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Abstract 
Optimization is a key factor in almost all the topics of operations research / management science and economics. 
The road networks can be optimized within different constraints like time, distance, cost and traffic running on 
the roads.  
This study is based on optimization of real road network by means of distances. Two main objectives are 
pursued in this research: 1) road distances among different routes are composed in detail; 2) two standard 
algorithms (Dijkstra and Floyd-Warshall algoritms) are applied to optimize/minimize these distances for both 
single-source and all-pairs shortest path problems. 
Keywords: Shortest Path, Dijkstra Algorithm, Floyd-Warshall Algorithm, Road Networks  
1.  Introduction 
It is, perhaps, by nature that human beings mostly emphasize optimization in real life phenomena. Finding the 
shorter times and the lower costs are not only looked upon by individuals but also by multinational companies. 
For an individual, it is often only a matter of convenience, but for a corporation it is of strategic importance 
when direct monetary cost is involved. The shortest path problem is one of the most important optimization 
problems in such fields as operations research / management science, computer sciences and artificial 
intelligence. One of the reasons is that essentially any combinatorial optimization problem can be formulated as 
a shortest path problem (Sniedovich, 2005). The development of algorithms for this shortest path finding 
problem, their computational testing and efficient implementation have remained important research topics 
within related disciplines (Dijkstra (1959), Dial et al. (1979), Glover et al. (1985), Ahuja et al. (1990), Goldberg 
and Radzik (1993)).  
In this study, we have optimized one real road network in terms of distances using two numerous algorithms: 1) 
Dijkstra algorithm and 2) Foyd-Warshall algorithm. The review of graph theory related to the topic, shortest 
path problem, shortest path algorithms and the network related data (edge-wise distances) with computational 
procedure, results and conclusion are arranged in the later sections.  
2.  Graph Theory Context 
A network is defined as a directed graph G = (N, A) consisting of a set N of nodes (or vertices) and a set A of 
arcs, as the number of nodes, n =│N│, and the number of arcs, m = │A│. The arcs of a network are links (or 
lines or branches) that connect certain pairs of nodes. If the flow of an arc is unidirectional or there is a one-way 
link between two nodes, the arc is said to be a directed arc. Whereas, if an object can move in either direction of 
an arc, it is said to be an undirected arc (or an edge).  A network that has only directed arcs is known as directed 
network. In the same way, an undirected network is one that has all its arcs undirected. 
In a network, each arc or edge is associated with some numerical value (real number), variously called its cost, 
weight, length (distance) or some other variable depending on the application. It is denoted as ijc  for each arc 
( )ji, ∈  A. Weights of the arcs are very important because some algorithms impose further restrictions on 
weights. A path is a sequence of distinct arcs/edges connecting two specified nodes in a network. Each arc/edge 
must have exactly one node in common with its predecessor in the sequence and no node may be visited more 
than once (Rardin, 2003). A path may be either directed or undirected. If a path begins and ends at the same 
node it is called a cycle. In an undirected network there are many cycles. However, note that the definition of 
path must satisfy. A directed network may or may not be cyclic depending on whether the paths involved are 
directed or undirected. If a network has at least one cycle/directed cycle then it refers to as a cyclic network 
otherwise called acyclic.       By the same token, a negative cyclic network is a network which has at least one 
cycle of negative total length (negative cycle).  
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The shortest path is a connected path between any two nodes with least weights (or costs). This problem can be 
stated as: given a network, find the shortest paths (or shortest distances or least costs) from a source node s to 
other node(s) or shortest path between every two nodes. The shortest paths from a source node to all others 
(one-to-all) represent a directed tree T rooted from source node s, with the characteristic that a unique path from 
s to any node i  in the network is the shortest path to that node (Zhan and Noon, 1996). This directed tree is 
called a shortest path tree. For any network with       n nodes, one can obtain n distinct shortest path trees. The 
length of the shortest path from s to any node i  is denoted as ( )id . 
3.  Shortest Path Problem 
Finding the shortest path is an important task in many network and transportation related analyses.  This 
problem arises as a main decision question or as a step in some situation. There are many variations, depending 
on the type of network and costs involved, and source/destination pairs of nodes for which we need solution 
(Rardin, 2003). 
It is therefore important to determine the specificity of the shortest path problem we are concerned.  The most in 
depth classification of shortest path problems is agreed to the Deo and Pang’s taxonomy (1984) and most 
recently by Sniedovich (2005).  
Several variants of the shortest path problem are summarized as under: 

• Cyclic or Acyclic problems: If there is at least one cycle in the network it is called a cyclic network 
otherwise acyclic.  

• Non-negative or Negative distance problems: If the distances are non-negative, that is, 0≥ijc  for 
all i and j, or if there is at least one negative distance, that is, 0<ijc . 

• Non-negative cyclic or Negative cyclic problems: If the cyclic problems have non-negative length 
of all cycles or if the length of at least one cycle is negative (Sniedovich, 2005).  

• Sparse or Dense network problem: A network where m, number of arcs, is closer to n2    (‘n’ number 
of nodes) is a dense network, whereas a graph where m = (Alpha × n) where alpha is much smaller than 
n is a sparse network (that is, when the arc-to-node ratio is small). 

• Single-source or All-pairs shortest path problem: Whether to find the shortest path from one source 
node to one destination node (one-to-one), shortest path from one source node to a subset of nodes (<n) 
(one-to-some) or one source node to all other nodes (one-to-all). 

The presence of negative arc lengths allow negative cycles, that is, cycles with negative lengths. If such a 
negative cycle exists the shortest path algorithms whether of dynamic programming based or linear 
programming based have the solution unbounded. The networks in this study, for which we have to determine 
optimum distances and optimum paths are undirected, cyclic, sparse and have non-negative arc lengths.   
4.  Shortest Path Algorithms 
A variety of methods and algorithms are available for the solution of shortest path problems depending on the 
nature of specific problem. There are of course, a number of ways to classify such algorithms like: i) dynamic 
programming inspired algorithms and linear programming inspired algorithms and ii) label setting algorithms 
and label correcting algorithms. The first classification scheme is very much OR/MS (operations research / 
management science) and methodologically oriented and the second classification scheme used both in 
computer science and operations research literature [Bertsekas (1991), Evans and Minieka (1992)] (Sniedovich, 
2005).  
Because of the nature of our problem, we just review the two dynamic programming algorithms; (i) Dijkstra 
algorithm and (ii) Floyd-Warshall algorithm. These dynamic programming algorithms of shortest path problem 
are inspired by the famous Bellman’s (1957) principle of optimality and are the procedures designed to find 
shortest path by solving the dynamic programming functional equations. Detailed description of these 
algorithms, with modifications and experimentations using different data structures, is given in Cherkassky et al. 
(1993) and Zhan and Noon (1996) and references therein. 
4.1  Dijkstra’s Algorithm 
In 1959 Edsger Wybe Dijkstra, a Dutch computer scientist, proposed two algorithms for the solution of two 
fundamental graph theory problems: i) the minimum weight spanning tree problem and ii) the shortest path 
problem. 
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Sniedovich (2005) comments that the original Dijkstra’s algorithm constitutes an iterative procedure for the 
solution of dynamic programming functional equation associated with the shortest path problem given that the 
arc lengths are non-negative.  
Dijkstra’s algorithm for the single-source (i.e. one-to-one, one-to-some and one-to-all) shortest path problem is 
one of the most celebrated algorithms in computer science and a very popular algorithm in operations research. 
There have been many refinements and modifications as well as numerical experiments (evaluations) that have 
brought a significance improvement in the performance of the algorithm especially due to the use of some new 
data structures. 
We take up the modified form of Dijkstra algorithm by Rardin (2003) and further make some modifications in 
the sense that Rardin (2003) gave a four step algorithm to calculate shortest distances and then a backtracking 
procedure to recover the shortest paths. But here in this study we modified these two tasks in ten step algorithm. 
In addition these ten steps can be applied for all subclasses of single-source shortest path problem. 
Dijkstra’s algorithm forms two different tables (say table A and table B on page 9-10) that summarize the 
calculations and updates of iterations. The final results of table A represent the shortest distances from source 
node s to all other nodes whereas table B helps in recovering the corresponding shortest paths.  
The steps of this algorithm are given below: 
Step 1: Select the source node‘s’ and initialize the optimal path lengths in first row of table A with s as 

 [ ]
⎩
⎨
⎧
∞

=
←

otherwise
siif

id
0   

Also start table B with u[i] instead of d[i]. 
Step 2: Select p← s as the first permanently labeled node and add it in column of permanently labeled nodes 

(first column) of table A and B.  
Step 3: For every arc/edge (p, i) emanating from node p, update 
 d[i] ← min { d[i], d[p] + cp,i}      (4.3) 
 And mark node p permanent. 
Step 4: If d[i] changed in value, set u[i] ← p in table B. 
Step 5: Check whether the recently permanent node is  

• the destination node (if the problem is one-to-one) 
• last one of which the shortest path are required (if the problem is one-to-some) 
• last node to be permanent or no temporary node remain(if the problem is one-to-all) 

If so, go to step 7; otherwise go to step 6. 
Step 6: Select p as the next permanently labeled node with least current value d[i], that 

 is, [ ] =pd min { [ ]id  : i temporary }. And go to step 3. 
Step 7: Mention node i (destination node) for which shortest path from source node s is required and prefix 

node i as the last node in the shortest path. 
Step 8: Check whether the recently prefixed node is the required source node. If no, let this node be X and go to 

step 9; otherwise go to step 10. 
Step 9: Take final u[X] from table B and prefix it in the partially formed shortest path. Then go to    step 8. 
Step10: The required shortest path from source node s to node i is constructed and the corresponding shortest 

distances s to node i is the final d[i] in table A. Note that the arcs/edges in this path form the shortest 
path tree by distinguishing to others.  
If shortest path from source node to any other node (whose shortest distances is calculated) is required, 
go to step 7; otherwise stop. 

4.2  Floyd-Warshall Algorithm  
The Floyd-Warshall algorithm is a dynamic programming algorithm to solve the all-pairs (or all-to-all) shortest 
path problem on a directed network. The arcs of the network may have negative costs but must not have any 
negative-costs cycles. The modification for Floyd-Warshall algorithm is also made as in section 4.1. The 
purpose is to get the shortest distances and paths in a same sequence of steps. The four step Floyd-Warshall 
algorithm is also taken from Rardin (2003). 
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The Floyd-Warshall algorithm takes as input an adjacency matrix representation. This algorithm maintains two 
types of matrices, i) distance matrix Dt and ii) precedence matrix Ut, in each iteration and takes initial distance 
matrix D0 and initial precedence matrix U0 as input. Then proceeds for n iterations, where n is the number of 
nodes in the distance matrix. The nth iteration gives the optimal/final distance matrix Dt=n and the final 
precedence matrix Ut=n. The optimal distance matrix Dn represents the shortest distances between any two nodes 
in the network and the corresponding shortest paths can be traced out from the final precedence matrix Un. The 
steps under Floyd-Warshall algorithm are summarized below: 
Step 1: Form the initial distance matrix D0 and the initial precedence matrix U0.  
 For all arcs/edges ( )lk,  in the network, initialize 

 ( )[ ] lkclkd ,
0 , ←   ,   [ ] klku ←,  

 For k, l  pairs with no arc/edge ( )lk, , assign 

 ( ) [ ]
⎩
⎨
⎧

∞+
=

←
otherwise

lkif
lkd

0
,0  

Step 2: Set iteration counter t ← 1. 
Step 3: Find values of distance matrix Dt for all k, l  ≠ t using the relation below 

 ( )[ ]←lkd t ,  min ( ) [ ] ( )[ ] ( )[ ]{ }ltdtkdlkd ttt ,,,, 111 −−− +  

Step 4: Assign the values to precedence matrix Ut using the relation below 

 [ ] [ ] [ ] [ ]
[ ]⎩

⎨
⎧ ≠

←
otherwiselku

lkdlkdifltu
lku

ttt

,
,,,

,  

Step 5: Terminate if 
i) nt =  ‘the number of nodes in the network’ 
ii) [ ] 0, <kkd t  for any node k 

In first case [ ]lkd t ,  equal the required shortest distances and the latter one detects if there is any 
negative cycle through k. 

Step 6:  If t < n and all [ ] 0, ≥kkd t , set 1+← tt  and go to step 3. 
Step 7: To recover the shortest path between any two nodes ( )lk, , follow the guidelines given below: 
  7.1: Take node l  as the last node in the shortest path. 

7.2: Find the value [ ]lku ,  form the final precedence matrix Un. Let it be X. Prefix node X in the 
partially formed shortest path. 

7.3: Check whether X is equal to k. if so, go to step 7.4; otherwise set l  = X and go to step 7.2. 
7.4: The required shortest path from node k to node l  is constructed. 

4.3  Some Evaluations of Shortest Path Algorithms 
There have been a number of reported evaluations of shortest path algorithms in the literature e.g. Glover et al. 
(1985), Gallo and Pallottino (1988), Mondou et al. (1991), Cherkassky et al. (1993), Zhan and Noon (1996), 
Shad et al. (2003).  
4.3.1  Shortest Path Algorithms: An evaluation using real road networks by Zhan and Noon (1996): 
Zhan and Noon (1996) tested 15 of the 17 shortest path algorithms, which were tested by Cherkassky  et al. 
(1993), using 21 real road networks.  
They suggested that best performing implementations for solving the one-to-all shortest path problem are PAPE 
and TWO-Q for both large and small networks. Furthermore, if it is only necessary to compute a one-to-one 
shortest path or the shortest paths from a source node to a subset of the nodes (one-to-some), it may be 
worthwhile to consider one of the Dijkstra’s implementations.  
4.3.2  Evaluation of route finding methods in GIS application by Shad et al. (2003): 
More recently, Shad et al. (2003) evaluated the processing time of a set of three shortest path algorithms using 
Visual Basic, Mapobject and Visual C++ programming language. These three algorithms are Dijkstra’s 
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algorithm, Heuristic Methods and Genetic algorithms. They tested 4 shortest path algorithms using 6 real road 
networks. The 4 algorithms were implemented using data sets with different numbers of nodes and links. 
Finally, they suggested that none of the research regarding the evaluation of the performance of shortest path 
algorithms has a clear answer as to which algorithm or a set of algorithms runs fastest on real road networks. 
5.  Computation and Results 
Data of road network of Sindh is composed in this study. This road network, which is characterized as real road 
network, consists of main towns and five level of roads i.e. motorways (R-1), national highways (R-2) metalled 
main (R-3), metalled other(R-4) and unmetalled (R-5) roads. The network contains 17 main towns of Sindh 
province. 
As far as the sources of data are concerned, the distances of roads are taken from NHA, Surveyor General of 
Pakistan or approximate distances have manipulated directly from the road map where ever necessary. Table 5.1 
describes the edge-wise detail of distances in road network of Sindh. Columns 4-8 show that the particular arc 
has the length of each type of road if included. The entries of total distance have a label, either I or II, with them. 
Label-I indicates that the distance is taken from NHA or road map, whereas label-II shows that approximate 
distances are manipulated from road map by a given scale.  
The computational tables of the one network for both single-source (see table 5.2 and 5.3) and all-pairs problem 
(see tables 5.4 and 5.5) are given on next pages.  

 

                   Figure . Roadmap of Sindh (Source: Highway Department)
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Table   5.1 Edge-wise Approximate Distances in Road Network of Sindh 

Edge No. From To R-1 R-2 R-3 R-4 R-5 Total Route 

1 Karachi Thatta  101    101-I Karachi-Thatta 

2 Karachi Hyderabad  175    175-I Karachi-Kotri-Hyderabad 

3 Karachi Dadu  340    340-I Karachi-Kotri-Sehwan-Dadu 

4 Thatta Badin   93   93-II Thatta-Sujawal-Badin 

5 Thatta Hyderabad  98    98-I Thatta-Hyderabad 

6 Badin Mithi    58 52 110-II Badin-Tando Bago-Jhudo-Naukot-Mithi 

7 Badin Hyderabad   100   100-I Badin-Matli-Hyderabad 

8 Badin Mirpur Khas   52 86  138-II Badin-Matli-Digri Mirwah-Mirpur Khas 

9 Badin Umarkot   52 123  175-II Badin-Matli-Digri Mirwah-Umarkot 

10 Mithi Hyderabad   7 115 32 154-II Mithi-Jhudo-Digri-Shaikh Bhirklo-Hyderabad 

11 Mithi Mirpur Khas    88 32 120-II Mithi-Jhudo-Mirwah-Mirpur Khas 

12 Mithi Umarkot    20 95 115-II Mithi-Jhudo-Nabisar-Umarkot 

13 Hyderabad Mirpur Khas   66   66-I Hyderabad-Tando Allahyar-Mirpur Khas 

14 Hyderabad Sanghar  48  56  104-II Hyderabad-Hala-Shahdadpur-Sanghar 

15 Hyderabad Nawabshah  89 24   113-I Hyderabad-Hala-Sakrand-Nawabshah 

16 Hyderabad Naushahro Firoz  182    182-I Hyderabad-Sakrand-Moro-Naushahro Firoz 
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17 Hyderabad Dadu  180    180-I Hyderabad-Kotri-Sehwan-Dadu 

18 Mirpur Khas Umarkot   72   72-II Mirpur Khas-Pithoro-Umarkot 

19 Mirpur Khas Sanghar   63   63-I Mirpur Khas-Sanghar 

20 Sanghar Nawabshah   61   61-I Sanghar-Khadro-Nawabshah 

21 Nawabshah Naushahro Firoz    80  80-II Nawabshah-Pad Idan-Naushahro Firoz 

22 Nawabshah Dadu  70 22 22  114-II Nawabshah-Sakrand-Moro-Dadu 

23 Nawabshah Khairpur  31  112  143-II Nawabshah-Pad Idan-Kot Diji-Khairpur 

24 Naushahro Firoz Dadu  26 22   48-II Naushahro Firoz-Moro-Dadu 

25 Naushahro Firoz Khairpur  113    113-I Naushahro Firoz-Ranjpur-Khairpur 

26 Dadu Larkana  110    110-II Dadu-Mehar-Larkana 

27 Larkana Shikarpur  63    63-II Larkana-Garhi Yasin-Shikarpur 

28 Larkana Jacobabad  20  80  100-II Larkana-Ratodero-Jacobabad 

29 Khairpur Sukkur  23    23-I Khairpur-Sukkur 

30 Sukkur Shikarpur  37    37-I Sukkur-Shikarpur 

31 Sukkur Ghotki  58    58-I Sukkur-Pano Aqil-Ghotki 

32 Shikarpur Jacobabad  43    43-I Shikarpur-Jacobabad 

 

Source: Highway Department 
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Table 5.2 (Table A) Single-source Shortest Path Solution of Sindh Road Network with Source Node 1(Karachi) by Dijkstra Algorithm 

 p d[1] d[2] d[3] d[4] d[5] d[6] d[7] d[8] d[9] d[10] d[11] d[12] d[13] d[14] d[15] d[16] d[17] 

T Initial 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

1 1 Perm 101   175      340       

2 2  Perm 194               

3 5    329 Perm 241  279 288 357        

4 3   Perm 304   369           

5 6      Perm 313           

6 8        Perm          

7 9         Perm    431     

8 4    Perm              

9 7       Perm           

10 11           Perm 450      

11 10          Perm        

12 13             Perm 454    

13 12            Perm   513 550  

14 14              Perm 491  512 

15 15               Perm 534  

16 17                 Perm 

17 16                Perm  

 Final 0 101 194 304 175 241 313 279 288 357 340 450 431 454 491 534 512 
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Table 5.3 (Table B) For Recovering the Shortest Paths by Dijkstra Algorithm 

t p u[1] u[2] u[3] u[4] u[5] u[6] u[7] u[8] u[9] u[10] u[11] u[12] u[13] u[14] u[15] u[16] u[17] 

1 1  1   1      1       

2 2   2               

3 5    5  5  5 5 5        

4 3    3   3           

5 6       6           

6 8                  

7 9             9     

8 4                  

9 7                  

10 11            11      

11 10                  

12 13              13    

13 12               12 12  

14 14               14  14 

15 15                15  

16 17                  

17 16                  

 Final  1 2 3 1 5 6 5 5 5 1 11 9 13 14 15 14 
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Table 5.4  Optimal/Final Distance Matrix by Floyd‐Warshall Algorithm [All‐to‐all Shortest Path Solution of Sindh Road Network] 

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 

1  0  101  194  304  175  241  313  279  288  357  340  450  431  454  491  534  512 

2  101  0  93  203  98  164  236  202  211  280  278  388  354  377  414  457  435 

3  194  93  0  110  100  138  175  201  213  282  280  390  356  379  416  459  437 

4  304  203  110  0  154  120  115  183  244  324  334  444  387  410  447  490  468 

5  175  98  100  154  0  66  138  104  113  182  180  290  256  279  316  359  337 

6  241  164  138  120  66  0  72  63  124  204  238  348  267  290  327  370  348 

7  313  236  175  115  138  72  0  135  196  276  310  420  339  362  399  442  420 

8  279  202  201  183  104  63  135  0  61  141  175  285  204  227  264  307  285 

9  288  211  213  244  113  124  196  61  0  80  114  224  143  166  203  246  224 

10  357  280  282  324  182  204  276  141  80  0  48  158  113  136  173  216  194 

11  340  278  280  334  180  238  310  175  114  48  0  110  161  184  173  210  242 

12  450  388  390  444  290  348  420  285  224  158  110  0  123  100  63  100  158 

13  431  354  356  387  256  267  339  204  143  113  161  123  0  23  60  103  81 

14  454  377  379  410  279  290  362  227  166  136  184  100  23  0  37  80  58 

15  491  414  416  447  316  327  399  264  203  173  173  63  60  37  0  43  95 

16  534  457  459  490  359  370  442  307  246  216  210  100  103  80  43  0  138 

17  512  435  437  468  337  348  420  285  224  194  242  158  81  58  95  138  0 
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Table 5.5 Final Precedence Matrix by Floyd-Warshall Algorithm [All-to-all Shortest Path Solution of Sindh Road Network] 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 - 1 2 3 1 5 6 5 5 5 1 11 9 13 14 15 14 

2 2 - 2 3 2 5 6 5 5 5 5 11 9 13 14 15 14 

3 2 3 - 3 3 3 3 6 5 5 5 11 9 13 14 15 14 

4 2 3 4 - 4 4 4 6 8 9 5 11 9 13 14 15 14 

5 5 5 5 5 - 5 6 5 5 5 5 11 9 13 14 15 14 

6 5 5 6 6 6 - 6 6 8 9 9 11 9 13 14 15 14 

7 5 5 7 7 6 7 - 6 8 9 9 11 9 13 14 15 14 

8 5 5 6 6 8 8 6 - 8 9 9 11 9 13 14 15 14 

9 5 5 5 6 9 8 6 9 - 9 9 11 9 13 14 15 14 

10 5 5 5 6 10 8 6 9 10 - 10 11 10 13 14 15 14 

11 11 5 5 5 11 8 6 9 11 11 - 11 10 13 12 12 14 

12 11 5 5 5 11 8 6 9 11 11 12 - 14 15 12 12 14 

13 5 5 5 6 9 8 6 9 13 13 10 15 - 13 14 15 14 

14 5 5 5 6 9 8 6 9 13 13 10 15 14 - 14 15 14 

15 5 5 5 6 9 8 6 9 13 13 12 15 14 15 - 15 14 

16 5 5 5 6 9 8 6 9 13 13 12 16 14 15 16 - 14 

17 5 5 5 6 9 8 6 9 13 13 10 15 14 17 14 15 - 
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Results 
In single-source problem, one-to-one and one-to-some problems can be obtained by deducing the one-to-all shortest 
path problem when the required node(s) became permanently labeled. Moreover, due to the property of reducing the 
one-to-all problem upto one-to-one problem, the networks are analyzed for one-to-all problem under single-source 
shortest path problem class only. 
Setting Karachi (node 1) as a source city, table 5.2 and 5.3 represent the optimum distances and their corresponding 
paths from Karachi to all other cities in road network of Sindh. 
Interpretation: The required optimum/shortest distance from Karachi to any other city in the network is the final 
value of the column labeled by an integer in table 5.2 (table A). For example, if the shortest path from Karachi to 
Sukkur (node 14) is required, the final value of column d[14] i.e. 454 Km is the shortest distance. On the other hand 
the corresponding shortest route recovered  by following the steps 7-10 of Dijkstra algorithm in section 4.1 is 1-5-9-
13-14 i.e. Karachi-Hyderabad-Nawabshah-Khairpur-Sukkur. The same mechanism can be applied to get the shortest 
path to any other city from Karachi. The other subclasses of the shortest path problem, one-to-one and one-to-some 
problems, can also be managed through this one-to-all shortest path problem. For example, in calculating the 
shortest path from Karachi to Sukkur only, the algorithm will reduce upto 14th iteration because Sukkur (node 14) 
became permanently labeled in 14th iteration.  
The solution of all-to-all shortest path problem in road network of Sindh by applying the Floyd-Warshall Algorithm 
is given in table 5.4 and 5.5.respectively. The (i,j)element of the final distance matrix is the  shortest or optimal 
distance from node i to node j. For example the shortest distance from Hyderabad (node 5) to Shikarpur (node 15) is 
equal to the (5, 15) element of final distance matrix i.e. 316 Km. and its corresponding route recovered from final 
precedence matrix is 5-9-13-14-15 i.e. Hyderabad-Nawabshah-Khairpur-Sukkur-Shikarpur. 
6. Conclusion 
Finding the shortest path is often a central task in many network and transportation analysis problems. The main 
reasons are: many of the optimization problems can be formulated as networks and it is usually be the essential part 
of more complicated transportation analysis problems. Considerable research has been done to develop the faster 
algorithms for solving this problem and of course, there have been numerous algorithms like Bellman-Ford-Moore 
algorithm, Dijkstra algorithm etc. Moreover, some important evaluations have also made to test the efficiency of 
these algorithms.                                                                                                                                                                                             
Unfortunately these evaluations were usually based on randomly generated networks which cannot reflect the 
characteristics of real road networks that we are concerned. Zhan and Noon (1996) and  Shad et al. (2003) have 
evaluated the shortest path algorithms using real road networks. However, these evaluations are quite worthy in their 
class. 
This is basically an empirical study and we have pursued two main objectives: 

1. Generated detailed data related to road distances.  
2. Solved the shortest path problem through standard algorithms (Dijkstra and Floyd-Warshall) 

The choice of Dijkstra algorithm is due to its characteristic of running just on non-negative arc length, solving all the 
subtypes of single-source shortest path problem and taking any of the nodes as source. Its modification also justify 
Bellman’s principal of optimality that shortest path has the shortest       sub-paths. 
The second algorithm, Floyd-Warshall algorithm, is also most generally used to find the shortest distance from any 
node to any other node in networks. See tables 5.4 to 5.5 for the final results of our network using this algorithm. 
Finally the results of our study might be a guideline not only for passengers who travel by roads but also for 
transporters and for the companies that spend a lot on road transportation. Government agencies such as Highway 
Department may use this methodology to prioritize its limited budget to construct certain routes in order to best 
utilize the scare national resources. 
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