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Abstract 

This article presents the estimation methods of three parameters Discrete Generalized 

Exponential distribution. The two-parameter generalized exponential distribution was 

introduced by Gupta and Kundu (1999). We present the three parameters discrete 

Generalized Exponential distribution is the sum of infinite probability function. Moment 

estimation, inverse integer moment estimation, moment generating function, maximum 

likelihood estimation and L-moment estimation are derived for this infinite probability 

function. 

Keywords: Three parameter Generalized Exponential distribution, Sum of infinite 

probability function, Moment estimation, moment generating function, maximum 
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1. Introduction  

The Generalized Exponential models are the reliability models can be used in the 

reliability engineering discipline. This paper focuses on the reliability analysis of the 

discrete Generalized Exponential distribution’s to model in which some operational time 

has already been accumulated for the equipment of interest. This paper presents the 

relationship between shape parameter and other properties such as probability function, 

cumulative distribution function, reliability function, hazard function, cumulative hazard 

function, rth moment estimation, Inverse integer moment estimation, moment generating 

functions, maximum likelihood estimation and L-moment estimation are presented 

mathematically. The Discrete Generalized Exponential distribution will be suitable for 

modeling for the applications of mechanical or electrical components lying in the life 

testing experiment. Some works has already been done on Generalized Exponential 

distribution by Gupta and Kundu (2003). Debasis Kundu, Rameshwar D. Gupta and 

Anubhav Manglick (2005) presented the Discriminating between the log-normal and 

generalized exponential distributions. Gupta, R. D; Kundu, D (2001 b) also derived 

Generalized exponential distributions for different methods of estimation. 

2. Discrete Generalized Exponential Models 

The Discrete Generalized Exponential probability distribution has three parameters ,  

and 0x . It can be used to represent the failure probability density function (PDF) is given 

by: 
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 ,   is the shape parameter representing the different 

pattern of the discrete Generalized Exponential PDF and is positive and   is a scale 

parameter representing the characteristic life, 0t  is a location parameter and sometimes 

called a guarantee time, failure-free time or minimum life. If 
0x =0 then the three 

parameter discrete Generalized Exponential distribution is said to be two-parameter 

discrete Generalized Exponential distribution. 

 

The cumulative distribution function (CDF) of Discrete Generalized Exponential 

distribution is denoted by )(xFGEP  and is defined as 
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When the CDF of the Generalized Exponential distribution has zero value then it 

represents no failure components by 0x .  

The reliability function (RF), denoted by )(xRGEP  is also known as the survivor function 

and is defined as l- )(xFGEP              
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The hazard function (HF) is also known as instantaneous failure rate denoted by 

)(xhGEP and is defined as /)(xfGEP )(xRGEP   
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The cumulative hazard function (CHF), denoted by )(xHGEP  and is defined as: 
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3. rth Moment Estimation  

 The rth moment of Discrete Generalized Exponential distribution about origin is 

given by 
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Put 
0x =0, Then the above reliability model will provide the rth moment of Generalized 

Exponential Distribution 
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The special cases of these rth moments of Generalized Exponential Distribution 
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The variance, skewness and kurtosis measures can now be calculated for the rth moments 

about mean of Discrete Generalized Exponential distribution using the relations 
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4. Inverse rth Moment Estimation 

The Inverse rth moment estimation of Discrete Generalized Exponential distribution about 

origin is given by 
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Put 0x =0, Then the above reliability model will provide the inverse rth moment 

of Discrete Generalized Exponential distribution is 














1

0
11:

)1(

)1()1(
1




m

r

m

m

r

r m

r
C , 4,3,2,1r                          

         (4.2) 

The special cases of these inverse rth moments of Discrete Generalized Exponential 

distribution are  
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The variance, skewness and kurtosis measures can now be calculated for the Inverse rth 

moments about mean of Discrete Generalized Exponential distribution using the relations 
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5. Moment generating function  
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Put 0x =0, Then the above reliability model will provide the moment generating function 

of Discrete Generalized Exponential distribution is 
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Then the rth moments about origin of Discrete Generalized Exponential distribution is 

defined as  
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For finding these moments about origin the above function will take the values 4,3,2,1r  

At the time 00 t , will provide 32,1 ,   and 4 . Using these moments about origin, 

then we find variance, skewness and kurtosis measures can now be calculated for the rth 

moments about mean of Discrete Generalized Exponential Distribution. 
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6. Maximum Likelihood Estimation  

We consider estimation by the method of maximum likelihood for the 

Generalized Exponential Distribution. The log likelihood for a random sample 

nxxx ,......,, 21
 from (2.1) taking 

0x =0 is 
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The first order derivatives of (6.1) with respect to the two parameters are 
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By setting these expressions equal to zero in (6.2) and (6.3), then solving them 

simultaneously yield the maximum likelihood estimates of the two parameters.  
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Minimum Variance Bound (MVB) for the discrete Generalized Exponential distribution is 
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             (6.8) 

Using (6.6), (6.7) and (6.8) we can find the minimum variance bound. By using these 

equations we can also find the fisher information matrix for finding the variances of these 
parameters. 

7. L-Moments 

As discussed in previous section, the alternative measure of distribution of shapes denoted 

by Hosking (1990), L-moments are expectation of certain linear combinations of order 

Statistics. Hosking has defined the L-moments of X to be the quantities. 
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The L in “L-moments” emphasizes that r is a linear function of the expected order 

statistics. The expectation of an order Statistics has been written as (Hosking (1990)) 
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The first few L-moments, r  of random variable”X”, as defined by Hosking (1990) are 

given below: 
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Where Xk:n is an order Statistics, the k
th
 smallest of a sample of size ”n” drawn from the  

distribution of X and x(F) is a quantile function of real-valued random variable X.  

The “L” in L-moment emphasized that r is a linear function of expected order 
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 Statistics. Measures of skewness and kurtosis, based on L-moments, are respectively. 

 

                          L-skewness = 
233         (7.3) 

And 

                         L-Kurtosis = 
244                      (7.4) 

 

The L-moments r ,,1   and L-moment ratios r ,,3  are useful quantities for 

summarizing a distribution. The L-moments are in some ways analogous to the 

(conventional) center moments and the L-moments ratios are analogous to moment’s 

ratios. In particular 43,2,1  and may be regarded as measures of location, scale, 

skewness and kurtosis respectively. Hosking (1990) has shown that L-moments have good 
properties as measure of distributional shape and are useful for fitting distribution to data.  

8. Calculation of L-skewness & L-kurtosis  

 The probability distribution can be summarized by the following four measures. 

The mean or L-location (1), The L-scale (2), The L-skewness (3), The L-Kurtosis(4), 

we now consider these measures, particularly 3 and 4 in more details. 
Moments are often used as summary measure of the shapes of a distribution. In this 

section the measure of skewness and kurtosis based on L-moments has been calculated 

from the Generalized Exponential distribution. The first four L-moments of the Discrete 

Generalized Exponential distribution given in expression (7.1) have been calculated from 

relations (7.2).  The derived first four L-moments of the Discrete Generalized Exponential 

distribution is explained in eq. (8.1, 8.2, 8.3 & 8.4) 
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L. Moments of Coefficient of variation, Coefficient of Skewness & Coefficient of 

Kurtosis 
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