ) t tL Y =  where 1  

Autoregressive Process AR(2) 3.5 

 AR(2) process may be written as  

  
1 1 2 2t t t tY Y Y  − −= + +  

 Using lag operators, we have 

  ( )2

1 21 t tL L Y  − − =  

 Also the process may be write as 

  ( )t tY L =  

  ( )2 3

1 2 31 ...t tY L L L   = + + + +  

 Where 

  ( ) ( )
1

2 2 3

1 2 1 2 31 1 ...L L L L L    
−

− − = + + + +  

  ( )( )2 2 3

1 2 1 2 31 1 ... 1L L L L L    − − + + + +   

  

Equating coefficients, we have 

  
1

1 1 1 1: 0L    − + =  =  

  
2 2

2 1 1 2 1 1 1: 0L       − + + =  = +  
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3 2 3

2 1 1 2 1 1 1 2: 0 2L        − + + =  = +  

   

  

  1 1 2 2:j

j j jL     − −= +  

 All the weights can be determined recursively. 

Autoregressive Process AR(p) 3.6  

 AR(p) is defined as 

  1 1 2 2 ...t t t p t p tY Y Y Y   − − −− − − − =  

  ( )2 3

1 2 31 ... p

p t tL L L L Y    − − − − − =  

  ( ) t tL Y  =  where  

  ( ) ( )2 3

1 2 31 ... p

pL L L L L    = − − − − −  

 With the following condition of stationarity that can be set out as 

follows by writing 

  ( ) ( )( )( ) ( )1 2 31 1 1 ... 1 pL h L h L h L h L = − − − −  

  1 1,2,3,...,ih for i p=  

 Alternatively, we may write 

  
1

ih−
all lie outside the unit circle. 

 The autocorrelation will follow a difference equation of the form 

  ( ) 0 1,2,3,...kL for k = =  

 Which has the solution in the form 

  1 1 2 2 3 3 ...k k k k

k p pAh A h A h A h = + + + +  
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 Moving Average Process MA(1) 3.7 

 Here an MA(1) process can be defined as  

  
1t t tY   −= +  

 Where 
t is the white noise 

    0tE Y =  

    ( )
2

1t t tVar Y E   −
 = +
   

    ( )2 2 2

t t tVar Y E E   = +
 

 

    ( )2 21tVar Y  = +  

   1 1t tE YY −=  

  ( )( )1 1 1 2t t t tE    − − −= + +    

  
2

1 1tE  −
 =    

  
2

1  =  

 So, we have 

  
1 21





=

+
 

  ( )( )2 1 2 3t t t tE    − − −= + +    

  
2 0 =  

 Generally, 0 2j for j  . So Moving Average process MA(1) is 

stationary irrespective of the value of  . 

 Moving Average MA(q) process can be defined in the following 

fashion. 

   1 1 2 2 3 3 ...t t t t t q t qY         − − − −= + + + + +  
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    0tE Y =  

    ( )2 2 2 2 2

1 2 31 ...t qVar Y     = + + + + +  

   k t t kCov YY −=  

 

 

( )

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

...

...

... ...

t t t t k t k

k t k k t k k t k q t qk

t k t k t k t k q k t q

E

        

       

        

− − − −

+ − − + − − + − − −

− − − − − − − − −

 + + + + + 
  
+ + + + +=   

 
 + + + + + +  

 

  ( ) 2

1 1 2 2 ...k k k k q q k         + + −= + + + +  and 

  
 
k

k

tVar Y


 =  

 Also, for moving average process to be stationary regardless of the 

values of the ,s .   

  

( )

( )
0

2 2 2 2

1 2 3

,
,

1 ...

0 ,

n k

i i ki

k q

k q

k q

 

    

−

+=

 

= + + + + +




 

Autoregressive Moving Average ARMA(p,q) Process 3.8 

 It is mixture of AR(p) and MA(q) processes of order p,q and it is 

represented as ARMA(p,q) if 

1 1 2 2 3 3 1 1 2 2 3 3... ...t t t t t t t t q t qY Y Y Y           − − − − − − −= + + + + + + + + +  

( ) ( )2 3 2 3

1 2 3 1 2 31 ... 1 ...p q

p t q tL L L L Y L L L L        − − − − − = + + + + +  

 Or ( ) ( )t tL Y L  =  

Where the polynomials  and  of degree p and q respectively in 

L. 
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Box-Jenkins Methodology 3.9 

 Box-Jenkins methodology is very famous and widely used method 

of univariate time series analysis, which is a hybirid of 

the AR and MA models  

1 1 2 2 3 3 1 1 2 2 3 3... ...t t t t t t t t q t qY Y Y Y           − − − − − − −= + + + + + + + + +  

where the terms in the equation have the same meaning as given for the 

AR and MA model. 

 To apply the Box-Jenkins method, it is assumed that the 

time series is stationary. If the time series data is non-stationary then Box 

and Jenkins recommend differencing one or more times to achieve 

stationarity which produces an ARIMA model, where the "I" stands for 

"Integrated".  

To include the seasonal autoregressive and seasonal moving 

average terms, we extends the Box-Jenkins models which may complicate 

the notations and mathematics of the model. 

Box-Jenkins model commonly includes difference operators, 

autoregressive terms, moving average terms, seasonal autoregressive 

terms, seasonal difference operators, , and seasonal moving average terms.  

 The four stages of methodology are: 

➢ Identification 

➢ Estimation 

➢ Diagnostic check on Model adequacy 

➢ Forecasting 

These steps may be shown by a logic flow diagram as below: 
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Box-Jenkins Methodology stage of Identification 3.9.1 

  For the implementation of the Box-Jenkins model, the initial first 

step is to determine if the series is stationary.  

Only the partial autocorrelation function computed from sample is 

generally not helpful for identifying the order of the moving average 

process. Here are the basic guideline are listed below for the identification 

of AR(p) and MA(q) processes. 

 

Box-Jenkins Methodology stage of Estimation 3.9.2 
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 The step for the implementation of Box-Jenkins methodology is the 

estimating the parameters. Therefore, the parameter estimation is 

accomplished using sophisticated and high-quality software program that 

successfully implement Box-Jenkins models. 

Box-Jenkins Methodology stage of Diagnostics 3.9.3 

 When some candidate models are listed then next step is to check 

diagnostics for Box-Jenkins models. It means that the error term as 

assumed to follow the assumptions for a stationary univariate process, That 

is residuals should be white noise, that is having a constant mean and 

variance. If the residuals satisfy these assumptions, then it is expected that 

Box-Jenkins model is a good model for the data and will forecast the time 

series better. 

Box-Jenkins Methodology stage of Forecasting 3.9.4 

 When best is selected then it will be used for forecasting.  

Seasonal ARIMA Model 3.9.5 

 If there exists the seasonal trend after k period of then we try to 

remove the seasonality from the series and produce a modified time series 

which may not be seasonal. After that we apply the Box-Jenkins 

methodology of ARIMA model. Mathematically, let 
tv be the nonseasonal 

time series, then the proposed the seasonal ARIMA (SARIMA) model 

filter as 

  ( )( ) ( )1
D

k k k

k t k tL L Y L v − =   

 Where 

  ( ) 2 3

1 2 31 ...k k k k Pk

k k k k PkL L L L L    = − − − − −  

  ( ) 2 3

1 2 31 ...k k k k Qk

k k k k QkL L L L L    = − − − − −  
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 Also
tv is the ARIMA(p,d,q) which is the estimated using the 

ARIMA model as follow 

  ( )( ) ( )1
d

t tL L v L  − =  

 Putting for
tv , we have 

  ( )( ) ( )( ) ( ) ( )1 1
D D

k k k k k

k k tL L L L L L  −  − =    

 Which is SARIMA. 

3.1  Research Design:  

Appropriate quantitative techniques will be applied for the finding 

of this study. The method will be compare to find the adequate and 

appropriate technique to forecast the values of the water outflow data.  

3.2  Data Collection and analysis  

Secondary time series data of water outflow is used from 2015 to 

2019 recorded on daily basis. Appropriate and adequate statistical method 

have been applied using R, a statistical software. 

4. Results and Discussion
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Figure 4.1:- Time series plot of Water Outflow data 

  From figure 4.1, it is shown that there is seasonality in the 

data as within  a year it may be repeated in a similar way. It looks like a 

non-stationary time series as the mean and variance are not same with 

respect to time. We may note that there is gradual decrease in water 

outflow. For more elaboration we have other plots as given below. 

 

  Figure 4.2:- The First Difference Plot of Water Outflow  

  From figure 4.2, it is shown the mean of the given series 

becomes the constant with respect to time after taking the first difference 

of the series. It can also be seen that there is a seasonal trend the series and 

it can be further explore as below: 

 

 

Figure 4.3:- Seasonal Plot of the Water outflow 
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 From figure 4.3, The seasonal plot of the time series represents that 

there is almost same pattern during all the year which emphasis that there 

is seasonal trend the time series of the plot of the water outflow. It can be 

further explore by displaying the season subplot of Water Outflow data.  

 

 

Figure 4.4:- Season Subplot of the Water Outflow data 

  From figure 4.4, The season subplot of the time series 

signifies that there is roughly same pattern during all the year which focus 

on seasonal trend the time series of the plot of the water outflow. This 

suggest that the given time series should be decompose. 
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  Figure 4.5:- Decomposition of the Water Outflow time 

series 

From figure 4.5, Obviously, there is seasonal trend in the 

given time series of Water Outflow, it also shows that there is a 

decreasing trend. 

 

Figure 4.6:- Correlogram of the Water Outflow series 

with ACF 

   figure 4.6, it is shown that the process is memory driven 

process. 
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  Figure 4.7:- Correlogram of the Water Outflow series 

with PACF 

  From figure 4.7, it is shown that the process is also moving 

average  

 

  Figure 4.8:- Correlogram of the difference of Water 

Outflow series with ACF 

 

 

 



368 

 

 

 

Figure 4.9:- Correlogram of the difference of Water Outflow series 

with PACF 

 

   Table 4.1 Candidate SARIMA Models 

Model AIC 

ARIMA(0,1,0)(0,1,0) 8828.187 

ARIMA(0,1,1)(0,1,0) 8795.579 

ARIMA(0,1,2)(0,1,0) 8792.474 

ARIMA(0,1,3)(0,1,0) 8791.784 

ARIMA(0,1,4)(0,1,0) 8756.738 

ARIMA(0,1,5)(0,1,0) 8757.509 

ARIMA(1,1,0)(0,1,0) 8800.982 

ARIMA(1,1,1)(0,1,0) 8789.731 

ARIMA(1,1,3)(0,1,0) 8774.345 

ARIMA(1,1,4)(0,1,0) 8756.504 

ARIMA(2,1,0)(0,1,0) 8790.907 

ARIMA(2,1,1)(0,1,0) 8770.703 

ARIMA(3,1,0)(0,1,0) 8787.185 

ARIMA(3,1,1)(0,1,0) 8772.593 

ARIMA(4,1,0)(0,1,0) 8774.229 

ARIMA(4,1,1)(0,1,0) 8765.531 

ARIMA(5,1,0)(0,1,0) 8773.098 

 

 In the above table the candidate models for forecasting the Water 

Outflow data are tabulated, by studying the correlogram with respect to 

ACF and PACF. 
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Table 4.2 Summary  of Seasonal ARIMA Model  

ARIMA(1,1,4)(0,1,0)  AR(1) MA(1) MA(2) MA(3) MA(4) 

Estimate -0.2741 0.4444 -0.0502 -0.1378 -0.2082 

S.E 0.1608 0.1588 0.0428 0.0370 0.0308 

 

Table 4.3 Diagnostics of SARIMA 

AIC AICc BIC RMSE 

8756.43 8756.5 8786.48 10.8925 

 

Table 4.4 Ljung-Box test  

SARIM

A 

Q-statistic df p-value 

353.11 28

9 

0.0059 

 

 

  Figure 4.10:-  Graphical Presentation of the Actual  and 

Forecast 
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Table 4.5 Forecast Values Estimated through SARIMA Model 

Date 
Point  

Forecast 
Date 

Point 

Forecast 
Date 

Point 

Forecast 

1/1/2019   2.87 1/24/2019  23.02 2/16/2019  33.02 

1/2/2019   3.01 1/25/2019  30.02 2/17/2019  32.02 

1/3/2019   2.98 1/26/2019  30.02 2/18/2019  29.32 

1/4/2019   3.03 1/27/2019  33.02 2/19/2019  18.72 

1/5/2019  15.92 1/28/2019  33.02 2/20/2019  18.72 

1/6/2019  16.02 1/29/2019  40.02 2/21/2019  22.12 

1/7/2019  16.02 1/30/2019  43.02 2/22/2019  17.22 

1/8/2019  18.02 1/31/2019  43.02 2/23/2019  15.42 

1/9/2019  20.02 2/1/2019  42.12 2/24/2019  14.22 

1/10/2019  20.02 2/2/2019  38.02 2/25/2019  12.72 

1/11/2019  20.02 2/3/2019  38.02 2/26/2019  12.72 

1/12/2019  20.02 2/4/2019  38.02 2/27/2019  12.92 

1/13/2019  20.02 2/5/2019  38.02 2/28/2019  12.32 

1/14/2019  20.02 2/6/2019  38.02 3/1/2019  12.22 

1/15/2019  20.02 2/7/2019  38.02 3/2/2019  11.82 

1/16/2019  20.22 2/8/2019  38.02 3/3/2019  13.22 

1/17/2019  19.82 2/9/2019  38.02 3/4/2019  24.42 

1/18/2019  20.02 2/10/2019  38.02 3/5/2019  23.52 

1/19/2019  20.02 2/11/2019  38.02 3/6/2019  18.82 

1/20/2019  20.02 2/12/2019  38.02 3/7/2019  17.02 
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Continued 

Date 
Point  

Forecast 
Date 

Point  

Forecast 
Date 

Point  

Forecast 

3/11/2019  15.02 4/3/2019  25.52 4/26/2019  35.72 

3/12/2019  14.52 4/4/2019  30.52 4/27/2019  35.42 

3/13/2019  14.22 4/5/2019  28.02 4/28/2019  34.42 

3/14/2019  14.22 4/6/2019  28.02 4/29/2019  33.42 

3/15/2019  13.82 4/7/2019  28.02 4/30/2019  31.52 

3/16/2019  14.32 4/8/2019  28.02 5/1/2019  32.52 

3/17/2019  14.12 4/9/2019  28.02 5/2/2019  38.02 

3/18/2019  14.42 4/10/2019  20.02 5/3/2019  38.02 

3/19/2019  14.42 4/11/2019  23.02 5/4/2019  33.02 

3/20/2019  14.92 4/12/2019  23.02 5/5/2019  33.02 

3/21/2019  14.82 4/13/2019  23.02 5/6/2019  32.22 

3/22/2019  15.52 4/14/2019  28.02 5/7/2019  38.02 

3/23/2019  18.32 4/15/2019  38.02 5/8/2019  38.02 

3/24/2019  20.42 4/16/2019  43.02 5/9/2019  38.02 

3/25/2019  19.02 4/17/2019  48.02 5/10/2019  43.02 

3/26/2019  16.02 4/18/2019  48.02 5/11/2019  48.02 

3/27/2019  16.02 4/19/2019  43.02 5/12/2019  48.02 

3/28/2019  16.02 4/20/2019  38.02 5/13/2019  48.02 

3/29/2019  16.02 4/21/2019  38.02 5/14/2019  43.02 

3/30/2019  16.02 4/22/2019  38.02 5/15/2019  43.02 

1/21/2019  23.02 2/13/2019  38.02 3/8/2019  15.72 

1/22/2019  23.02 2/14/2019  33.02 3/9/2019  14.62 

1/23/2019  23.02 2/15/2019  33.02 3/10/2019  13.72 
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3/31/2019  16.02 4/23/2019  38.02 5/16/2019  43.02 

4/1/2019  16.02 4/24/2019  38.02 5/17/2019  43.02 

4/2/2019  21.02 4/25/2019  38.02 5/18/2019  53.02 

 

 

Continue 

Date Point Forecast Date 
Point 

Forecast 
Date Point Forecast 

5/19/2019  58.02 6/11/2019 171.42 7/4/2019 138.02 

5/20/2019  58.02 6/12/2019 170.92 7/5/2019 138.02 

5/21/2019  58.02 6/13/2019 165.62 7/6/2019 138.02 

5/22/2019  58.02 6/14/2019 157.12 7/7/2019 138.02 

5/23/2019  58.02 6/15/2019 153.02 7/8/2019 138.02 

5/24/2019  68.02 6/16/2019 151.82 7/9/2019 128.02 

5/25/2019  68.02 6/17/2019 136.22 7/10/2019 106.62 

5/26/2019  68.02 6/18/2019 140.52 7/11/2019 108.22 

5/27/2019  78.02 6/19/2019 136.52 7/12/2019  98.02 

5/28/2019  92.62 6/20/2019 135.22 7/13/2019  98.02 

5/29/2019  98.02 6/21/2019 139.22 7/14/2019  78.02 

5/30/2019  97.52 6/22/2019 144.62 7/15/2019  78.02 

5/31/2019  98.52 6/23/2019 161.72 7/16/2019  78.02 

6/1/2019 110.12 6/24/2019 160.92 7/17/2019 153.32 

6/2/2019 140.92 6/25/2019 148.02 7/18/2019 180.02 

6/3/2019 138.02 6/26/2019 143.22 7/19/2019 111.72 

6/4/2019 138.02 6/27/2019 121.72 7/20/2019 133.02 

6/5/2019 138.02 6/28/2019 118.62 7/21/2019 133.02 
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6/6/2019 136.12 6/29/2019 120.82 7/22/2019 148.02 

6/7/2019 139.92 6/30/2019 136.52 7/23/2019 153.02 

6/8/2019 167.12 7/1/2019 148.02 7/24/2019 163.02 

6/9/2019 178.02 7/2/2019 148.02 7/25/2019 163.02 

6/10/2019 178.02 7/3/2019 138.02 7/26/2019 168.02 

Continue 

Date 
Point 

Forecast 
Date 

Point 

Forecast 
Date 

Point 

Forecast 

7/27/2019 168.02 8/19/2019 143.22 9/11/2019 128.02 

7/28/2019 148.02 8/20/2019 152.32 9/12/2019 128.02 

7/29/2019 138.02 8/21/2019 160.82 9/13/2019 128.02 

7/30/2019 200.42 8/22/2019 159.82 9/14/2019 118.02 

7/31/2019 202.32 8/23/2019 163.62 9/15/2019 113.02 

8/1/2019 195.42 8/24/2019 161.82 9/16/2019 113.02 

8/2/2019 204.32 8/25/2019 151.92 9/17/2019 103.02 

8/3/2019 223.32 8/26/2019 141.82 9/18/2019  98.02 

8/4/2019 212.02 8/27/2019 130.92 9/19/2019  98.02 

8/5/2019 180.62 8/28/2019 158.02 9/20/2019  98.02 

8/6/2019 155.12 8/29/2019 158.02 9/21/2019  98.02 

8/7/2019 157.02 8/30/2019 168.02 9/22/2019  98.02 

8/8/2019 176.02 8/31/2019 168.02 9/23/2019  83.02 

8/9/2019 179.12 9/1/2019 178.02 9/24/2019  83.02 

8/10/2019 207.92 9/2/2019 178.02 9/25/2019  78.02 

8/11/2019 204.12 9/3/2019 178.02 9/26/2019  78.02 
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8/12/2019 222.82 9/4/2019 148.02 9/27/2019  78.02 

8/13/2019 228.22 9/5/2019 148.02 9/28/2019  68.02 

8/14/2019 232.22 9/6/2019 148.02 9/29/2019  58.02 

8/15/2019 230.72 9/7/2019 148.02 9/30/2019  48.02 

8/16/2019 208.02 9/8/2019 135.62 10/1/2019  48.02 

8/17/2019 187.52 9/9/2019 128.02 10/2/2019  38.02 

8/18/2019 159.52 9/10/2019 128.02 10/3/2019  33.02 

 

Continued 

Date 
Point 

Forecast 
Date 

Point 

Forecast 
Date 

Point 

Forecast 

10/4/2019  33.02 11/2/2019  57.02 12/2/2019  21.02 

10/5/2019  33.02 11/3/2019  57.02 12/3/2019  26.02 

10/6/2019  33.02 11/4/2019  57.02 12/4/2019  26.02 

10/7/2019  33.02 11/5/2019  54.02 12/5/2019  26.02 

10/8/2019  33.02 11/6/2019  54.02 12/6/2019  26.02 

10/9/2019  28.02 11/7/2019  53.02 12/7/2019  21.02 

10/10/2019  28.02 11/8/2019  53.02 12/8/2019  21.02 

10/11/2019  28.02 11/9/2019  53.02 12/9/2019  18.02 

10/12/2019  23.02 11/10/2019  53.02 12/10/2019  18.02 

10/13/2019  23.02 11/11/2019  53.02 12/11/2019  13.02 

10/14/2019  23.02 11/12/2019  53.02 12/12/2019  13.02 

10/15/2019  23.02 11/13/2019  48.02 12/13/2019   8.02 

10/16/2019  23.02 11/14/2019  48.02 12/14/2019   8.02 

10/17/2019  23.02 11/15/2019  48.02 12/15/2019   8.02 
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10/18/2019  33.02 11/16/2019  48.02 12/16/2019   8.02 

10/19/2019  43.02 11/17/2019  48.02 12/17/2019   8.02 

10/20/2019  43.02 11/18/2019  48.02 12/18/2019   8.02 

10/21/2019  46.02 11/19/2019  48.02 12/19/2019   8.02 

10/22/2019  46.02 11/20/2019  48.02 12/20/2019   8.02 

10/23/2019  43.02 11/21/2019  43.02 12/21/2019   3.12 

10/24/2019  38.02 11/22/2019  43.02 12/22/2019   3.02 

10/25/2019  38.02 11/23/2019  43.02 12/23/2019   3.02 

10/26/2019  38.02 11/24/2019  38.02 12/24/2019   3.02 

10/27/2019  39.12 11/25/2019  33.02 12/25/2019   1.72 

10/28/2019  43.02 11/26/2019  26.02 12/26/2019   1.02 

10/29/2019  53.02 11/27/2019  26.02 12/27/2019   0.52 

10/30/2019  57.02 11/28/2019  26.02 12/28/2019   1.02 

10/31/2019  57.02 11/29/2019  24.92 12/29/2019   1.02 

11/1/2019  57.02 11/30/2019  23.02 12/30/2019   1.02 

10/27/2019  39.12 12/1/2019  23.02 12/31/2019   1.02 
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5.  Conclusions and Recommendations 

Table 5.1 Conclusions and Recommendations 

Forecasting Methods RMSE 

SARIMA Model 10.8925 

Bayesian Approach 8087.4049 

Non-parametric Method KNN 180.3049 

ANN with 5 Hidden nodes 11.0876 

ANN fit with (10,5) hidden 

nodes 

3.4394 

 

 Generally, it has often been seen that the adequate selection of the 

order of the SARIMA model and the number of input, hidden and output 

neurons is very much crucial for the effective and successful prediction of 

the values. We have listed the Mean Square Error (MSE) for the 

comparison of the models.  

From the Table 5.1 the minimum MSE is attained by Artificial 

Neural Network ANN with (10,5) hidden nodes and declared as the best 

one while on the change of the number of hidden nodes and layers it 

becomes the 11.0876 which is not the least. As Seasonal Autoregressive 

Integrated Moving Average (SARIMA) model has the MSE 10.8925 

which the which is the 2nd least value. As SARIMA model is a parametric 

technique and has reasonable low MSE, therefore, we conclude it the best 

one model for the forecasting of the water outflow data. Also, if someone 

has excellent art of selection of the number of nodes and hidden layers, the 

ANN is also the adequate technique in this respect. 
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