
Pak. J. Commer. Soc. Sci. 
2011 Vol. 5 (1), 68-80 
 
Cyclic Polygonal Designs with Block size 3 and Joint 

Distance 3 
 

M. H. Tahir (Corresponding author)  
 

Department of Statistics, The Islamia University of Bahawalpur, Pakistan 
E-mail: mtahir.stat@gmail.com, mht@iub.edu.pk 

 
  Ijaz Iqbal 

Department of Statistics, Bahuddin Zakariya University Multan, Pakistan 
Email: drijaziqbal@yahoo.com 

 
Jamal Abdul Nasir 

Department of Statistics, The Islamia University of Bahawalpur, Pakistan 
E-mails: njamal76@yahoo.com 

 
Abstract 
Polygonal designs, a class of partially balanced incomplete block designs with regular 
polygons, are useful in survey sampling in terms of balanced sampling plans excluding 
contiguous units (BSECs) and balanced sampling plans excluding adjacent units (BSAs) 
when neighboring units in a population provide similar information. In this paper, the 
method of cyclic shifts is used and cyclic polygonal designs (CPDs) are constructed with 
block size 3k  and 12,6,4,3,2,1  for joint distance 3  and  }100,,22,21{ v  
treatments  
Keywords: BIBD; cyclic BSA; cyclic polygonal design; cyclic shifts; distance between 
the units, joint distance; PBIBD; polygonal design. 
MSC (2000): 05B05; 62K10; 62D05. 
1. Introduction  
Polygonal designs (PDs), a class of partially balanced incomplete block designs 
(PBIBDs) with regular polygons, are useful in survey sampling in terms of balanced 
sampling plans excluding contiguous units (BSECs) and balanced sampling plans 
excluding adjacent units (BSAs) when neighboring units in a population provide similar 
information. The use of PDs or balanced sampling plans is essential in situations where 
the units in a population (or in an experimental region) are found physically close (as 
neighbors) to each other. Studies in ecological and environmental sciences are often 
conducted to investigate the abundance and diversities of species, where a balanced 
sampling plan serves the purpose of generating samples from the population by avoiding 
the selection of neighboring (contiguous or adjacent) units which essentially provide 
redundant information. In other words, these neighboring units are deliberately prevented 
(or excluded) from being selected under the situation that they provide little new 
information to the sampling effort. These plans attempt to provide ways of sampling the 
units from geographical region when a spatial pattern in the response is expected 
(Christman, 1997; and See et al. 2000). Cochran (1977) also pointed out that neighboring 
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units are often more alike than the units that are far apart, thus giving a poor contribution 
to the sampling information.  
Now consider an example which highlights the usefulness of cyclic polygonal designs 
(CPDs) or balanced sampling plans in practical situations.  
Example 1. A study was conducted to investigate the species abundance, diversity and 
richness, of certain insects in a forest. For the selected plots, a net was placed under the 
trees, the trees were fogged with the insecticide and the insects of the species of interest 
that landed on the net were counted. This is an expensive and time-consuming procedure 
that can be applied to only a relatively small number of plots with small areas. In this 
study, it is expected that counts from neighboring plots would be very similar, and that 
"fogging" one plot could alter the responses in neighboring plots. There were certain 
regions in the forest where a low insect count was expected from all trees due to recent 
fires, and other regions, near a creek, where a relatively high count was expected. 
Therefore, a sampling plan that avoids the simultaneous selection of neighboring plots 
within a region was utilized (See and Song, 2002). 
 

Let a population consists of circular ordered units labeled as 1,,1,0 v  then i and 1i  
are said to be contiguous for all i  such that 20  vi , as are 1v and 0 . Let ),( ji  be 
the distance between the sampling units (or design points) i and j in this circular 
population such that |)||,|(min),( jivjiji   and maximum distance between any 
pair of units cannot exceed ]2/[v . For simplicity, denote the distance between sampling 
units (or design points) i and j  as ]2/[,,2,1),( vji  . The notation cyclic 
BSEC( ,, kv ) is used to denote a cyclic polygonal design CPD( 1;,, kv ) Similarly,  the 
notation cyclic BSA ( ;,, kv ) is used to denote a cyclic polygonal design 
CPD( ;,, kv ). A simple cyclic polygonal design with minimal distance 1 is 
denoted by CPD( 1;,, kv ). A CPD( ;,, kv ) is actually a PBIBD ( ;,,,, krbv ) for 
which association relations between the treatments are defined through the distance (see 
Frank and O'Shughnessy, 1974; Wei, 2002; Stufken et al. 1999). 
Hedayat, Rao and Stufken (1988a, b) introduced balanced sampling plans excluding 
contiguous units (BSECs) in which the contiguous units do not appear together in a 
sample whereas all other pairs of units appear equally often. The first- and second-order 
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the first order serial correlation between the units. Hedayat et al. (1988a) proved that their 
sampling plan is more efficient than the simple random sampling without replacement 

provided that 
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Ultimately, the objective of BSEC plans is to provide more representative sample and to 
provide more efficient estimator of the population mean, when neighboring (or 
contiguous) units are expected to provide similar responses. Simply in a sampling plan, 
the entire sample of units is selected such that no two neighboring units are included. 
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Stufken (1993) generalized the concept of BSECs to balanced sampling plans excluding 
adjacent units (BSAs) where all those adjacent pairs of units are excluded whose distance 
is less than or equal to  . The first- and second-order inclusion probabilities 
are NiNni ,,2,1;/  , and )]12([/)]1([   NNnnij Nji ,,2,1  , 

 || ji , and 0ij  when  || ji  , respectively. Two units i  and j  are called 
adjacent when their distance is less than a specified number   whose choice depends on 
the surveyor or experimenter (Mandal et al., 2009). It is obvious that BSEC( ,, kv ) is 
equivalent to BSA( 1;,, kv ) or BSA(1 ) (Stufken, 1993; Wei, 2002). For more 
comparison of balanced sampling plans with other sampling schemes, see See et al. 
(2000, 2007a, b) and Wright (2005).  
A PD is a PBIBD with 2-class associate scheme (i.e. with 1  and 2 ) such that the two 
units which are ith  associate of each other occur together in i  (distinct) blocks. Thus a 
PBIBD(   21 ,0,,,, krbv ), satisfying the necessary  condition of PD is having 
first of the s' . We will add one more parameter  in PBIBD if represented in terms of 
PD as PBIBD (  ;,0,,,, 21 krbv ), where  denotes the distance between the 
units. 
To establish the existence and construction of CPD( 3;,3, v )'s ,  we first give the 
definition. 

Definition 1. A CPD( ;,, kv ) for }1,,1,0{ v  treatments in b  blocks of size k  each 
( vk  ) and  some   is a binary block design in which a pair of treatments ( ji, ) do not 
appears in any block if   ),( ji  and the pair of treatments ( ji, ) appears together in   

blocks if   ),( ji , for all }1,,1,0{),(  vji  . 
 

For block size 3k  and joint distance 2 , the existence and construction of CPDs for 
joint distance 2 first appeared in Hedayat et al. (1998b). Stufken (1993) considered 
the existence and construction of CPDs for 2 . Wei (2002) suggested the existence of 
CPDs by using the Langford sequence with 3k  and 2,1  for arbitrary  . Zhang 
and Chang (2005) used Langford sequence and extended Langford sequence, and 
constructed CPDs with 3k  and =1,2,3,4,6,12 for 3  and for some v . Mandal et 
al. (2008) used symmetrically repeated differences and integer linear programming 
approach and constructed CPDs with 3k  and  =1,2,3,4,6,12 for 3  and for some 
v . 
In this paper, the method of cyclic shifts is used to extend the existence and construction 
of CPDs for block size 3k and joint distance 3 . The interesting feature, in addition 
to the simplicity, of the proposed method is that the properties of a CPD from the sets of 
shifts (used in a CPD) can easily be obtained without constructing the actual blocks of a 
CPD. The pattern of off-diagonal zero elements (in bold form) from the main-diagonal in 
a concurrence matrix (or first row of the concurrence matrix) is helpful in the 
identification of the distance   in a CPD. Further, the off-diagonal elements in a 
concurrence matrix can easily be obtained from the sets of shifts or from concurrence 
set(s) of shifts. For more detail see Iqbal et al. (2009) and Tahir et al. (2010). 
 

The paper is organized as follows. In Section 2, some algorithms are given to search 
CPD( 3;,3, v )'s with   1,2,3,4,6,12.  In Section 3, the sets of shifts are given for the 
construction of CPD( 3;,3, v )'s with  1,2,3,4,6,12, and a complete solution (in terms 
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of cyclic BSAs) is given for }100,,22,21{ v  treatments. The concluding remarks are 
given in Section 4. 
2. Algorithms for the construction of CPD( 3;,3, v )'s  

The method of cyclic shifts is described below: 

Let   ,2,1;, 21  jqqS jjj  be the set of shifts, where   vqq jj 21 ,  and jq1  
and jq2  may be repeated any number of times.  

Then   vqqvqvqvvqqqqS jjjjjjjjj mod)(,,,mod,, 21212121
*  .  

Here jqv  is complement of jq . 

A design will be CPD with 3 , if 

 (i)  *
jS  consists of 4,,4 v  an equal number of times, say ; and 

(ii)   0mod21  vqq jj . 

Some algorithms for the construction of CPDs with 3k and  =1, 2, 3, 4, 6,12 for joint 
distance 3  are presented with the conditions that 

 (i)  4,4 21  vqq jj ; and 

(ii) ( 3,2,1,3,2,1,0mod)21  vvvvqq jj . 
 

Algorithm 2.1A. A fractional CPD with 3k and 1 for 3  can be constructed if 
2;36  iiv and integer, from the following ( 1i ) sets of shifts along with the 

fractional part )3/1(]3/,3/[ vvS i   
  )1(,,2,1;, 21  ijqqS jjj   

such that 4,,5,4 v appear once among vqqqq jjjj mod)(,, 2121   and their 
complements. 
 

Algorithm 2.1B. A CPD with 3k  and 1 for 3  can be constructed if 
3;16  iiv  and integer, from the following ( 1i ) sets of shifts 

  )1(,,2,1;, 21  ijqqS jjj   

such that 4,,5,4 v appear once among vqqqq jjjj mod)(,, 2121   and their 
complements. 
 

Algorithm 2.2A. A fractional CPD with 3k  and 2 for 3  can be constructed if 
1;12  iiv  and integer, through the following ( 34 i ) sets of shifts along with the 

fractional part )3/2(]3/,3/[24 vvS i    
  )34(,,2,1;, 21  ijqqS jjj    

such that 4,5,,2/2(,2/)2(,,5,4  vvvv   all appear twice but ( 2/v ) appears 
once among vqqqq jjjj mod)(,, 2121   and their complements. 
 

Algorithm 2.2B. A CPD with 3k  and 2 for 3 can be constructed if 
1;412  iiv and integer, from the following ( 14 i ) sets of shifts   
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  )14(,,2,1;, 21  ijqqS jjj   

such that 4,5,,2/2(,2/)2(,,5,4  vvvv   appears twice but ( 2/v ) appears 
only once among vqqqq jjjj mod)(,, 2121   and their complements. 
 

Algorithm 2.3. A CPD with 3k  and 3  for 3  can be constructed if 
3;16  iiv  and integer, from the following ( 43 i ) sets of shifts  

  )43(,,2,1;, 21  ijqqS jjj   

such that 4,,5,4 v appear thrice among vqqqq jjjj mod)(,, 2121   and their 
complements. 
 

Algorithm 2.4A. A CPD with 3k  and 4  for 3  can be constructed if 
1;212  iiv and integer, from the following ( 68 i ) sets of shifts  

  )68(,,2,1;, 21  ijqqS jjj   

such that 4,5,,2/2(,2/)2(,,5,4  vvvv  appear four times but ( 2/v ) appears 
twice among vqqqq jjjj mod)(,, 2121   and their complements. 

Algorithm 2.4B. A fractional CPD with 3k  and 4 for 3  can be constructed if 
1;612  iiv  and integer, from the following ( 18 i ) sets of shifts  along with the 

fractional part )3/1(]3/,3/[8 vvS i   
  )18(,,2,1;, 21  ijqqS jjj   

such that 4,5,,2/2(,2/)2(,,5,4  vvvv  appear four times but ( 2/v ) appears 
twice among vqqqq jjjj mod)(,, 2121   and their complements. 
 

Algorithm 2.5. A CPD with 3k  and 6  for 3  can be constructed if 
1;812  iiv and integer, from the following ( 112 i ) sets of shifts  

  )112(,,2,1;, 21  ijqqS jjj   

such that 4,5,,2/2(,2/)2(,,5,4  vvvv  appear six times but ( 2/v ) appears 
thrice among vqqqq jjjj mod)(,, 2121   and their complements. 
 

Algorithm 2.6. A CPD with 3k  and 12  for 3  can be constructed if 
1;212  iiv  and integer, through the following ( 1024 i ) sets of shifts 

  )1024(,,2,1;, 21  ijqqS jjj   

such that 4,5,,2/2(,2/)2(,,5,4  vvvv   appear  twelve times but ( 2/v ) 
appears six times among vqqqq jjjj mod)(,, 2121   and their complements. 
3. Construction of CPD 3;,3, v )'s with 12,6,4,3,2,1  
In this section, CPD( 3;,3, v )'s with 12,6,4,3,2,1  are constructed and a complete 
solution for }100,,22,21{ v treatments is given. Some fractional (or smaller) 
CPD( 3;,3, v )'s for 4,2,1  have also been obtained. These CPDs exist under the 

necessary condition 
)]12([

)1(








v
kk

, where 
6

)7( 


v
 denotes the number of 

shifts required for a CPD with 3 . 
 

The following Lemmas are given to complete constructions. 
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Lemma 3.1a. There exists a fractional CPD( 3;1,3,v ) if and only if )6(mod3v and 
21v . 

Proof. By using Algorithm 2.1A, the sets of shifts have been searched to construct non-
fractional CPD( 3;1,3,v )'s for v {25, 31, 36, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97}  
treatments, which satisfy the necessary condition )7/()]1([  vkr . 
v=25: [4,9]+[5,6]+[7,8]   
v=31: [4,7]+[5,10]+[6,12]+[8,9]   
v=37: [4,7]+[5,14]+[6,10]+[8,12]+[9,13] 
v=43: [4,16]+[5,13]+[6,11]+[7,8]+[9,12]+[10,14] 
v=49: [4,9]+[5,21]+[6,14]+[7,17]+[8,11]+[10,12]+[15,16] 
v=55: [4, 13]+[5, 15]+[6, 18]+[7, 23]+[8, 14]+[9, 12]+[10, 19]+[11, 16] 
v=61: [4, 25]+[5, 17]+[6, 14]+[7, 21]+[8, 16]+[9, 18]+[10, 13]+[11, 15]+[12, 19] 
v=67: [4, 23]+[5, 21]+[6, 9]+[7, 25]+[8, 16]+[10, 19]+[11, 17]+[12, 18]+[13, 20] 
          +[14, 22] 
v=73: [4, 17]+[5, 27]+[6, 18]+[7, 26]+[8, 15]+[9, 30]+[10, 19]+[11, 20]+[12, 16] 
          +[13, 25]+[14, 22] 
v=79: [4, 20]+[5, 21]+[6, 35]+[7, 29]+[8, 22]+[9, 25]+[10, 32]+[11, 17]+[12, 19] 
          +[13, 14]+[15, 18]+[16, 23] 
v=85: [4, 32]+[5, 29]+[6, 20]+[7, 28]+[8, 17]+[9, 33]+[10, 14]+[11, 27]+[12, 18] 
          +[13, 31]+[15, 22]+[16, 23]+[19, 21] 
v=91: [4, 27]+[5, 42]+[6, 33]+[7, 17]+[8, 28]+[9, 32]+[10, 16]+[11, 29]+[12, 22] 
         +[13, 15]+[14, 21]+[15, 30]+[18, 19]+[20, 23] 
v=97: [4, 17]+[5, 26]+[6, 38]+[7, 12]+[8, 37]+[9, 25]+[10, 32]+[11, 29]+[13, 22] 
         +[14, 33]+[15, 28]+[16, 23]+[18, 30]+[20, 36]+[24, 27] 
 

Lemma 3.1b. There exists a fractional CPD( 3;1,3,v ) if and only if )6(mod1v and 
25v . 

Proof. By using Algorithm 2.1B, the sets of shifts have been searched to construct 
fractional CPD( 3;1,3,v )'s for v {21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99}  
treatments, which satisfy the necessary condition )7/()]1([  vkr . 
v=21: [4, 8]+[5, 6]+[7, 7]( )3/1(  
v=27: [4, 10]+[5, 6]+[7, 8]+[9, 9] )3/1(   
v=33: [4, 12]+[5, 9]+[6, 7]+[8, 10]+[11, 11] )3/1(   
v=39: [4, 14]+[5, 10]+[6, 11]+[7, 9]+[8, 12]+[13, 13] )3/1(   
v=45: [4, 17]+[5, 11]+[6, 12]+[7, 13]+[8, 14]+[9, 10]+[15, 15] )3/1(   
v=51: [4, 18]+[5, 9]+[6, 15]+[7, 12]+[8, 20]+[10, 16]+[11, 13]+[17, 17] )3/1(   
v=57: [4, 16]+[5, 8]+[6, 17]+[7, 22]+[9, 15]+[10, 21]+[11, 14]+[12, 18]+[19, 19] )3/1(   
v=63: [4, 22]+[5, 18]+[6, 28]+[7, 20]+[8, 9]+[10, 14]+[11, 19]+[12, 13]+[15, 16] 
          +[21, 21] )3/1(   
v=69: [4, 29]+[5, 26]+[6, 12]+[7, 21]+[8, 17]+[9, 11]+[10, 22]+[13, 14]+[15, 24] 
          +[16, 19]+[23, 23] )3/1(   
v=75: [4, 31]+[5, 19]+[6, 28]+[7, 13]+[8, 22]+[9, 27]+[10, 23]+[11, 18]+[12, 14] 
          +[15, 17]+[16, 21]+[25, 25] )3/1(   
v=81: [4, 35]+[5, 25]+[6, 8]+[7, 17]+[9, 23]+[10, 21]+[11, 33]+[12, 26]+[13, 15] 
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           +[16, 20]+[18, 29]+[19, 22]+[27, 27] )3/1(   
v=87: [4, 37]+[5, 8]+[6, 25]+[7, 27]+[9, 33]+[10, 11]+[12, 16]+[14, 22]+[15, 24] 
          +[17, 23]+[18, 26]+[19, 30]+[20, 32]+[29, 29] )3/1(   
v=93: [4, 37]+[5, 22]+[6, 26]+[7, 35]+[8, 39]+[9, 10]+[11, 25]+[12, 28]+[13, 21] 
          +[14, 29]+[15, 23]+[16, 17]+[18, 30]+[20, 24]+[31, 31] )3/1(   
v=99: [4, 27]+[5, 42]+[6, 35]+[7, 30]+[8, 32]+[9, 20]+[10, 16]+[11, 38]+[12, 13] 
          +[14, 22]+[15, 39]+[17, 34]+[18, 28]+[19, 24]+[21, 23]+[33, 33] )3/1(   
Lemma 3.2a. There exists a fractional CPD( 3;2,3,v ) if and only if )12(mod0v and 

24v . 
Proof. By using Algorithm 2.2A, the sets of shifts have been searched to construct 
fractional CPD( 3;2,3,v )'s for v {24, 36, 48, 60, 72, 84, 96} treatments, which satisfy 
the necessary condition )7/()]1([  vkr . 
v=24: [4, 6]+[4, 9]+[5, 7]+[5, 9]+[6, 7]+[8, 8] )3/2(  
v=36: [4, 10](2)+[5, 11](2)+[6, 13](2)+[7, 8](2)+[9, 9]+[12, 12] )3/2(   
v=48: [4, 15]+[4, 18]+[5, 7]+[5, 17]+[6, 11]+[6, 14]+[7, 12]+[8, 13]+[8, 15]+[9, 11] 
          +[9, 18]+[10, 13]+[10, 14]+[16, 16] )3/2(   
v=60: [4, 24]+[4, 26]+[5, 17]+[5, 18]+[6, 17]+[6, 22]+[7, 11]+[7, 12]+[8, 13]+[8, 21] 
          +[9, 15]+[9, 16]+[10, 16]+[10, 19]+[11, 14]+[12, 15]+[13, 14]+[20, 20] )3/2(   
v=72: [4, 18]+[4, 30]+[5, 14]+[5, 26]+[6, 21]+[6, 26]+[7, 16]+[7, 27]+[8, 12]+[8, 28] 
          +[9, 21]+[9, 23]+[10, 19]+[10, 25]+[11, 20]+[11, 22]+[12, 13]+[13, 15] 
          +[14, 15]+[16, 17]+[17, 18]+[24, 24] )3/2(   
v=84: [4, 21]+[4, 32]+[5, 15]+[5, 35]+[6, 31]+[6, 33]+[7, 10]+[7, 33]+[8, 19]+[8, 23] 
          +[9, 20]+[9, 25]+[10, 24]+[11, 19]+[11, 30]+[12, 26]+[12, 27]+[13, 16] 
          +[13, 23]+[14, 18]+[14, 24]+[15, 22]+[16, 26]+[17, 18]+[21, 22] 
          +[28, 28] )3/2(   
v=96: [4, 19]+[4, 24]+[5, 6]+[5, 31]+[6, 38]+[7, 22]+[7, 43]+[8, 29]+[8, 33]+[9, 38] 
          +[9, 39]+[10, 23]+[10, 31]+[11, 25]+[12, 18]+[12, 27]+[13, 21]+[13, 34] 
          +[14, 26](2)+[15, 20]+[15, 30]+[16, 28]+[16, 35]+[17, 20]+[17, 25] 
          +[18, 24]+[19, 27]+[21, 22]+[32, 32] )3/2(   
 

Lemma 3.2b. There exists a fractional CPD( 3;2,3,v ) if and only if )12(mod4v and 
28v . 

Proof. By using Algorithm 2.2B, the sets of shifts have been searched to construct non-
fractional CPD( 3;2,3,v )'s for v {28, 40, 52, 64, 76, 88, 100}  treatments, which 
satisfy the necessary condition )7/()]1([  vkr . 
v=28: [4,7]+[4, 9]+[5, 6]+[5, 9]+[6, 10]+[7, 8]+[8, 10] 
v=40: [4, 13]+[4, 14]+[5, 10]+[5, 11]+[6, 9]+[6, 14]+[7, 12](2)+[8, 9]+[8, 10]+[11, 13] 
v=52: [4, 14]+[4, 20]+[5, 11]+[5, 16]+[6, 12]+[6, 17]+[7, 13]+[7, 15]+[8, 11]+[8, 17] 
          +[9, 19]+[9, 21]+[10, 13]+[10, 15]+[12, 14] 
v=64: [4, 24]+[4, 25]+[5, 14](2)+[6, 20]+[6, 25]+[7, 15]+[7, 21]+[8, 16]+[8, 21] 
         +[9, 18](2)+[10, 12]+[10, 16]+[11, 12]+[11, 23]+[13, 17]+[13, 20]+[15, 17] 
v=76: [4, 26](2)+[5, 24]+[5, 29]+[6, 8]+[6, 25]+[7, 8]+[7, 24]+[9, 18]+[9, 23]+[10, 22] 
         +[10, 27]+[11, 17]+[11, 22]+[12, 16]+[12, 21]+[13, 21]+[13, 23]+[14, 25] 
         +[15, 20]+[16, 19]+[17, 19]+18, 20] 
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v=88: [4, 26]+[4, 38]+[5, 10]+[5, 33]+[6, 21]+[6, 22]+[7, 30]+[7, 35]+[8, 19]+[8, 31] 
          +[9, 23]+[9, 35]+[10, 24]+[11, 21]+[11, 25]+[12, 24]+[12, 28]+[13, 18] +[13, 20] 
          +[14, 25]+[14, 29]+[15, 26]+[16, 18]+[16, 29]+[17, 23]+[17, 20]+[19, 22] 
v=100: [4, 22]+[4, 33]+[5, 22]+[5, 35]+[6, 23]+[6, 24]+[7, 13]+[7, 35]+[8, 24] +[8, 33] 
           +[9, 38]+[9, 43]+[10, 31]+[10, 39]+[11, 18]+[11, 34]+[12, 34] +[12, 38]+[13, 31] 
           +[14, 23]+[14, 28]+[15, 25]+[15, 36]+[16, 27]+[16, 28]+[17, 19]+[17, 30] 
           +[18, 21]+[19, 26]+[20, 32]+[21, 25] 
 

Lemma 3.3 There exists a fractional CPD( 3;3,3,v ) if and only if )6(mod5v and 
23v . 

Proof.  By using Algorithm 2.3, the sets of shifts have been searched to construct non-
fractional CPD( 3;3,3,v )'s for v {23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95} 
treatments, which satisfy the necessary condition )7/()]1([  vkr . 
v=23: [4, 6]+[4, 8]+[4, 9]+[5, 6]+[5, 7]+[5, 9]+[6, 7]+[7, 8] 
v=29: [4, 8](2)+[4, 10]+[5, 6]+[5, 9]+[5, 11]+[6, 7]+[6, 11]+[7, 8]+[7, 9]+[9, 10] 
v=35: [4, 8]+[4, 9]+[4, 12]+[5, 10]+[5, 11](2)+[6, 8]+[6, 9]+[6, 12]+[7, 10]+[7, 11] 
         +[7, 13]+[8, 13]+[9, 10] 
v=41: [4, 11]+[4, 14](2)+[5, 8]+[5, 14]+[5, 15]+[6, 9]+[6, 10]+[6, 16]+[7, 10](2)+[7, 13] 
         +[8, 9]+[8, 11]+[9, 12]+[11,12]+[12,13] 
v=47: [4, 11]+[4, 15]+[4, 18]+[5, 12]+[5, 16]+[5, 17]+[6, 7]+[6, 14]+[6, 17]+[7, 11] 
         +[7, 12]+[8, 10]+[8, 12]+[8, 13]+[9, 11]+[9, 14]+[9, 16]+[10, 14]+[10, 16] 
         +[13, 15] 
v=53: [4, 13]+[4, 17]+[4, 19]+[5, 15](2)+[5, 19]+[6, 10]+[6, 16]+[6, 18]+[7, 15]+[7, 18] 
         +[7, 19]+[8, 14]+[8, 16]+[8, 18]+[9, 11]+[9, 12](2)+[10, 13](2)+[11 , 14] 
         +[11, 17]+[12, 14] 
v=59: [4, 19]+[4, 20](2)+[5, 13]+[5, 17]+[5, 21]+[6, 8]+[6, 21](2)+[7, 9]+[7, 17] +[7, 18] 
         +[8, 14]+[8, 15]+[9, 13]+[9, 19]+[10, 15]+[10, 18]+[10, 20]+[11 , 15]+[11, 16] 
         + [11, 23]+[12, 14]+[12, 17]+[12, 19]+[13, 16] 
v=65: [4, 7]+[4, 18](2)+[5, 10]+[5, 26](2)+[6, 19](2)+[6, 23]+[7, 11]+[7, 20]+[8, 14] 
        +[8, 25]+[8, 26]+[9, 21](3)+[10, 17](2)+[11, 13]+[12, 16](3)+[13, 20](2) 
        +[14, 15](2)+[17, 24]+[19, 23] 
v=71: [4, 19]+[4, 29](2)+[5, 24]+[5, 26](2)+[6, 15](2)+[6, 22]+[7, 10]+[7, 27](2)+[8, 18] 
         +[8, 24]+[8, 27]+[9,16](2)+[9, 25]+[10, 13](2)+[11, 13]+[11, 17](2)+[12, 18](2) 
         +[12, 20]+[14, 19]+[14, 22](2)+[15, 16]+[19, 20]+[20, 21] 
v=77: [4, 21]+[4, 35](2)+[5, 27]+[5, 31](2)+[6, 18](2)+[6, 21]+[7, 15]+[7, 30](2)+[8, 20] 
         +[8, 26](2)+[9, 14](2)+[9, 19]+[10, 16]+[10, 22](2)+[11, 16]+[11, 19]+[11, 28] 
         +[12, 17](2)+[12, 24]+[13, 20](2)+[13, 21]+[14, 17]+[15, 18]+[15, 25]+[16, 19] 
         +[23, 25] 
v=83: [4, 17](2)+[4, 36]+[5, 20]+[5, 26](2)+[6, 29]+[6, 33](2)+[7, 17]+[7, 23](2)+[8, 29] 
         +[8, 32](2)+[9, 18]+[9, 19]+[9, 22]+[10, 23]+[10, 24](2)+[11, 15]+[11, 27](2) 
         +[12, 18]+[12, 25](2)+[13, 21]+[13, 22](2)+[14, 18]+[14, 28](2)+[15, 16] 
         +[15, 29]+[16, 20](2)+[19, 19] 
v=89: [4, 29]+[4, 30](2)+[5, 17]+[5, 35]+[5, 19]+[6, 15]+[6, 27](2)+[7, 29]+[7, 32] 
         +[7, 35]+[8, 14]+[8, 31](2)+[9, 11](2)+[9, 22]+[10, 28](2)+[10, 23]+[11, 23] 
         +[12, 16]+[12, 25]+[12, 32]+[13, 24](2)+[13, 27]+[14, 29](2)+[15, 21](2) 
         +[16, 20]+[16, 26]+[17, 21]+[17, 25]+[18, 23](2)+[18, 26]+[19, 22]+[19, 25] 
v=95: [4, 17]+[4, 35]+[4, 41]+[5, 28]+[5, 31]+[5, 34]+[6, 21](2)+[6, 31]+[7, 20] 
         +[7, 37](2)+[8, 23]+[8, 40](2)+[9, 17]+[9, 36](2)+[10, 23](2)+[10, 34] 
         +[11, 19](3)+[12, 22]+[12, 29](2)+[13, 22](2)+[13, 29]+[14, 24]+[14, 25] 



Cyclic Polygonal Designs with Block size 3 and Joint Distance 3 

 76 
 

           +[14, 32]+[15, 28](2)+[15, 32]+[16, 24]+[16, 26](2)+[17, 32]+[18, 20](2) 
           +[18, 25]+[24, 25] 
 

Lemma 3.4a There exists a fractional CPD( 3;4,3,v ) if and only if )12(mod10v and 
22v . 

Proof.  By using Algorithm 2.4A, the sets of shifts have been searched to construct non-
fractional CPD( 3;4,3,v )'s for v {22, 34, 46, 58, 70, 82, 94} treatments, which satisfy 
the necessary condition )7/()]1([  vkr . 
v=22: [4, 6]+[4, 7]+[4, 8]+[4, 9]+[5, 6]+[5, 7](2)+[5, 8]+[6,7]+[6, 8] 
v=34: [4, 8]+[4, 10]+[4, 12](2)+[5, 7]+[5, 9]+[5, 10]+[5, 13]+[6, 7]+[6, 8]+[6, 9] +[6, 11] 
         +[7, 10]+[7, 11]+[8, 11]+[8, 13]+[9, 10]+[9, 11] 
v=46: [4, 8]+[4, 13](2)+[4, 17]+[5, 15](2)+[5, 18](2)+[6, 13](2)+[6, 14](2)+[7, 9](2) 
         +[7, 15](2)+[8, 9]+[8, 10](2)+[9, 12]+[10, 12](2)+[11, 14](2)+[11, 16](2) 
v=58: [4, 20](3)+[4, 24]+[5, 21](4)+[6, 16](4)+[7, 11](4)+[8, 12]+[8, 19](3)+[9, 14](4) 
          +[10, 15](3)+[10, 19]+[12, 13]+[12, 15]+[12, 17]+[13, 17](3) 
v=70: [4, 20](3)+[4, 25]+[5, 14]+[5, 25]+[5, 26]+[5, 30]+[6, 21](2)+[6, 26](2)+[7, 13] 
          +[7, 18]+[7, 22]+[7, 23]+[8, 11](3)+[8, 29]+[9, 22](3)+[9, 23]+[10, 17](2) 
          +[10, 24]+[10, 26]+[11, 21]+[12, 16](4)+[13, 17]+[13, 21]+[13, 23]  
          +[14, 15](2)+[14, 23]+[15, 18](2)+[17, 18] 
v=82: [4, 12]+[4, 29]+[4, 32](2)+[5, 11](2)+[5, 30](2)+[6, 13](2)+[6, 27](2)+[7, 25](2) 
         +[7, 31](2)+[8, 21]+[8, 26](2)+[8, 29]+[9, 19](2)+[9, 22](2)+[10, 20](2) 
         +[10, 24](2)+[11, 17](2)+[12, 21]+[12, 26](2)+[13, 23](2)+[14, 23](2) 
         +[14, 27](2)+[15, 20](2)+[15, 25](2)+[16, 29]+[17, 22](2)+[18, 21](2)+[18, 24](2) 
v=94: [4, 21]+[4, 24]+[4, 30](2)+[5, 30](2)+[5, 39](2)+[6, 35](2)+[6, 37](2)+[7, 26] 
         +[7, 32]+[7, 36](2)+[8, 10](2)+[8, 20](2)+[9, 29](2)+[9, 33]+[9, 39] +[10, 11](2) 
         +[11, 20](2)+[12, 19](2)+[12, 34](2)+[13, 19](2)+[13, 23](2)+[14, 15] +[14, 26] 
         +[14, 33](2)+[15, 26](2)+[15, 29]+[16, 22](2)+[16, 24](2)+[17, 25](2) +[17, 27] 
         +[17, 33]+[18, 27](2)+[21, 27]+[22, 23](2)+[24, 28]+[25, 32] 
 

Lemma 3.4b There exists a fractional CPD( 3;4,3,v ) if and only if )12(mod6v and 
30v . 

Proof.  By using Algorithm 2.4B, the sets of shifts have been searched to construct 
fractional CPD( 3;4,3,v )'s for v {30, 42, 54, 66, 78, 90} treatments, which satisfy the 
necessary condition )7/()]1([  vkr . 
v=30: [4, 5]+[4, 8]+[4, 11]+[4, 13]+[5, 7](2)+[5, 11]+[6, 8](2)+[6, 9]+[6, 10]+[7, 10] 
         +[7, 11]+[8, 9]+[9, 10]+[10, 10] )3/1(  
v=42: [4, 14]+[4, 15](3)+[5, 8]+[5, 13](3)+[6, 11](3)+[6, 14]+[7, 8]+[7, 9](2)+[7, 10] 
          +[8, 12]+[8, 14]+[9, 12](2)+[10, 10]+[10, 16]+[11, 12]+[14, 14] )3/1(   
v=54: [4, 6]+[4, 21](2)+[4, 23]+[5, 14](2)+[5, 15](2)+[6, 16](2)+[6, 17]+[7, 13](2) 
         +[7, 19](2)+[8, 14](2)+[8, 16](2)+[9, 12](2)+[9, 17](2)+[10, 15](2)+[10, 17] 
         +[11, 12](2)+[11, 13](2)+[18, 18]+[18, 18] )3/1(   
v=66: [4, 17](2)+[4, 20](2)+[5, 20]+[5, 24](2)+[5, 27]+[6, 25](2)+[6, 26](2)+[7, 8] 
            +[7, 11]+[7, 21](2)+[8, 11]+[8, 15](2)+[9, 11]+[9, 19](2)+[9, 25] +[10, 17](2) 
            +[10, 23](2)+[11, 19]+[12, 14](2)+[12, 15]+[12, 18]+[13, 16](2) +[13, 18](2) 
            +[14, 16](2)+[22, 22]+[22, 22] )3/1(   
v=78: [4, 6](2)+[4, 33](2)+[5, 28](2)+[5, 30](2)+[6, 18](2)+[7, 13](2)+[7, 16](2)+[8, 24] 
          +[8, 28](2)+[8, 30]+[9, 22](2)+[9, 25](2)+[10, 21](2)+[11, 19]+[11, 23](2) 
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          +[11, 27]+[12, 17](2)+[12, 25](2)+[13, 14]+[13, 27]+[14, 15](2)+[14, 24] 
          +[15, 17](2)+[16, 19](2)+[18, 21](2)+[19, 27]+[20, 22](2)+[26, 26] 
          +[26, 26] )3/1(   
v=90: [4, 24](3)+[4, 42]+[5, 18]+[5, 32](2)+[5, 38]+[6, 10]+[6, 15]+[6, 27]+[6, 39] 
          +[7, 17]+[7, 35]+[7, 36]+[7, 41]+[8, 21](2)+[8, 33](2)+[9, 31](2)+[9, 35]+[9, 36] 
          +[10, 17]+[10, 19](2)+[11, 20]+[11, 26](2)+[11, 39]+[12, 22](4)+[13, 14] 
          +[13, 25](2)+[13, 27]+[14, 25](2)+[14, 28]+[15, 17](2)+[15, 21]+[16, 19](2) 
         +[16, 33]+[18, 20]+[18, 26](2)+[20, 23](2)+[23, 31]+[30, 30]+[30, 30] )3/1(   
 

Lemma 3.5 There exists a fractional CPD( 3;6,3,v ) if and only if )12(mod8v and 
33v . 

Proof.  By using Algorithm 2.5, the sets of shifts have been searched to construct non-
fractional CPD( 3;6,3,v )'s for v {32, 44, 56, 68, 80, 92} treatments, which satisfy the 
necessary condition )7/()]1([  vkr . 
v=32: [4, 9](2)+[4, 11](3)+[4, 12]+[5, 7](3)+[5, 8]+[5, 10]+[5, 11]+[6, 7]+[6, 8](2)+[6, 9] 
         +[6, 10]+[6, 12]+[7, 8]+[7, 11]+[8, 10](2)+[9, 10](2)+[9, 11] 
v=44: [4, 13](2)+[4, 14]+[4, 15]+[4, 18](2)+[5, 12](4)+[5, 14](2)+[6, 10](3)+[6, 15](3) 
         +[7, 9](3)+[7, 14](3)+[8, 10](3)+[8, 11](3)+[9, 13]+[9, 15](2)+[11, 13](3) 
         +[12, 12] 
v=56: [4, 18](3)+[4, 23](3)+[5, 16](3)+[5, 19](3)+[6, 9](3)+[6, 19](3)+[7, 13](3)+[7, 14] 
         +[7, 20]+[7, 23]+[8, 9]+[8, 14](2)+[8, 17](3)+[9, 17](2)+[10, 11](2)+[10, 12] 
         +[10, 14](3)+[11, 12](2)+[11, 16](2)+[12, 18](3)+[13, 15](3)+[16, 20] 
v=68: [4, 21](3)+[4, 23](3)+[5, 10]+[5, 16](2)+[5, 23](3)+[6, 24](3)+[6, 26](3) 
         +[7, 15](3)+[7, 26](3)+[8, 8]+[8, 14](3)+[8, 27]+[9, 16]+[9, 18]+[9, 19](3)+[9, 21] 
         +[10, 15](2)+[10, 24](3)+[11, 16]+[11, 18](5)+[12, 19](3)+[12, 20](3) +[13, 16] 
         +[13, 17](3)+[13, 20](2)+[14, 17](3) 
v=80: [4, 18]+[4, 23]+[4, 27](2)+[4, 28](2)+[5, 20]+[5, 30](3)+[5, 32](2)+[6, 15](3) 
         +[6, 27](3) +[7, 18](3)+[7, 23]+[7, 24]+[7, 25]+[8, 18](2)+[8, 28]+[8, 29](3) 
         +[9, 10](3)+[9, 29](3)+[10, 13]+[10, 20](2)+[11, 23](3)+[11, 24](2)+[11, 26] 
         +[12, 13]+[12, 24](2)+[12, 28](3)+[13, 21](3)+[13, 32]+[14, 17](3) +[14, 19](3) 
         +[15, 24] +[15, 26](2)+[16, 20](3)+[16, 22](2)+[16, 26]+[17, 22](3) 
 
v=92: [4, 18]+[4, 20]+[4, 24](2)+[4, 39](2)+[5, 16](2)+[5, 27]+[5, 38](3)+[6, 32] 
         +[6, 35](2)+[6, 40](3)+[7, 20](2)+[7, 21]+[7, 33](3)+[8, 29](3)+[8, 34](3) 
         +[9, 21](3)+[9, 30](3)+[10, 22](2)+[10, 34](3)+[10, 39]+[11, 17]+[11, 18](2) 
         +[11, 25](3)+[12, 19](3)+[12, 23]+[12, 26](2)+[13, 16]+[13, 22](3) 
         +[13, 23](2)+[14, 23](3)+[14, 31](3)+[15, 17](2)+[15, 26](4)+[16, 17](3) 
         +[18, 24](3)+[19, 25](3)+[20, 27](3)+[28, 28] 
 
Lemma 3.6 There exists a fractional CPD( 3;12,3,v ) if and only if )12(mod2v and 

33v . 
Proof.  By using Algorithm 2.6, the sets of shifts have been searched to construct non-
fractional CPD( 3;12,3,v )'s for v {26, 38, 50, 62, 74, 86, 98} treatments, which satisfy 
the necessary condition )7/()]1([  vkr . 
v=26: [4, 6](4)+[4, 7](2)+[4, 8](2)+[4, 10](2)+[4, 11](2)+[5, 6](2)+[5, 7]+[5, 8](4) 
          +[5, 9](3)+[5, 10](2)+[6, 7](2)+[6, 8](3)+[6, 9]+[7, 7]+[7, 8]+[7, 9](4)+[8, 9](2) 
v=38: [4, 7]+[4, 9](2)+[4, 10](3)+[4, 12](2)+[4, 14](4)+[5, 8](2)+[5, 10]+[5, 11] 
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         +[5, 12](4)+[5, 13](2)+[5, 14](2)+[6, 7]+[6, 8]+[6, 9](2)+[6, 10](3)+[6, 11](4) 
         +[6, 12]+[7, 9](2)+[7, 10](2)+[7, 11](4)+[7, 12](2)+[8, 8](2)+[8, 12]+[8, 13](2) 
         +[8, 15](2)+[9, 10](2)+[9, 13](2)+[9, 14](2)+[10, 13]+[11,12](2) 
v=50: [4, 16](2)+[4, 18](5)+[4, 20](5)+[5, 11]+[5, 12](3)+[5, 13](3)+[5, 14]+[5, 16](3) 
         +[5, 19]+[6, 8](2)+[6, 9]+[6, 13](3)+[6, 14](3)+[6, 17](3)+[7, 8]+[7, 10]+[7, 11] 
         +[7, 12](3)+[7, 15](3)+[7, 18](3)+[8, 11](2)+[8, 14](3)+[8, 15]+[8, 16](3) 
         +[9, 11](2)+[9, 12](6)+[9, 15](3)+[10, 11](3)+[10, 13](5)+[10, 17](3)+[11, 14](3) 
         +[13, 15]+[15, 16](2)+[16, 17] 
v=62:  [4, 19](12)+[5, 7]+[5, 12](5)+[5, 24](5)+[5, 28]+[6, 7](5)+[6, 24](6)+[6, 28] 
        +[7, 13](6)+[8, 14](6)+[8, 21](6)+[9, 18](6)+[9, 22](6)+[10, 15](6)+[10, 16](4) 
        +[10, 18](2)+[11, 13]+[11, 16](6)+[11, 17](5)+[12, 20](4)+[12, 25](2) 
        +[14, 14](2)+[14, 16](2) +[15, 21](6)+[17, 20](2+[18, 18](2) 
v=74: [4, 31](12)+[5, 19](10)+[5, 20](2)+[6, 15]+[6, 21](11)+[7, 25](2)+[7, 26](10) 
          +[8, 28](12)+[9, 9]+[9, 14]+[9, 15](2)+[9, 18]+[9, 25](6)+[10, 15](2) 
          +[10, 20](10)+[10, 12](11)+[11, 15]+[12, 14]+[13, 16](12)+[14, 18](10) 
          +[15, 22](6)+[17, 17](6)+[19, 22](2)+[22, 22](2) 
v=86: [4, 21](6)+[4, 37](6)+[5, 31](6)+[5, 32](6)+[6, 33](12)+[7, 17](6)+[7, 28](6) 
         +[8, 18](5)+[8, 20]+[8, 26](6)+[9, 13](2)+[9, 14](3)+[9, 18]+[9, 21](6) 
         +[10, 10](2)+[10, 20]+[10, 24](6)+[10, 26]+[11, 17](6)+[11, 18](6) 
         +[12, 20](6)+[12, 31](6)+[13, 23](3)+[13, 30]+[13, 29](6)+[14, 27](5) 
         +[14, 30](2)+[14, 31]+[14, 36]+[15, 23](6)+[15, 25](6)+[16, 19](6) 
         +[16, 22](6)+[19, 27](6)+[20, 22](3) 
v=98: [4, 26](6)+[4, 46](6)+[5, 36](5)+[5, 37](6)+[5, 40]+[6, 23](6)+[6, 34](6) 
         +[7, 25](5)+[7, 28](6)+[7, 32]+[8, 38](6)+[8, 39](6)+[9, 33](6)+[9, 35](6) 
         +[10, 20](5)+[10, 31](6)+[10, 38]+[11, 11](2)+[11, 15]+[11, 18](6)+[11, 25] 
         +[12, 21](6)+[12, 24]+[12, 38](5)+[13, 15](6)+[13, 17]+[13, 21](5)+[14, 20] 
         +[14, 22](5)+[14, 23](6)+[15, 20](5)+[16, 27](6)+[16, 31](6)+[17, 22](5) 
         +[17, 32](6) +[18, 27](6)+[19, 24](6)+[19, 25]+[19, 26](5)+[20, 21]+[20, 24](5) 
 

4. Concluding remarks 
Hedayat et al. (1988b, p.577) first constructed CPD (in terms of BSA) for joint distance 

2 . Stufken (1993) introduced the existence of CPDs (in terms of BSAs) for joint 
distance 2 and constructed CPDs for 2 . Wei (2002) suggested the use of 
Langford sequence for the existence and construction of CPDs (in terms of BSAs) with 

3k  and 2,1  for arbitrary  . 
 

Zhang and Chang (2005) gave the construction of CPDs (in terms of BSAs) for 3k , 
3  and 12,6,4,3,2,1  for some v . The base blocks and the triples for 

CPD( 3;,3, v )'s are given below in Table 1. 
 

Table 1: CPD ( 3;,3, v )'s by Zhang and Chang (2005) for 12,6,4,3,2,1  
 

  v  (base blocks) v  (Triples using Langford sequence) 
1 (25, 31, 37, 43) (21, 27, 33, 39, 57, 63, 81, 87, 105, 111, 129) 
2 (24),  (28, 40, 52, 64, 76, 88) (36, 48) 
3 ??? 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 89, 95) 
4 22 (34, 46, 58), (30, 42, 54) 
6 ??? (32, 44) 
12 26 (38, 50, 62) 
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Mandal et al. (2008) presented a catalog of CPDs (in terms of BSAs) with 3k and 

3  for some  v . The detail of CPD( 3;,3, v )'s with 12,6,4,3,2,1  is given below 
in Table 2. 
 

Table 2: CPD ( 3;,3, v )'s by Mandal et al. (2008) for 12,6,4,3,2,1  
 

  v  (Initial blocks using linear programming) 
1 25, 31, 37  
2 ??? 
3 27, 29, 33 
4 22, 34 
6 23, 24, 36 
12 30 

 
It is noted from Table 1 and Table 2 that the CPD( 3;,3, v )'s with 12,6,4,3,2,1  are 
available only for limited v . 
 

In this paper,  CPD( 3;,3, v )'s with 12,6,4,3,2,1  are constructed and a solution for 
}100,,22,21{ v  treatments is given. The proposed CPDs are given in Table 3. Some 

fractional (or smaller) CPD( 3;,3, v )'s for 4,2,1  have also been obtained. 

Table 3:  Proposed CPD ( 3;,3, v )'s with 12,6,4,3,2,1  for }100,,22,21{ v  
 

  v  (CPDs by using the method of cyclic shifts) Existence 
1 f  21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99 )6(mod3v  
1 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97 )6(mod1v  
2 f  24, 36, 48, 60, 72, 84, 96 )12(mod0v  
2 28, 40, 52, 64, 76, 88, 100 )12(mod4v  
3 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95 )6(mod5v  
4 22, 34, 46, 58, 70, 82, 94 )12(mod10v  
4 f  30, 42, 54, 66, 78, 90 )12(mod6v  
6 32, 44, 56, 68, 80, 92 )12(mod8v  
12 26, 38, 50, 62, 74, 86, 98 )12(mod2v  

where f  stands for fractional (or smaller) CPDs 
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