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Abstract 
Rees (1967) introduced neighbor designs in serology. Since then it is well investigated 
field. Neighbor balanced designs are more useful to remove the neighbor effects in 
experiments where the performance of a treatment is affected by the treatments applied to 
its neighboring plots. Neighbor designs ensure that treatment comparisons will be less 
affected by neighbor effects as possible. This paper will provide an overview of the most 
important developments in this field. 
Keywords: Neighbor designs; Generalized neighbor designs; Second order neighbor 
designs; All order neighbor balanced designs. 
1. Introduction  
1.1 Neighbor Balanced Designs  
Rees (1967) introduced neighbor designs. Neighbor design is a collection of circular 
blocks in which any two treatments appear as neighbors equally often. A block is circular 
if the treatments allotted to its first and last plots are considered as neighbors. In circular 
block, each treatment has one left and other right neighbor. If no treatment occurs in a 
block more than once then block is called binary. A block is linear if it is formed in a line 
and the treatments allotted to its first and last plots are not considered as neighbors. A 
collection of linear blocks in which any two treatments appear as neighbors equally often 
is called equineighbored designs by Kiefer and Wynn (1981) but by Ipinyomi (1985) a 
design is equineighbored which is neighbor balanced at each order. The designs are 
called neighbor balanced at distance 2 by Azaiz et al. (1993) which have the property that 
for each ordered pair of distinct treatments there is exactly one plot that has the first 
chosen treatment as left neighbor and second chosen treatment as right neighbor. Rosa 
and Huang (1975) defined a balanced circuit design with restriction k ≤ v as: A balanced 
circuit design BCD (v, k, λ) with parameters v, b, r, k,    is an arrangement of v elements 
into b circular blocks such that each circular block contains k elements, each element 
occurs in exactly r circular blocks and any two distinct elements are linked in exactly    
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circular blocks. Preece (1994) discussed balanced ouchterlony neighbor designs 
(BONDs). A BOND is an arrangement where the numbers of a set S of v distinct 
elements are applied in b blocks such that (i) each block contains k elements (k >2) 
drawn from S but are necessarily all distinct, (ii) the elements in each block are arranged 
on the circumference of a circle so that each of these element has two neighbors,          
(iii) each member of S appears exactly r times throughout the arrangement, (iv) no 
element of S ever has itself as a neighbor and (v) every element of S has each member of 
S as a neighbor exactly    times. According to Preece (1994), a Quasi Rees neighbor 
design is one that satisfies conditions (i) – (iv) of BOND and modified condition (v) as 
(v*) which is: every element from S has each other element as a neighbor exactly once 
except that it has just one of the other elements as a neighbor exactly twice.  
1.2  Application of the neighbor designs 
Neighbor designs were initially used in serology. Rees (1967) presented a technique used 
in virus research which requires the arrangement in circles of samples from a number of 
virus preparations such that over the whole set, a sample from each virus preparation 
appears next to a sample from every other virus preparation. In agro forestry 
intercropping experiments as trees are much taller than the crop, there is a neighbor effect 
through interplant competition. In this situation neighbor balance between the treatments 
must be looked for (see Monod, 1992). Experiments in agriculture, horticulture and 
forestry often show neighbor effects. In plants with an important root system, such as 
potatoes, varieties which germinate earlier will establish their roots and take nutrients 
from adjoining plots on both sides. In cereal crops or sunflowers, tall varieties may shade 
the plot on their North side. By Jenkyn and Dyke (1985), in pesticide or fungicide 
experiments, parts of the treatment may spread to the plot immediately downwind. In 
such situation neighbor balanced designs are useful to remove the neighbor effects. 
2. One Dimensional Neighbor Models  
In one dimensional designs, the blocks are well separated such that the observations from 
treatments allocated in different blocks are uncorrelated.  Suppose, if we have a neighbor 
design for v treatments in b blocks each of size k, where the blocks are well separated, the 
following additive model can be considered for analysis. 

Y = 1  + 1X τ + 2X β  + ε   
where   is the overall mean, τ  is vector of treatment effects of size v1, β  is vector 
of block effects of size b1, 1X  is the incidence matrix for treatments, 2X  is the 
incidence matrix for blocks and ε  is a vector of random errors of size n1 with the 
assumptions E(ε ) = 0 and Var(ε ) = 2 V, where V is some symmetric positive definite 
matrix. When the observations are uncorrelated, then 2 V= 2 I. For correlated 
observations/neighbor effects following structures of V are suggested in literature, viz.  
2.1 NN covariance model of Kiefer and Wynn (1981) 
Kiefer and Wynn (1981) suggested the nearest neighbor (NN) covariance model (when 
the neighbor effect exists among the adjacent observations only) as: 
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It can also be written as                  V = b kI W                                             (2.1) 

Where  is kronecker product and W is a kk matrix such that 
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The above model is useful when the neighbor effect exists among the adjacent neighbors 
only. When the neighbor effect exists among the adjacent observations as well as higher 
order neighbors then following models are useful. 
2.2  NN covariance model of Patterson and Hunter (1983)  
Patterson and Hunter (1983) suggested a model with a covariance matrix V such that       
  

           V = nI +  nH                                                   (2.2) 
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This model is called the exponential variance model because the variance of the 
difference between the observations i and i   is 2(1-   ) which is the exponential 
function and   is order of the neighbors. It has two parameters   and  , where 
0 , 1.    
2.3  Linear variance model of Williams (1987) 
Williams (1987) suggested a linear variance model with a covariance matrix V such that       

                                             V = nI - nL                                                (2.3)  
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This model is called the linear variance model because the variance of the difference 
between the observations i and i   is 2(1 + ) which is the linear function.  
2.4  NN covariance model of Ipinyomi (1985) 
Ipinyomi (1985) suggested a more general model by assuming that correlation diminishes 
as the distance between the treatments (order of the neighbors) increases, that is, 

1 2 3 1... 0k         .  is the correlation between any two observations allocated 
to plots j and j     in block i, where   = 1, 2, …, k-1.  The model with a covariance 
matrix V is                              V = b kI V                                                           (2.4) 
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2.5  Discussion on models presented in section 2. 
Model 2.4 is more general because all models mentioned above are its special cases. By 
considering 2 3 1... 0k        and 1 =  , this model becomes model (2.1). If 1   
and   

 , this model becomes Patterson and Hunter (1983) model and similarly by 
setting    , this model becomes linear variance model suggested by Williams (1986). 
3. One Dimensional Neighbor Designs in Circular Blocks 
Following are the one dimensional neighbor balanced designs in circular blocks, already 
existed in literature. 
3.1  Neighbor Designs Constructed by Rees (1967) 

i) If v = 2m +1 labeled as 0, 1, 2, …, v -1 then neighbor designs can be 
constructed by developing the following initial block cyclically  mod 2m.  

(0,1, -1, 2, -2, … , -(m -1), m, ∞), where ∞ = 2m. 
ii) If v = 4t+3 is a power of a prime then a primitive root x exists such that 

2 1tx   -1 mod (4t+3) then required design is obtained by developing the 
following initial block cyclically mod v. 

( 0x , 2x , 4x , … , 4 tx ) 
iii) Rees (1967) also listed neighbor designs for every v up to 41 with k ≤ 10 

and 1 .  
3.2    Neighbor Designs by Hwang (1973) 
Following are some infinite series of neighbor designs which are constructed by     
Hwang (1973).  
Series (i).  For v = 2k +1, k > 2 and  = 1 
Let kF (1) = ( 1 2, ,..., kf f f ) denote the sequence of forward differences in the initial block 
and ‘C’ a constant. Let kF (1)   C denote the sequence ( 1 2, , ..., kf C f C f C   ), where 

if C  = if  + C          if if    0 

if C  = if  ─ C if if  < 0 (mod v) 
 For k = 3, let 3F (1) = (1, 2, -3),               

   For k = 4, let 4F (1) = (1, -2, -3, 4),  
 For k = 5, let 5F (1) = (1, -2, 3, 4, -6),                
 For k = 6, let 6F (1) = (1, -2, 3, - 4, -5, 7)  

Suppose 3F  (1), 4F  (1), …, 1kF  (1) are given then kF (1) can be constructed, in general, 
for k 7 by defining  
  kF  (1) = (1, -2, -3, 4, 4kF   (1)   4)  if k is even, 
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  kF  (1) = (1, 2, -3, 3kF  (1)   3)  if k is odd. 
Series (ii).  For v = 2mk +1, k0 (mod 2), k > 2,  = 1 with m initial blocks  
Let kG (m) = { kF  (1), kF  (2), …, kF  (m)}   where kF  (i) denotes the ith initial block. To 
specify kF  (i), put  2 1jv k   (j is an arbitrary integer) and then  

kF  (i) = kF  (1)   2(i - 1) k,         i = 1, 2, 3, …, 12 j . 
Series (iii).  For v = 2mk+1, k  0 (mod 4),  = 1 with m initial blocks 
Let kG (m) = { kF  (1), kF  (2), …, kF  (m)}   where kF  (i) denotes the ith initial block  

kF  (i) = { y (k i  - k + y): y = 1, 2, …, k},         i = 1, 2, …, m, 
   y = 1,   if   y    0, 1 (mod 4),  
   y = -1,   if   y    2, 3 (mod 4).  
3.3  Neighbor Designs by Bermond and Faber (1976). 
Bermond and Faber (1976) constructed neighbor designs for the following cases.  
Case (i). Let v = 2m, m odd and define the length of the directed edge (x, y) to be y-x 
(mod v). We construct three closed paths from the edges of lengths ± m and ± 1: 

1P = (0, 1, m + 1, m + 2, 2, 3, m + 3, m + 4, 4, 5, … , m-1, m) 

2P = (0, 1, m, m + 1, 1, 2, m + 2, m + 3, 3, … , m-1, 2m-1) 

3P = (0, 2m-1, 2m-2, … , 2, 1) 
If 1< x < m, we construct two paths from edges of lengths x and y = m+1- x, where           
x = (m + 1)/2: 

xP = (0, x, m + 1, x + m + 1, 2(m + 1), … , x + (2m-1)(m + 1)); 

yP = (0, y, m + 1, y + m + 1, 2(m + 1), … , y + (2m-1)(m + 1)). 
Since ged (m +1, 2m) = 2, each of these paths has length 2m, and there are m = 3 of them. 
If m< x <2m-1, we construct another m-3 paths similarly, where x + y = -(m + 1) and       
x = -(m + 1)/2. Finally we take the path  

( 1)/2mP  = (0, (m + 1)/2, m + 1, 3(m + 1)/2, … , (2m-1)(m + 1)/2)  
Similarly ( 1)/ 2mP  . Since ged ((m + 1)/2, 2m) = 1, each of these two paths has length 2m. 
This gives 3 + 2(m-3) + 2 = 2m-1 paths as required which provide a neighbor design with 

2v  (mod 4), v = k, b = v-1 = r and  = 2. 
Case (ii).  For k = v-1, v even, b = v and  = 2 consider the following initial block.  

0C = (∞, 0, k-1, 1, k-2, …, [k/4]-1, [3k/4]+1, [k/4], [3k/4]+1, …, [k/2]-1, [k/2]+1) 
 

If iC = 0C + i (mod k), the set of circuits 0C , 1C , …, 1kC   together with the circuit  
C = (0, h, 2h, …, (k-1)h) mod k, where [k/2]+1 = h. 

3.4  Neighbor Designs by Hwang and Lin (1977) 
(i) Let v = 2n+1= p t, k = p and odd prime, M be an m × k, 2-balanced array mod v 

whose elements are precisely the set ( nI - S), where S = {t, 2t, … , ((p-1)/2)t} 
and [ 1B ], [ 2B ], …, [ mB ] be m sets of blocks from M. For each   j = 1, 2, …,   
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(p-1)/2, we construct a set of t blocks [ jA ] = { 1jA , 2jA , …, jtA } where      
jiA = ( , , 2 ,..., ( 1)i jt i jt i p jt i    )  

(ii) Let v = 2n+2, k = p and odd prime,  v = pt, S = { t, 2t, … , ((p-1)/2)t}. If ( nI - S) 
can be arranged into a 2-balanced array mod v*, we can construct ND (v, k, 2).  

3.5  Dey and Chakravarty (1977)  
(i) If v = 6t+1 be a prime power then there exist a neighbor design with            

v = 6t +1, b = t(6t +1), r = 3t, k = 3,  = 1.  
(ii) If v = 6t+3 then there exists a neighbor design for k = 3 with r = 3t+1 and 

 = 1 in b = (3t+1)(2t +1).  
(iii) Let v = 4t+3 be a prime power, x a primitive element of GF (v), 0x +x = 2ux  

(an even power of x) then following initial blocks provide neighbor designs 
for k = 3 with r = 3(2t +1) and  = 3 in b = (2t +1)(4t +3).  

(0, ix , 2u ix  ),       i = 0, 2, 4, …, 4t. 
(iv) If v = 4t+3 be a prime power and x a primitive element of GF (v),             

0x + x = 2 1mx   (an even power of x) then following initial blocks provide 
neighbor designs for k = 3 with r = 3(2t +1) and  = 3 in b = (2t +1)(4t +3).  

(0, 1ix  , 2 1m ix   ),       i = 0, 2, 4, …, 4t. 
(v) If v = 4t+3 be a prime power and x a primitive element of GF (v) then 

following initial blocks provide neighbor designs for k = 3 with  = 4 and  
r = 4(2t +1) in b = (2t +1)(4t +3) 

(0, 2ux , 0 , 2 2ux  ),  u = 0, 1, …, 2t. 
(vi) If v = 4t+3 be a prime power and x a primitive element of GF (v) then 

following (2t+1) initial blocks provide neighbor design for k = 2t+2 with           
r = (2t +1)(2t +2) and  = 2t+2 in b = (2t +1)(4t +3). 

( 0x , 2x , 0x , 4x , 6x , 8x , … , 4 tx ),  
( 0x , 2x , 4x , 2x , 6x , 8x , … , 4 tx ) 
( 0x , 2x , 4x , 6x , 4x , 8x , … , 4 tx ),                                

…  
( 0x , 2x , 4x , 6x , … , 4 2tx  , 4 tx , 4 2tx  ), 
( 4 tx , 2x , 4x , 6x , … , 4 tx , 0x ) 

(vii) If v = 2t+3 be a prime power and x a primitive element of GF (v) then 
following initial blocks provide neighbor designs for k = 4t+2 with r = 4t+2 
and  = 2 in b = 4t+3. 

(0, 0x , 0, 2x , … , 0, 4 tx ) 
(viii) If v = 2t+1 be a prime power and x a primitive element of GF (v) then 

following initial blocks provide neighbor designs for k = 4t with r = 8t and   
 = 4 in b = 8t+2,  

(0, 0x , 0, 2x , … , 0, 4 2tx  ) and  (0, x , 0, 3x , … , 0, 4 4tx  ) 
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3.6   Neighbor designs by Chandak (1981)  
 Let v be a prime or power of prime, x be the primitive of Galois field GF (v),     

C be the multiplicative group of GF (v) and m ≥ 2 divide v-1, say m = (v-1)/s. 
Then mx has order s. A neighbor design with parameters v, b = mv, r = (v-1),     
k = s and  = 2 can be obtained by developing the cosets 1 2, ,..., mC C C of the 
factor subgroup C/ 1C  mod v.  

 If v = 4t+3 a prime power and x a primitive element of GF(v) then following       
t initial blocks provide neighbor designs for k = 2t+1 with b = t(4t+3) and           
r = t(2t +1) 

( 0x , 2x , 4x , … , 4 tx ) 
( 0x , 4x , 8x , … , 4 2tx  ) 
( 0x , 6x , 12x , … , 4 4tx  ) 
                … 
 ( 0x , 2 tx , 4 tx ,…, 2 2tx  ) 

 He also constructed neighbor designs with parameters 2v s , b = s2( s +1),             
r = 2(s2-1), k = 2( s -1),  = 4 through Euclidean Geometry.  

3.7   Neighbor designs by Metti (1996) 
Neighbor designs for v = 2m and k = m can be constructed in 2(v-1) blocks developing 
the following two initial blocks cyclically mod (2m+1).  
 S = { 0 1 2 ( 1)/2 1 2 ( 1)/2, , ,..., , , ,...,m ma a a a c c c  } and  S* = { 1 2 10, , ,..., ,mx x x   }, where 

(i) ia = ; 0, 1, 2,..., ( 1) / 2iu i m   
(ii) jc = ( 1)/2 ; 0, 1, 2,..., ( 1) / 2m ja j m     
(iii) ix = ( 1) / 2 ; 0, 1, 2,..., ( 1) / 2ii m a i m     
(iv) jx = ( 1) ; ( 1) / 2, ( 3) / 2,..., ( 1)m jx j m m m       

3.8  Neighbor designs by Ahmed and Akhtar (2008a, b) 
     (i) If v = 4s; s a natural number and m = 2s-1 then neighbor designs are obtained by 

developing the following initial block cyclically mod 2m. 
    (0, 1, 3, 6, … , (m-1)m/2, m (m+1)/2, m(m+3)/2, … , m(m+1) -1, ∞) mod (2m+1) 
     (ii)  If v = 2m+1 and k = v-1 then neighbor designs can be obtained by developing 

the following initial block cyclically mod 2m with augmenting the block        
((v-2), (v-3),…, 2, 1, 0).  

(0, 1, -1, 2, -2, … , -(m-1), ∞) mod 2m, where ∞ = 2m. 
     (iii)  If v = 4s, k = v-1 and m = 2s-1 then neighbor designs can be obtained by 

developing the following initial block cyclically mod 2m with augmenting the 
block (0,  1,  2,  … , k-1). 

  (0,1,3,6,…, (m-1)m/2, m (m+1)/2, m(m+3)/2, … ,m(m+1) -1, ∞) mod (2m+1) 
     (iv) Neighbor balanced designs for v = 2k through two initial blocks which are 

binary. 
     (v)     They also presented some more neighbor balanced designs. 
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Iqbal et al. (2009) listed neighbor balanced designs which are constructed using method 
of cyclic shifts.  
3.9   Discussion on Neighbor designs presented in Section 3. 
Rees (1967) gave the simple method to construct neighbor designs for odd v when k = v. 
He also presented a list of minimal neighbor designs for odd v up to 41 and k ≤ 10. 
Hwang (1973), Dey and Chakravarty (1977), Hwang and Lin (1977) and Chandak (1981) 
gave several series of neighbor designs for odd v which is a remarkable contribution in 
this area but these designs are not necessarily binary. Bermond & Faber (1976), and 
Hwang & Lin (1977) developed some series of these designs for even v. Ahmed and 
Akhtar (2008a, b) presented several series of neighbor designs in binary circular blocks in 
which their construction is quite easy. 
4.   Neighbor Designs in Linear Blocks 
4.1   Neighbor Designs by Kiefer and Wynn (1981) for k = v 
Kiefer and Wynn (1981) introduced an algorithm to construct the complete block 
neighbor designs in linear blocks.  

 The first v/2 rows of A constitute a complete block neighbor design when v is 
even.  

 The v rows of A constitute a complete block neighbor design when v is odd.  
Where A is a v v  square matrix whose (j, l)th cell (1 ,j l v  ) is given by 

1 1
[ ( 1) ( 1) ( 1) ( 1)] mod (3.1)

j l
r r

jl
r r

a r r v
 

      
           
4.2   Neighbor designs in Linear Blocks by Cheng (1983)  
i) For v odd and k = 3: Choose the BIBD with k = 2 and b = v(v-1)/2 i.e. all the  possible 
pairs of v treatments. Partition the v(v-1)/2 blocks of size two into v groups 

1 2, ,..., vB B B of (v-1)/2 blocks such that for each i, the ith treatment does not appear in 
iB and each other treatment appears in iB exactly once. By inserting treatment i in the 

middle of each block, we get required design. 
ii) For v even and k = 3: Take two copies of  the BIBD with k = 2 and b = v(v-1) and 
partition the v(v-1)/2 blocks of size two into v groups 1 2, ,..., vB B B of (v-1) blocks such 
that for each i, the ith treatment does not appear in iB and each other treatment appears in 

iB exactly twice. By inserting treatment i in the middle of each block, we get required 
design.  
iii) For v odd and k = v-2: Let v = 2m+1 and iC  be the Hamiltonian cycle (0, i, i+1, i-1, 
i+2,…, i+m, 0), where all the components except 0 are taken as the positive integers       
1, 2,…, 2m mod 2m. From each of these Hamiltonian cycles, construct v linear blocks of 
size v-2 by the method of cyclic permutation, we get required design with v(v-1)/2 blocks 
of size v-2. 
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iv) For v even and k = v-2: A block of size v-2 can be obtained by deleting any of such 
pairs while keeping the order of the other treatments of A developed from (3.1).          
The v(v-1)/2 blocks of size v-2 thus constructed from the first v/2 rows of A constitute the 
required design. 
v) For v odd and k= v -1: Let iC  be the Hamiltonian cycle (0, i, i+1, i-1, i+2,…, i+m, 0) 
for each i, 1 im, where all the components except 0 are taken as the positive integers 
mod 2m. Each iC  can be considered as a circular block of size v. From each iC  we can 
construct v linear blocks of size v-1 by cyclic permutation. This yields our required 
design with b = v(v-1)/2 and k = v-1. 
4.3 Neighbor Designs in Linear Blocks of Size 3 by Jacroux (1998) 
Jacroux (1998) constructed neighbor designs in linear blocks of size 3 for all v which are 
efficient under standard intrablock analysis as well as when experimental units adjacent 
within blocks are correlated. 
Case (i).   If v 1 (mod 4) then the following (v-1)/4 initial blocks provide the 
equineighbored designs in linear blocks of size 3. 

(0, i, 2i+(v-1)/2);  i = 1,2, ..., (v-1)/4. 
Case (ii).   If v 3 (mod 4) then the following (v-1)/2 initial blocks provide the equi-
neighbored designs in linear blocks of size 3.  

(i) (0, i, 2i +1); i = 1, …, (v-3)/2, i (v-3)/4,  
(ii) (0, (v-3)/4, v-1) and (0, (v-1)/2, (v+1)/2). 

Case (iii).  If v 0 (mod 4) then consider v/4 initial blocks (0, i, (v/2)+2i-1);               
i= 2, …, v/4. Generate v(v-4)/4 blocks cyclically from these initial blocks and then 
augment these resultant blocks with those given by       
 (i) ( j-1,  j, (v/2)+ j)  for j = 1, …, v/2  and 
 (ii) (((v/2)-2)+2j, ((v/2)-1)+2j, (v/2)+2j) for j = 1, …, v/4. 
Case (iv).  If v 2 (mod 4) then consider (v-2)/2 initial blocks (0, i, 2i+1);                  
i= 1, ..., (v-2)/2. Generate v(v-2)/2 blocks cyclically from these initial blocks and then 
augment these resultant blocks with those given by (2j-2, 2j-1, 2j) for j = 1, …, v/2. 
4.4 Neighbor Designs in Linear Blocks by Ahmed and Akhtar (2010) 

(i)  NBD can be generated with parameters v = 4i+1, i integer, k = 3, = 1, 
 = 1 or 2 and b = iv from the following  i sets of shifts. 

Sj = [2j-1, 2j];  j = 1, …, i. 
  (ii)  NBD can be generated with parameters v = 2i+1, i (>1) odd, k = 3,  

 = 2,  = 3 and b =  iv from the following i sets of shifts. 
Sj = [j, j];  j = 1, …, i. 

 (iii)  NBD can be generated with parameters v = 4i-1, i (>1) integer, k1 = 3, 
k2 = 2,  = 1,  = 1 or 2, b1 =  (i-1)v and b2 = v from the following  i  
sets of shifts. Sj = [p, p+1];  j = 1, …, i-1 and p = 2j-1.   Si =[(v-1)/2]  

 (iv)  NBD can be generated with parameters v = 4i, i (>1) integer, k1 = 3,    
k2 = 2,  = 1,  = 1 or 2, b1 =  (i-1)v and b2 = 3v/2 from the following 
(i+1) sets of shifts. 
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              Sj =[p, p+1]; j = 1, …, i-1 and p = 2j-1. Si =[(v-2)/2] and Si+1 = [v/2](1/2) 
 (v)  NBD can be generated with parameters v = 2i+1 and prime, k < v,   

 = k-1,  = 
1

1

k

u

u
-

=
å  and b = iv from the following  i  sets of shifts. 

Sj = [j, j, …, j]; j = 1, …, i. 
4.5   Discussion on Neighbor designs presented in Section 4. 
Kiefer and Wynn (1981) introduced an algorithm to generate neighbor designs in linear 
blocks for every v = k. Cheng (1983) gave several methods but these constructions 
require a large number of blocks. Jacroux (1998) gave the complete solution of 
equineighbored for k = 3 in linear blocks. Most of the neighbor designs presented by 
Ahmed and Akhter (2010) in linear blocks are economical. 
5.   Generalized Neighbor Designs 
Generalized t-neighbor design defined by Misra et al. (1991) is an arrangement of v 
treatments in b circular blocks such that (i) each treatment appears r times in the design 
(not necessarily in r distinct blocks), (ii) blocks have 1k , 2k ,…, bk treatments (same 
treatment should not occur side by side), (iii) any two treatments can occur as neighbor 

1  , 2  ,…, t  times, and (iv) for a given treatment  , there are in  treatments which 
occur i  times as neighbor where the number in  is independent of the treatment  . They 
constructed GNDs for only v odd.  
5.1  2GN -designs by Rees (1967) for v = k = 2m 
Rees (1967) suggested that a design for 2m antigens can be derived through the design 
for 2m+1 antigens, by deleting the (2m+1)th number, but in resultant design one 
comparison is duplicated per antigen.  From this idea, the initial block is  
                            (0, 1, -1, 2, -2, … , -(m-1), m) mod 2m.  
Remaining (m-1) blocks are obtained by developing the initial block cyclically mod 2m.  
5.2   GNDs constructed by Chaure and Misra (1996)  
They constructed: 

(i) GNDs for v = 4t +1, k = 3 in b = t(4t+1),  
(ii) 3GN -designs for v = 4t, k = 2t in b = 2(4t -1), where t >2,  
(iii) 2GN -designs for v = 4t-1, k = 2n+1, where ‘n’ is a positive integer, 
(iv) 2GN -designs for v = 4t-1, k = 2n. 

5.3   GNDs constructed by Nutan (2007)  
Nutan (2007) developed a family of proper generalized neighbor designs and constructed 

2GN - designs for v = b =k =2m, 1= 2, 2= 4, 1n = v-2 by developing the following 
initial block cyclically mod v.                               (0, v-1, 1, v-2, 2, …, v/2) 
5.4   Generalized neighbor designs by Kedia and Misra (2008) 
They constructed:  

(i) 2GN - designs for v = 3t+1, t being any positive integer, b = vt, r = 4t, k = 4,      
1n = 2t, 2n = t, 1= 3 and 2= 2 by developing the following initial blocks  

mod v. iB = (i, 0, 2t + i, t);  i = 1, 2, 3, …,t -1; tB = (0, 3t, t, 2t). 
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(ii) 2GN - designs for v = 5t+1, t being any positive integer, b = vt, r = 4t, k = 4,      
1n = 2t, 2n = 3t, 1= 1 and 2= 2 by developing the following initial blocks 

mod v. iB = (0,  i, 3t, 4t + i);  i = 1, 2, 3, …,t-1; tB = (0, 4t, 2t, 3t). 
(iii) 3GN - designs for v = 5t+1, t being any positive integer, b = vt, r = 4t, k = 4,      

1n = 2t+2, 2n = 3t-4, 3n = 2 1= 1, 2= 2 and 3 = 3 by developing the 
following initial block mod v. iB = (i, 0, t + i, 4t);  i = 1, 2, t. 

(iv) 2GN - designs for v = 6t+1, t being any positive integer, b = vt, r = 4t, k = 4,      
1n = 4t, 2n = 2t, 1= 1 and 2= 2 by developing the following initial block 

mod v. iB = (t - i, 5t, 2t + i, t);  i = 1, 2,…, t. 
(v) 3GN - designs for v = 6t+1, t being any positive integer, b = vt, r = 6t, k = 6,      

1n = 2t -2, 2n = 2t +4, 3n = 2t-2 1= 1, 2= 2 and 3 = 3 by developing the 
following initial block mod v. iB = (2t + i, 0,  i,  2t, 5t + i, t);    i = 1, 2, t. 

(vi) 2GN - designs for v = 7t+1, t being any positive integer, b = vt, r = 6t, k = 6,      
1n = 5t, 2n = 2t, 1= 2 and 2= 1 by developing the following initial block 

mod v. iB = (2t + i, 0, i, 2t, 5t + i, t);   i = 1, 2,…, t. 
5.5   2GN -designs by Ahmed et al. (2009) 

(i)       2GN - designs can be constructed with parameters v = 2t+1, k = t+1,        
1n = 2t -2, 2n = 2, 1=1 and 2=2, where t >1 is an integer, in v circular 

blocks from the set of shifts.                                  S = [1, 2, … , t -1, t] 
(ii)  2GN - designs can be constructed with parameters v = 2t+1, k = t+2,       

1n = 2t-4, 2n = 4, 1=1 and 2=2, where t >2 is an integer, in v circular 
blocks from the set of cyclic shifts.   S1  = [1, 2, … , t, α], where α is any 
value among 1, 2,…, t-1 such that (1 + 2 + … + t + α) mod v  ≠ 0, α, v- α. 

(iii)       2GN - designs can be constructed with parameters v = 2t+1, k = t+3,       
1n = 2t- 6, 2n = 6, 1=1 and 2=2, where t >3 is an integer, in v circular 

blocks from the set of cyclic shifts.  S2 = [1, 2, … t-1, t, t-1, α], where α is 
any value among 1, 2, … , t-2 such that (1 + 2 + … + t + α) mod v ≠ 0, α,   
v- α, t-1, t+2.  

(iv)       2GN -designs can be constructed with parameters v = 2t, k = t+1, 1r = t,   
2r = v-1, 1n = 2t- 2, 2n = 1, 1=1 and 2=2, where t >2 is an integer, in v-1 

circular blocks from the set of cyclic shifts.                  S3 = [1, 2, … , t -1]t 
(v)       2GN -design can be constructed with parameters v = 2t, k = t+2, 1r = t,    

2r = v-1, 1n = 2t- 4, 2n = 3, 1=1 and 2=2, where t >3 is an integer, in v-1 
circular blocks from the set of cyclic shifts.               S4 = [1, 2, … t-1, t-1]t  

(vi)       2GN -design can be constructed with parameters v = 2t, k = t+3, 1r = t,     
2r = v-1, 1n = 2t- 6, 2n = 5, 1=1 and 2= 2, where t >4 be an integer, in   

v-1 circular blocks from the set of cyclic shifts.   S5 = [1, 2, … , t-1, t-1, t-2]t   
5.6   2GN -designs by Zafaryab et al. (2010) 

(i) If v = 8t+2, t is positive integer and k = 4 then following (t+1) sets provide 
GN2-design with parameters 1=1 and 2=2, n1 = v-8, n2 = 7 and b = v(t+1).
 Sj+1= [v-(4j+1), 4j+2, 4j+3];   j = 0, 1, 2, …, t-1. St+1 = [v/2, 2, 4] 
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(ii) If v = 8t+3, t is positive integer and k = 4 then following (t+1) sets provide 
GN2-design with parameters 1=1 and 2=2, n1 = v-7, n2 = 6 and b = v(t+1).
 Sj+1= [v-(4j+1), 4j+2, 4j+3];  j = 0, 1, 2, …, t-1.     St+1 = [(v-1)/2, 1, 2] 

(iii) If v = 8t+4, t is positive integer and k = 4 then following (t+1) sets provide 
GN2-design with parameters 1=1 and 2=2, n1 = v-6, n2 = 5 and b = v(t+1). 
Sj+1= [v-(4j+1), 4j+2, 4j+3];  j = 0, 1, 2, …, t-1.     St+1 = [(v-2)/2, v/2, 2] 

(iv) If v = 8t+5, t is positive integer and k = 4 then following (t+1) sets provide 
GN2-design with parameters 1=1 and 2=2, n1 = v-5, n2 = 4 and b = v(t+1). 
Sj+1= [v-(4j+1), 4j+2, 4j+3]; j = 0, 1, 2, …, t-1.St+1 = [(v-3)/2 , (v-1)/2, 3] 

(v) If v = 8t+6, t is positive integer and k = 4 then following (t+1) sets provide 
GN2-design with parameters 1=1 and 2=2, n1 = v-4, n2 = 3 and b = v(t+1). 
Sj+1= [v-(4j+1), 4j+2, 4j+3];  j = 0, 1, 2, …, t. 

(vi) If v = 8t+7, t ≥ 0 and k = 4 then following (t+1) sets provide GN2-design 
with parameters 1=1 and 2=2, n1 = v-3, n2 = 2 and b = v(t+1).  

Sj+1= [v-(4j+1), 4j+2, 4j+3]; j = 0, 1, 2, …, t. 
(vii) If v = 8t+8, t ≥ 0 and k = 4 then following (t+1) sets provide GN2-design 

with parameters 1=1 and 2=2, n1 = v-2, n2 = 1 and b = v(t+1). 
Sj+1= [v-(4j+1), 4j+2, 4j+3];     j = 0, 1, 2, …, t. 

They also constructed GN2-design for k = 6, 8, and 10 and listed these designs for k = 5, 
7, and 9.                 
5.7   Discussion on Neighbor designs presented in Section 5 
GN2-designs constructed by Ahmed et al. (2009) are economical as compared with any of 
all others such as Misra et al. (1991), Chaure and Misra (1996), Nutan (2007), Kedia and 
Misra (2008). GN2-designs constructed by Ahmed et al. (2009) are general for k.      
Zafaryab et al. (2010) also presented the economical GN2-designs which are general for  
v when k is fixed such as 4, 6, 8, and 10. 
6.    Second and Higher Order Neighbor Balanced Designs 
Keedwell (1984) considered 2-fold perfect circuit designs, these being balanced circuit 
designs whose neighbor properties apply not only to immediate neighbors but also to 
neighbors that are two places apart. Iqbal et al. (2006) constructed second order neighbor 
designs for circular blocks using method of cyclic shifts for 3   k   7. Akhtar and 
Ahmed (2009) constructed several second and third order neighbor balanced designs for 
(i) v = k, (ii) k = v-1, (iii) v = 2k+1, and (iv) v = 2k, etc. 
6.1  Equineighbored Designs by Ipinyomi (1985) 
Ipinyomi (1985) constructed such designs with minimum blocks for v = 2m+1 and prime. 
He also constructed equineighbored designs of size 

(i) (v, mkv, k), for v = 3k + 1 and v is a prime power and k is not even,  
(ii) (v, mkv/2, k), for v = 3k + 1 and v is a prime power and k is even,  
(iii) (v, kv, k), for v = 2k + 1 is prime,  
(iv) (v, mv, 3), for v = 2m + 1,  
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(v) (v, mv,  k), for v = 2m + 1 and v is prime, k < v and  
(vi) (v, v(v-1), k), for k   v by the columns of the k rows of a complete set of 

orthogonal Latin squares of order v. 
6.2  All Order Neighbor Balanced Designs By Ai et al. (2007)  
Ai et al. (2007) constructed all order neighbor balanced designs (ANBD) for v =2m+1 
(odd prime) in 2m circular blocks through the following initial block.  

iB ={(0, i, 2i, … , (v-1)i ) mod v,  i = 1, 2,  … , v-1}. 
They also developed the methods of construction for all order balanced circular block 
neighbor designs when k < v and showed that the CNBD’s (circular neighbor balanced 
design) exists under the following conditions. 

(i) If v be an odd prime and 1r   be an integer then there exists a CNBD 
( rv ,  1rv   ( 1rv  -1), v; v-1). 

(ii) If v = rp  be any prime power and k > 2 be such that k is a divisor of   
v-1 then there exists a CNBD (v, v (v -1)/k, k; k-1). 

(iii) If q is a prime power and f is the greatest common divisor of q-1 and k 
then there exists a CNBD (q, q (q -1)/f, k; k-1). 

(iv) If q = kn+1 is a prime power, there exists a CNBD (n, n(n -1), k; k-1). 
6.3  All Order Neighbor Balanced Designs By Ahmed and Akhtar (2009)  
Ahmed and Akhtar (2009) constructed following ANBD by using method of cyclic shifts.  

(i) for v =2m+1and k = v prime through the following m sets of shifts 
each of k-1 elements with  =1.             

iQ = [i, i, …, i](1/ v) : i = 1, 2, …, m. 
(ii) for v =2m+1 (prime) through the following m sets of shifts each of 

k-1 elements  with  = k.                             

iQ = [i, i, …, i] : i = 1, 2, …, m. 
6.4   Discussion on Neighbor designs presented in Section 6 
Ipinyomi (1985) constructed equineighbored designs for almost all v in linear blocks 
while Ai et al. (2007) and Ahmed and Akhtar (2009) constructed all order neighbor 
balanced designs in circular blocks only for v prime or prime power. Second and higher 
order neighbor balanced designs presented by Akhtar and Ahmed (2009) are much useful 
to neutralize the neighbor effects. 
7.  Optimality of Neighbor Designs 
Kiefer (1975) introduced the universal optimality criterion which includes the well 
known D, A and E optimality criteria as special case. Kunert (1984) showed that circular 
neighbor designs in ( , 1, )v v v are universally optimal for the estimation of treatments as 
well as neighbor effects.  
Druilhet (1999) constructed universally optimal design for models which incorporate 
one-sided or two-sided neighbor effects among the class of all equireplicated design or 
even more general classes and expressed that the link between block balance and 
neighbor balance is essential to prove optimality. Druilhet (1999) generalized the result 
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of Kunert (1984) such that a circular neighbor balanced design d* is universally optimal 
for the estimation of treatment effects as well as neighbor effects over all designs in 

( , , )v b k for 3 k v  . He also showed that a circular neighbor balanced designs at 
distance 1 and 2 (CNBD2), d* is universally optimal for the estimation of treatment 
effects as well as neighbor effects over all designs in ( , , )v b k  which have no treatment 
preceded by itself, for 3 k v  . Further he proved that for v = 5 and 7v   a CNBD2,  
d* is universally optimal for the estimation of treatment effects as well as neighbor 
effects over the class of equireplicated designs in ( , 1, )v v v . Druilhet (1999) also showed 
that for v ≥ 13 a CNBD2, d* is universally optimal for the estimation of treatment effects 
as well as neighbor effects over the class of equireplicated designs in ( , , 1)v v v , where 
CNBD2 (Circular neighbor balanced designs at distance 1 and 2) is a circular neighbor 
balanced design where for each ordered pair of distinct treatments there exist exactly ‘ℓ’ 
plots that have the first chosen treatment as left neighbor and the second one as right 
neighbor with ℓ = bk/v(v-1) an integer and    k ≤ v.  
Bailey and Druilhet (2004) considered optimality of circular neighbor balanced block 
designs when neighbor effects are present in the model. They showed that circular 
neighbor balanced designs are universally optimal for total effects among designs with no 
self neighbor. They also showed some situations where a design with self neighbors is 
preferred to a neighbor balanced design.  
Filipiak and Markiewicz (2005) studied optimality of circular neighbor balanced    
designs at distance 1 and 2 under the one-dimensional interference model. Filipiak and    
Rozanski (2005) showed that circular neighbor balanced designs are universally optimal.             
Ai. et al. (2007) generalized the results of Bailey and Druilhet (2004) to linear models 
containing the neighbor effects and showed that a circular block design neighbor 
balanced at distances up to  ≤ k -1 is universally optimal for total effects. 
Jaggi et al. (2007) considered the following two cases of the designs D(v, b, k). 
Case( i). The class of designs 1D (v, b, k) which satisfy the following conditions. 

(i)  Each treatment appears in a given block an equal number of times, say 
  (>1) times. 

(ii)  For each ordered pair of treatment (including identical pairs), there 
exists a constant number ( 1 ) of plots that have the first chosen 
treatment as left neighbor and the second one as right neighbor. 

For 1D  (v, b, k), they proved that a design d*  1D  (v, b, k) is universally optimal for the 
estimation of direct effects if 1N = 2N = 1 Jv . 
Case (ii). The class of designs 2D  (v, b, k) which satisfy the following conditions. 

(i) Each treatment appears in a given block an equal number of times, say, 
  times. 

(ii) Each ordered pair of treatment (excluding identical pairs), appear 
together as left and right neighbors a constant number of times ( 1 ).  

For 2D  (v, b, k), they proved that a design d*  2D  (v, b, k) is universally optimal for 
the estimation of direct effects if NL  = NR = 1  ( Jv - Iv ), where NL  is (v×v) 
incidence matrix of direct versus left treatment, NR  is (v×v) incidence matrix of direct 
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versus right treatment respectively and k =  v. In the next sections, universal optimal 
neighbor designs are considered for k ≤ v.  
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