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Abstract

This article presents the estimation methods of three parameters Discrete Generalized
Exponential distribution. The two-parameter generalized exponential distribution was
introduced by Gupta and Kundu (1999). We present the three parameters discrete
Generalized Exponential distribution is the sum of infinite probability function. Moment
estimation, inverse integer moment estimation, moment generating function, maximum
likelihood estimation and L-moment estimation are derived for this infinite probability
function.
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1. Introduction

The Generalized Exponential models are the reliability models can be used in the
reliability engineering discipline. This paper focuses on the reliability analysis of the
discrete Generalized Exponential distribution’s to model in which some operational time
has already been accumulated for the equipment of interest. This paper presents the
relationship between shape parameter and other properties such as probability function,
cumulative distribution function, reliability function, hazard function, cumulative hazard
function, ry, moment estimation, Inverse integer moment estimation, moment generating
functions, maximum likelihood estimation and L-moment estimation are presented
mathematically. The Discrete Generalized Exponential distribution will be suitable for
modeling for the applications of mechanical or electrical components lying in the life
testing experiment. Some works has already been done on Generalized Exponential
distribution by Gupta and Kundu (2003). Debasis Kundu, Rameshwar D. Gupta and
Anubhav Manglick (2005) presented the Discriminating between the log-normal and
generalized exponential distributions. Gupta, R. D; Kundu, D (2001 b) also derived
Generalized exponential distributions for different methods of estimation.

2. Discrete Generalized Exponential Models

The Discrete Generalized Exponential probability distribution has three parameters 77, £
and X, . It can be used to represent the failure probability density function (PDF) is given

by:
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p-1

foer (X) = §ZCm:ﬂl(—1)m Exp{— [Wﬂ 7 >0,8>0,%X, >0,—0< X, <X

(2.1)
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" m(B—m=1)!
pattern of the discrete Generalized Exponential PDF and is positive and 77 is a scale

Where C [ is the shape parameter representing the different

parameter representing the characteristic life, t, is a location parameter and sometimes

called a guarantee time, failure-free time or minimum life. If X,=0 then the three

parameter discrete Generalized Exponential distribution is said to be two-parameter
discrete Generalized Exponential distribution.

The cumulative distribution function (CDF) of Discrete Generalized Exponential
distribution is denoted by Fg, (X) and is defined as

(2.2)
When the CDF of the Generalized Exponential distribution has zero value then it
represents no failure components by X, .

The reliability function (RF), denoted by Rz (X) is also known as the survivor function
and is defined as I- Fp (X)

J=! . _x)d
R (9 =112 3., 1) [mp[((nwm

(2.3
The hazard function (HF) is also known as instantaneous failure rate denoted by
heee (X) and is defined as T (X)/ Rggp (X)
p-1 _
é ZCWH n" Exp[— [MH
hGEP )= U r;:o ( U a )
s & " X—X,)L+m
1- mﬂ%cm: 52 (D) [1— Exp(— (#JH
(2.9)
The cumulative hazard function (CHF), denoted by H 5 (X) and is defined as:
Hoer (x) = I} fm gcm:ﬁ,l(—l)m[l_ Exp(_ [Mn(l*m)}ﬂ‘
(2.5
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3. rth Moment Estimation

The rth moment of Discrete Generalized Exponential distribution about origin is

given by
- [x ﬁ”z (_DmEXp{_((x—xo)(1+m)ﬂdx
%o m=0 n

3.1

Put X, =0, Then the above reliability model will provide the rth moment of Generalized
Exponential Distribution

p-1 _1\m
_pr§ic, DT

am r=1234 (3.2)

The special cases of these rth moments of Generalized Exponential Distribution
are

D"
18772 mp1 1+ m) (3.29)
< 2(-H™
= pn* Z " )’ (3.2b)
! Bﬁ = 6( 1)
z m:5-1 (1 m)r+l (3.2¢)

u =gyt Sic 240"
Z " (L m)®

The variance, skewness and kurtosis measures can now be calculated for the rth moments
about mean of Discrete Generalized Exponential distribution using the relations

(3.2d)

p-1

Var (x) = pn? Z mp-t 2( 1) [’B z mﬁl(l( 1r)n) ]

m g1 m B m B
BZ m/f1 r+1 [ Z zj[ﬂnz Cm ]+2[ﬁﬂzcm/i1

m=0 m=0

8 2A-)" p1 )" 2
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Skewness(x) =

m=0
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4“ 24(-0)" < 9" e 6ED"
Z mﬂl(l_l_m) [ﬂ Z m:f-1 ][ Z m:5-1 J+
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m 2_ -1 (_1)m 4
[/3 Z s 1+m J{ﬂ Z mﬂ1(1+m)] 3(ﬂnm2_ocm;ﬁ_l (1+m)zj

Kurtosis(x) =

oo 20w 0 )|

4. Inverse rth Moment Estimation

The Inverse rth moment estimation of Discrete Generalized Exponential distribution about
origin is given by

//l;—l =,[ x ﬁzcmﬂ (D" EXp|: [(X_Xog(l+m)j:|dx

4.1)

Put X, =0, Then the above reliability model will provide the inverse rth moment
of Discrete Generalized Exponential distribution is

& D"r@-r)
L= "S'CL,  r=1234
M, £n n; Bl A+ m)l_r

4.2)

The special cases of these inverse rth moments of Discrete Generalized Exponential
distribution are

p-1
’Lljt’l = 167771 Z Cm:ﬂ—l (_1) ™
m=0
(4.28)
B-1
,u;,l =pn* Z Crpa D"@+mr-1
m=0
(4.2b)

p-1
/1;—1 = ﬂ7773zcm:ﬂ71(_1)m @+m)’r—-2
m=0
(4.2¢)

p—1
,U:rl = ﬁ7774 Zcm:/f—l (_1)m (1+ m)sr -3
m=0
(4.2d)

The variance, skewness and kurtosis measures can now be calculated for the Inverse rth
moments about mean of Discrete Generalized Exponential distribution using the relations
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A1 A1 2
Var(xil) = ﬁ7772 Zcm:ﬂ—l (_l)m (l+ m)r -1- (ﬁnlzcm:ﬁ—l (_l)mj

51 51 51 3
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Kurtosis(x ) =

-1 2\’
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5. Moment generating function

_w lxﬂﬁ4 m ((X_Xo)(]-’L )Jj|
M, (1) =[e* 25, (-)mBxp| | XS g
X() ;[e Umzzo m: - ( ) Xp{ 7 X

(5.1)

Put X, =0, Then the above reliability model will provide the moment generating function
of Discrete Generalized Exponential distribution is

D"p

M. ()= ZC"‘/“(1+m) ty

(5.2)

Then the rth moments about origin of Discrete Generalized Exponential distribution is
defined as

r pg-1 _1\m
‘IJ; = d Cm:ﬂ—l ( 1) ﬂ
dtr m=0 (1+ m)—tﬂ

(5.3)

For finding these moments about origin the above function will take the values r =1,2,3,4

At the timet, = O, will provide £4 45, f25 and . Using these moments about origin,

then we find variance, skewness and kurtosis measures can now be calculated for the rth
moments about mean of Discrete Generalized Exponential Distribution.
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6. Maximum Likelihood Estimation

We consider estimation by the method of maximum likelihood for the
Generalized Exponential Distribution. The log likelihood for a random sample

Xi1 X5 yeeeeen, X, from (2.1) taking X, =0'is

log L(8,1) = nlog B-nlogn + (B —1)ilog[1—em(—;)j—;ixi
(6.1)

The first order derivatives of (6.1) with respect to the two parameters are

dlogL _ ﬂjtz“log(l—exp(—lJ
n

op B =
(6.2)
xexp(—2)
6I09L=;n_(ﬂ—1)z”: n +iix_

o Nt FepXy 1E
7

(6.3)

By setting these expressions equal to zero in (6.2) and (6.3), then solving them
simultaneously yield the maximum likelihood estimates of the two parameters.

- n
f=- E
Zlog(l—exp(—)fj
i-1 n
(6.4)
" Xexp(—f) ;
(1 Ay ——- Z
- exp(—f) -
(6.5)
Minimum Variance Bound (MVB) for the discrete Generalized Exponential distribution is
E o*logL)_n
op’ B
(6.6)
_E Gzlong__ﬂz ﬁZm( l)
opon nas (M+2)°
(6.7)
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82 Iog L & C/} 1 (DT 1=
op° = 0 S (m+D?
ﬂ 2m( n"
BA-p)| wo (m+2)
772 143 /; am D7 &2 C/f—z:m GV
g med A (a1
(6.8)

Using (6.6), (6.7) and (6.8) we can find the minimum variance bound. By using these
equations we can also find the fisher information matrix for finding the variances of these
parameters.

7. L-Moments

As discussed in previous section, the alternative measure of distribution of shapes denoted
by Hosking (1990), L-moments are expectation of certain linear combinations of order
Statistics. Hosking has defined the L-moments of X to be the quantities.

i-1 -
k=0 K

The L in “L-moments” emphasizes that Ay is a linear function of the expected order
statistics. The expectation of an order Statistics has been written as (Hosking (1990))

rt -1 r—j
Xijr = [XFHFOHH-F)T T IdF(x). (72
jir (j—l)!(r—j)!j FWFOPH-FooI T ldF). @2
The first few L-moments, Ay of random variable”X”, as defined by Hosking (1990) are
given below:

A =E(X)= c})x(F)jF

1
1
Ay =§E(x2:2—x1: 2)=(j)x(F)(2F ~1)dF

A —lE(X —2X, L+ X —1x(F 6F26F +1|dF

373 13:3 2:3771:3/7
iy =2Ex, -3x, 43X jx 20F3 - 30F2 +12F ~1)dF
474 \4:47°73:47570:47 14

Where Xy, is an order Statistics, the k™ smallest of a sample of size ”n” drawn from the
distribution of X and x(F) is a quantile function of real-valued random variable X.

The “L” in L-moment emphasized that Ay is a linear function of expected order
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Statistics. Measures of skewness and kurtosis, based on L-moments, are respectively.

L-skewness = 73 =43 / 15 (7.3)
And
L-Kurtosis = 74 =24 / 1o (7.4)

The L-moments A7,---, Ay and L-moment ratios z3,---,7are useful quantities for

summarizing a distribution. The L-moments are in some ways analogous to the
(conventional) center moments and the L-moments ratios are analogous to moment’s

ratios. In particular A9, 42,73 and 74 may be regarded as measures of location, scale,

skewness and kurtosis respectively. Hosking (1990) has shown that L-moments have good
properties as measure of distributional shape and are useful for fitting distribution to data.

8. Calculation of L-skewness & L-kurtosis

The probability distribution can be summarized by the following four measures.
The mean or L-location (A,), The L-scale (A,), The L-skewness (t3), The L-Kurtosis(ts),
we now consider these measures, particularly 3 and t, in more details.
Moments are often used as summary measure of the shapes of a distribution. In this
section the measure of skewness and kurtosis based on L-moments has been calculated
from the Generalized Exponential distribution. The first four L-moments of the Discrete
Generalized Exponential distribution given in expression (7.1) have been calculated from
relations (7.2). The derived first four L-moments of the Discrete Generalized Exponential
distribution is explained in eq. (8.1, 8.2, 8.3 & 8.4)

= D"
A ﬂﬂz xﬁl(1+x)
8.1)
2p-1 ( 1) p-1 ( 1)
—Zﬂﬂz x2ﬁ1(1 XZ: xﬂ1(1+x)
8.2)
34-1 ( 2p-1 X p-1 (_1)x
A, =61 Zcxsﬂl( -6/ Z xzﬂl ﬂ”écx:ﬂl (14 X)?
8.3)
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A, =200 Llfc D 306 Sil ) 12 Zi:lc Y’
= X: X + X:
4 nle Aﬁl( Sﬂl n 2ﬁ1(1+x)
(D"
- C
ﬂﬂle xp-1 I+ X)
(8.4)

L. Moments of Coefficient of variation, Coefficient of Skewness & Coefficient of
Kurtosis

2p-1 A1
\/Zﬁnzcx:z/}l(l)_ﬂ Z x: -1 (1)

1+ = @+ x)?
CVeep = 51 — 1)x
ﬁnz x/i'l(l X)
(8.5)
By () ) o (Y
" ) 6ﬂf7xzz‘icx;3ﬁfl 1+ X)z GIBUXZ:;Cx:Zﬂ 1 (L+X ﬂﬂz -1 1+ X)
"NGED T 251 >< p-1 X
Zﬂﬂz x2ﬂ1( Z xp’1(1 X)
(8.6)
& (G -D* & (G
20ﬂﬂzcx4ﬂ1(1+x) ﬂnz ><3ﬁ1(1+ X)? +12ﬂ’72 x2ﬂ1(1+x)2
g1 1
—ﬂﬂzcxﬂ 1 (]F+ 3()
KGED = 2
LY G (Y
(Zﬂnz x2f-1 1+ X)Z ﬂnxzz:lcx:ﬂ—l 1+ X)ZJ
(8.7)
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