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ABSTRACT 

 
The aim of this paper is to study the biased estimators in forecasting the agriculture production. The main idea relies on using the ridge 

regression estimators to forecast the groundnut production. The motivation behind the study is to use the ridge regression estimators is 
that it overcomes the problem of Multicolinearity that often occurs in the time series data. Our simulation study reveals that the 

forecasting through ridge estimators found much better than the forecasting of groundnut production by using time series econometric 

model. 
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INTRODUCTION 

 
Ridge regression is one of the popular methods for the solutions of problem related to Multicolinearity. This 

method is the modification of the least squares method that allows biased estimators of the regression coefficients. 

Therefore, these biased estimators are preferred as they have a larger probability of being close to the true 

parameters. In presence of multicollinearity, selection of ridge parameter plays an important role, because the idea of 

that adding a small constant to the diagonal elements of the matrix X X ' will improve the conditioning of a matrix 

has been recognized by numerical analysis, because this would dramatically decrease its ‘condition number (Jamal 

and Muhammad, 2007). Complete elimination of multicollinearity is not possible but its degree can be reduced by 

adopting ridge regression, principal components regression. For further study about the Ridge regression see, e.g., 

Batah and Gore (2008), Batah, Gore and Özkale (2009), Fuller (2002), Rao and Singh (1997), Özkale and 

Kaciranlar (2007) and the reference therein. 

Multicollinearity is a case of multiple regression in which the predictor variables are themselves highly 

correlated. If the goal is to know how different explanatory variables X related with explained variable Y then 

multicollinearity is a big problem. Multicollinearity is a matter of degree, not a matter of presence or absence. In 

presence of multicollinearity the ordinary least squares estimators are imprecisely estimated (Madala and Kajal, 

2007). The the presence of multicollinearity among the predicted variables can be observed through correlation 

matrix, variance influence factor (VIF), eigenvalues of the correlation matrix and auxiliary regression. 

Koutsoyiannis (2007) studied that the degree of the multicollinearity becomes more severe as X�/ approaches zero. 

If the goal is to understand how the different predicted variables impact on the dependent variable, then 

multicollinearity causes a serious problems like P values may mislead and the confidence intervals on the regression 

coefficients may very wide. Usually the ordinary least squares estimator is unbiased estimator but in the presence of 

multicollinearity ordinary least squares estimators could becomes unstable due to their large variance, which leads to 

poor prediction. 

 
MATERIAL AND METHODS 

 
All important factors which may cause effect the production of groundnut such as rainfall, temperature, chemical 

fertilizers, number of ploughs and area sown are considered for the development of the forecasting model of 

groundnut production. The parameters which determine the climate of locality are rainfall, temperature, humidity, 

air pressure, snowfall, winds, light, clouds and storms. Out of these factors, the rainfall and temperature are the most 

critical factors for modeling area and production of any crop. Three times period of rainfall and temperature 

maximum and minimum data from the month of April to September is considered for groundnut production model. 

Temperature affects crop from seed germination to harvesting and even further during storage. In general, 

photosynthesis and respiration take place slowly at low temperature. Mean Maximum temperature for the month of 

April and May is taken as independent variable for the development of groundnut production forecasting model. 



MANSOOR AHMED ET AL., 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOTECHNOLOGY 9 (4): 399-404, 2012. 

400 

The data on the number of ploughs of groundnut fields is selected for groundnut yield estimation survey is taken 

as an independent variable in groundnut production model. The data on this variable is taken from groundnut yield 

estimation survey forms of Attock district, which is selected for this study. Filled in groundnut yield estimation 

survey forms for last twenty one years from 1990-2010 were collected from District office of crop reporting service, 

Agriculture Department Attock. These forms were inspected of 25 sample villages of district Attock. The data on 

use of Urea, DAP and number of ploughs was compiled from yield estimation survey forms. The variables used in 

the study are defined as under:  

Y = Production 

X1 = Area        X6 = Rainfall in June 

X2 = Ploughs       X7 = Minimum Temperature in July 

X3 = Urea        X8 = Minimum Temperature in August 

X5 = Rainfall in April and May 

 

Detection of Multicollinearity 

Multicollinearity usually arises when one or more of the regressors are exact or approximately linear 

combinations of the regressors. It is often detected by observing the value of R2 and low value of t-ratios. 

Another way to find the multicollinearity is simply the inspection of the off-diagonal elements in X X . 

 

Auxiliary Regression 

One way of finding out which X variable is related to other X variables is to regress each Xi on the remaining X 

variables and compute the corresponding R2which is designate as Ri2 each one of these regressions is called an 

auxiliary regression (Griffiths et al., 2001). In general linear regression model, if E(εi 2) ≠ σ2 then the 

heterosedasticity is said to be present and the assumption of constant variance of error term is violated. The 

Spearman Rank Correlation Test is used to detect the heteroscedasticity. This is very simple test for 

heteroscedasticity which can be applied to both small and large data (Green, 2012). Autocorrelation correlation is 

defined as correlation between numbers of the same series of observations ordered in time in case of time series data 

or space in case of cross section data. In regression context, autocorrelation means correlation between εi across 

observations (Butt, 1999). 

 

Ridge Trace 

A number of procedures have been developed for obtaining biased estimators of regression coefficients. One of 

these procedures is Ridge Trace (Hoerl and Kennard, 1970). A commonly used method of determining the biasing 

constant is based on ridge trace and variance inflation factor. The ridge trace is simultaneous plot of the values of the 

p-1 estimated ridge standardized regression coefficients for the estimated regression coefficients for the different 

values of C, usually between 0 and 1 (Kutner et al., 2005). Extensive experience has indicated that the estimated 

regression coefficients may fluctuate widely as biasing constant is changed slightly from 0, and some may change 

Signs. Gradually, however, these wide fluctuations cease and the magnitudes of the regression coefficients tend to 

move slowly towards zero as biasing constant is increased further. At the same time, the values of variance inflation 

factor for regression coefficients on different biasing constants biasing constant tends to fall rapidly as biasing 

constant is changed from zero, and gradually the variance inflation factor values also tend to change only 

moderately and as biasing constant increases further. Usually the plot of the estimated ridge standardized regression 

coefficients becomes stabilize and the variance inflation factor value for each X variable becomes approximately 

equal to one for the same value of biasing constant (Marquardt, 1970). 

 
ARIMA Procedure 

The ARIMA procedure analyzes and forecasts equally spaced univariate time series data, transfer function data, 

and intervention data using the Autoregressive Integrated Moving-Average or autoregressive moving-average 

model. An model predicts a value in a response time series as a linear combination of its own past values, past errors 

which is also called shocks or innovations, and current and past values of other time series (Ansley and Newbold, 

1980). 

 
Forecasting 

The forecasting performance of an econometric model is tested on the basis of the difference between the 

predicted values of the dependent variable and the actual values of the dependent variable. The smaller the 

difference between them, batter the forecasting performance of the model. Various measures have been proposed for 

evaluating the forecasting performance of econometric models. These measures are Root Mean Square Error, Mean 
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Absolute Error, Mean Absolute Percent Error, Theil’s Inequality Coefficient and The Janus Quotient (Raymond, 

1975). 

 

RESULTS AND DISCUSSION 

 

Tests for deduction of multicollinearity, heteroscedasticity, and autocorrelation are conducted on the data. Results of 

these tests, their clarifications and remedial measures are as follow: 

 

Deduction of Multicolinearity 

Auxiliary regressions are fitted to see which explanatory variable is linearly related to other explanatory 

variables. The value of Fi are calculated and having the F distribution. The values of Fi show that all the explanatory 

variables are linearly related to other Xi’s. All the results are given in Table 1. 

 

Table 1. Results of auxiliary regressions 

_______________________________________________________________ 

Variables  X1   X2   X3   X4   X5   X6   X7   X8 

R
2
    0.97  0.79  0.99  0.99  0.98  0.99  0.97  0.96 

Fi    86.78  9.51  49.50  24.50  18.80  14.16  16.54  8.92 

_______________________________________________________________ 

 

On the other hand off-diagonal elements of matrix show that all regressors Xi are linearly related 

with each other. 

 

 
Detection autocorrelation and hetroscedasticity 

Von Neumann Ratio is calculated to check the presence of autocorrelation in the data which is given Vc = 3.28, 

whereas Vt = 1.38, which shows absence of autocorrelation in the data. By using Spearman Rank Correlation the 

computed value of t = 0.8754 which shows that there is no evidence of systematic relationship between the 

explanatory variables and hence there is no heteroscedasticity. 

 

Remedial Measures of Multicolinearity 

Ridge Regression is used to remove Multicollinearity from the data. The ridge regression coefficient for 0 < C < 

1 are given below: 

From the standardized Ridge Regression coefficients which are shown in Table 2 are stabilized between C = 0.4 

and C = 0.5. We take its average value i.e C = 0.4500 as a biasing constant (Pasha and Shah, 2004). The 

standardized Ridge Regression coefficients at C = 0.4500 are {0.2305 , 0.0652, 0.1134, 0.1170, 0.0712, 0.1611, - 

0.0661, - 0.1577} and retransformed Ridge Regression coefficients are {0.11, 17.18, 0.99, 1.97, 0.28, 0.70, -13.18, -

104.72}. Therefore the groundnut production model based on agricultural data for the period 1990 to 2005 as under: 

 

Y = 4186.22 + 0.11 X1 + 17.18X2 + 0.99 X3 + 1.97X4 + 0.28X5 + 0.7X6 - 13.18X7 - 104.72X8 
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The increase in area of sowing of groundnut crop increases the production of the crop. The use fertilizers and 

number of Ploughs play a significant role to enhance the production of groundnut crop. Good rains in the months of 

April, May and June contributed to increase the production of groundnut crop. Mean Minimum temperature in the 

months of July and August turn out as a significant but negative effect on groundnut production in the District 

because groundnut crop required good rain at that time. 

 

Table 2. Ridge estimators for different values of biasing constant 

 

C  β1  β2  β3  β4  β5  β6  β7  β8 

 

0.1  0.3679  0.0831  0.0893  0.1038  0.0185  0.2038  -0.0015  -0.1735 

 

0.2  0.3022  0.0712  0.1039  0.1118  0.0426  0.1836  -0.0335  -0.1729 

 

0.3  0.2649  0.0672  0.1099  0.1153  0.0576  0.1721  -0.0511  -0.1667 

 

0.4  0.2401  0.0656  0.1127  0.1167  0.0675  0.1643  -0.0620  -0.1605 

 

0.5  0.2221  0.0649  0.1139  0.1171  0.0742  0.1582  -0.0694  -0.1550 

 

0.6  0.2083  0.0646  0.1142  0.1168  0.0789  0.1533  -0.0744  -0.1502 

 

0.7  0.1971  0.0644  0.1140  0.1162  0.0822  0.1491  -0.0780  -0.1459 

 

0.8  0.1879  0.0642  0.1135  0.1154  0.0846  0.1454  -0.0806  -0.1421 

 

0.9  0.1801  0.0640  0.1128  0.1144  0.0863  0.1421  -0.0825  -0.1387 
 

Fitting of Time Series Model 

For the purpose of comparison with the ridge estimates, time series analysis has been made on the agricultural 

data. The results are shown in Table 3 and Table 4.  
 

Table 3. Estimated values of coefficients and their standard errors for stationarity data 

 

 Variable  Coefficient  Std. error  t-Statistics  Prob. 

 

 Yt-1  -1.17  0.16  -7.18  0.00 

 

 C  127.48  1007.69  0.12  0.90 

 

Table 4. Estimated values of coefficients and their standard errors of Time series model 

 

 Variable  Coefficient  Std. error  t-Statistics  Prob. 
 

 AR(1)  0.67  0.15  4.31  0.0001 
 

 MA(1)  -0.96  0.06  -16.58  0.0000 
 

Table 3 shows that t value of Yt-1 co efficient is -7.1897 and this value in absolute terms is much higher than even 1 

percent critical τ value of -3.6155 which suggesting that data is stationary at its 1st difference. Table 4 Shows that 

time series econometric model is significant for both AR (1) and MA (1) , also it is we defined earlier that data is 

stationary at 1st difference so ARIMA model is applicable. 
 

Forecasting Performance of Model 

Forecasting production of groundnut crop for the period 2006 to 2010 from Ridge Regression model is 

calculated and the percentage difference between the actual and forecasted values of groundnut production is given 

in Table 5. 
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Table 5. Forecasted groundnut production from Ridge Regression 

 

Sr. No Year Production Percentage 

  Actual Forecasted Increase/Decrease 

1. 2006 1511.1 1477 2 2.24 

2. 2007 1329.2 1238.2 6.81 

3. 2008 1641.1 1593.2 2.91 

4. 2009 559.6 863.9 -4.36 

5. 2010 441.0 668.7 -1.63 

 

Forecasted production of groundnut crop for the period 2006 to 2010 from ARIMA model is calculated and the 

percentage difference between the actual and forecasted values of groundnut production is given in Table 6. 

 

Table 6. Forecasted groundnut production from ARIMA model 

 

Sr. No Year Production Percentage 

  Actual Forecasted Increase/Decrease 

1. 2006 1511.1 1347.00 10.8596 

2. 2007 1329. 2 829.29 37.6098 

3. 2008 1641.1 1450.90 11.5897 

4. 2009 559.6 1056.245 -88.7500 

5. 2010 441.0 760.15 -72.3696 

 

Table 5 and 6 show the percentage difference of forecasted production from actual production by using Ridge 

Regression model is significantly low as compared to difference in actual and forecasted production by using 

ARIMA model. 

Various measures like Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percent 

Error (MAPE), Theils Inequality co-efficient and Janus Quotient are computed for evaluating the performance of 

econometric model. Computed values of these measures are given in Table 7, which show that the performance of 

model fitted by Ridge Regression is far better than the time series model. Therefore Ridge Regression model is 

preferred over ARIMA model to forecast the groundnut production. 

 

Table 7. The forecasting performance of an econometric model 

 

S. No Method Ridge ARIMA 

1. Root Mean Square Error 47.33 5693.19 

2. Mean Absolute Error 37.86 4190.55 

3. Mean Absolute Percentage Error 0.03 28.50 

4. Theil’s Inequality co-efficient 0.019 0.16 

5. Janus Quotient 18.89 89.78 
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