FERTILIZER PHOSPHORUS AVAILABILITY INDICES IN RELATION TO SOIL CHARACTERISTICS UNDER WHEAT CROP

A. Rashid¹, T. Hussain² and A. Razzaq²

ABSTRACT

Fertilizer P availability indices (F_i) are required to initialize soil and plant P model. The developed F_i were related with soil characteristics (CaCO₃, Al₂O₃, Fe₂O₃, clay, silt, sand, organic matter, pH) including labile-P (Pi), Olsen-P (OP), Pi/OP ratio, and plant yield and P-uptake. Correlation coefficient and stepwise multiple regression were employed to relate F, developed at two incubation period (a 7-day and a 6-month) using labile-P (°F_i) and Olsen-P (^bF_i) test values of 19 alkaline calcareous soils (0-30 cm layer) treated with 0, 30, 60 and 90 mg P kg⁻¹ soil. The ^bF₁ developed at a 7-day incubation correlated significantly with relative yield at all P rates (r = 0.48 to 0.57) and soil P_{ij}/OP ratio at higher P rates (r = -0.45 to 0.69), but not with P-uptake (r = 0.19 to 0.37). The "F_i correlated significantly with relative yield at 60 mg P kg⁻¹ soil ($r = 0.629^{**}$) and Puptake at 90 mg P kg⁻¹ soil (r = 0.541°). Employing stepwise multiple regression, "F_i increased significantly with a decrease in both Al₂O₃ and Fe₂O₃ and increase in P_{il}/Op ratio with low P addition ($R^2 = 0.67^{**}$). At higher P levels, "F_i increased significantly with a decrease in surface area (SA) and organic matter (OM) and increase in P_i, test values ($R^2 = 0.71$ to 0.72"). With ${}^{b}F_{\mu}$ OM and OP test values were related mostly under different P status ($R^2 = 0.78$ to 0.93**). At moderate applied P, ${}^{b}F_i$ increased with a decrease in CaCO₃ and P_{ii} test values ($R^2 = 0.91^{**}$). With higher P addition, ${}^{b}F_i$ increased with an increase in OP and decrease in OM and P_{il}/OP ratio explaining 93 percent of variation. It indicated the need of different equations required to predict F_i under different soil P status. Partitioning of the soils based upon Al₂O₁ and Fe₂O₃ contents may be helpful for further studies and testing under field conditions.