
 

 

INTRODUCTION 

 

Precise and timely yield prediction of wheat is valuable for 

farmers, researchers, and policymakers in decision making 

and devising the import, export policies (Lobell et al., 2003; 

Dempewolf et al., 2014; Ahmad et al., 2018a). The 

population growth of Pakistan is increasing and expected to 

rise by 271 million up to 2050 (Kirby et al., 2017), while food 

production is not increasing at the same rate that will affect 

food security (Cheeseman, 2016). Food availability is also 

affected by global climatic changes like floods and droughts 

(Funk et al., 2019). The accurate and real-time yield 

prediction at a larger scale is useful to address these concerns. 

Wheat is the most important cereal crop in Pakistan and is 

cultivated in the winter season on an area of 8.7 million 

hectares with a production of 25 million tons (Government of 

Pakistan, 2018). Timely and accurate wheat yield prediction 

helps the decision-makers in deciding the import or export of 

grains to maintain the national reserve for food security and 

to set support prices(Nagy et al., 2018; Fahad et al., 2019; 

Roell et al., 2020). Thus, there is a need to develop a 

comprehensive framework of yield forecasting that helps 

policy planner in decision making. 

Conventional methods such as opinion surveys, crop cut area 

frame sampling, and the girdawari system are used by the 

provincial government for agriculture statistics (Dempewolf 

et al., 2014), which are labor-intensive and time-consuming. 

A few sample villages are selected for crop cuts which are not 

representative of all agricultural areas. However, the collected 

data is available three months after crop harvest, which is not 

useful for the policymaker, resulted in limited or surplus of 

wheat (Akhtar, 2014). For this remote sensing is a useful tool 

in assessing the accurate yield prediction (Dubey et al., 2018; 

Franch et al., 2018; Funk et al., 2019). Remote sensing used 

satellite observation such as normalized difference vegetation 

index (NDVI) and Land surface temperature (LST) for crop 

monitoring and yield forecasting (Ahmad et al., 2018a; 

Neinavaz et al., 2020). A peak seasons image was used for 
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Accurate and timely information about production estimates of wheat is useful for policymakers and government planners. 

The traditional methods for yield forecasting are labor insensitive and time-consuming therefore remote sensing is an effective 

approach for precise yield forecasting. The study was planned to develop a comprehensive framework for yield forecasting 

and to assess interannual yield variability in semi-arid regions. For wheat area classification, the peak season Landsat-8 satellite 

images were acquired, and Top of Atmospheric (TOA) correction was performed. The ground-truthing points of 100 farms 

were collected from the study area for the training of algorithms. The eight machine learning algorithms were used tune and 

tested using 10-k fold cross-validation and the best model was used for land cover classification of wheat. For yield forecasting, 

the temporal normalized difference vegetation index (NDVI) and land surface temperature (LST) were derived for the wheat-

growing season from November to April. A Principal Component Analysis (PCA) was used to variable selection and then 

Least Absolute Shrinkage Selection Operator (LASSO) analysis was performed to develop coefficients of the yield forecasting 

model. The developed model was further used in yield forecasting of 10 years (2008-2018) in four semi-arid regions. The 

predicted yield was compared with Crop Reporting Service (CRS), Pakistan department. The results of all machine learning 

algorithms showed an accuracy of 88% to 96%, however, the Random forest algorithm showed higher accuracy, which was 

further used for classification. The wheat estimated area of 6.9% was less than reported by CRS. For interannual variability, 

the relationship of observed (CRS) and predicted yield of 10 years showed a close relation with R2 ranged from 0.69 to 0.75 

in the semi-arid region of Punjab, Pakistan. It was concluded that machine learning algorithms can be used as novel tools for 

yield forecasting and assessment of interannual yield variability. 
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land cover classification of wheat to avoid false land cover 

change detection due to phenology (Clark and Pellikka, 

2009). It is reported that images close to the peak of the 

growing season or time of maximum vegetation ‘‘greenness’’ 

should be preferred (Kim et al., 2011). A similar approach 

was used by Ahmad et al. (2020). 

Land cover classification, which is a description of what 

tangible material is covering the Earth’s surface, is of 

enormous value to society (di Gregorio, 2005). Determining 

accurate land cover classification is critical, required expert 

judgment and selection of algorithms (Punn and Bhalla, 

2013). The reliability and use of one algorithm for land cover 

is a tremendous task, thus For accurate land cover 

classification, the use of various statistical learning methods 

such as discriminant analysis, support vector machines, and 

decision trees produce more accuracy (Johnson et al., 2012). 

Various approaches have been used for landcover 

classification, for example, random forest (Saeed et al., 2017), 

semi-automatic classification (Bouaziz et al., 2017), simple 

linear method (Hughes et al., 2019), and logistic regression 

(Das and Pandey, 2019). The accuracy and reliability in using 

an algorithm for landcover classification is a challenge, 

further, the factor used in classification often results in the 

mixing of landcover classes. But machine learning is an 

emerging approach in data science, the algorithms used in 

classification showed high accuracies (Abdi, 2020). Several 

parameters can be tuned for a linear SVM while including a 

cost term that adds a penalty to the slack variables. Parameters 

include the tolerance which represents an optimization 

termination criterion and epsilon that is an insensitive-loss 

function. Non-linear decision boundaries can be determined 

by projecting p-dimensional variables to an infinite 

dimensional space. Each parameter combination was tested 

using 10 K fold cross-validation, in which data are divided 

into 10 parts, and validation was executed by K-1. One part 

was used for calibration and other folds for validation. The 

accuracy was calculated by the average of all folds. The best 

classifier was used for the classification of the wheat area, the 

same methods was used by Ahmad et al. (2020). 

The commonly used machine learning algorithm is a random 

forest, which is widely used in earth science for land cover 

classification (Breiman, 2008). Random forest (RF)was 

compared with outperforming decision tree classifier and 

found that RF showed high accuracy of 92% by Rodriguez-

Galiano et al. (2012). Support vector machine (SVM) can 

generalize the complex feature and showed high accuracy of 

89% in the classification of Landsat-8 images (Goodin et al., 

2015). Boosting is another effective algorithm that produces 

an accurate prediction rule by combing rough and moderate 

rules(Man et al., 2018). Keeping in view, the current study 

was planned to use a variety of machine learning algorithms 

for landcover classification and to develop yield forecasting 

model for wheat in semi-arid environments. 

 

MATERIAL AND METHODS 

 

Description of Study Site and collection of ground-truthing 

data: The studies were conducted in Faisalabad (31.25 N, 

73.06 E) Punjab, Pakistan. It has a semi-arid climate, where 

in annual temperature of about 24.2°C and rainfall of 346 mm 

is recorded (Ahmad et al., 2019). The soil of Faisalabad is silt 

loam or very fine sandy loam (Ahmad et al., 2018b). 

Faisalabad is a mixed cropping zone at which wheat, rice, 

maize, sugarcane, and cotton are cultivated. Wheat is 

normally grown in Rabi season (November to mid-April), 

while other crops grown in rabi are clover (berseem), 

sugarcane, orchards, canola, and potato (Fahad et al., 2019). 

To examine the crop classification, an extensive field survey 

was conducted to collect georeferenced field samples data of 

100 farms in 2018. A stratified random sampling technique 

was used to collect. The data of latitude, longitude, and crop 

type at each sample field were recorded as shown in Figure 1. 

 

 
Figure 1. Collection of georeferenced ground-truthing 

farms in Faisalabad, Pakistan 

 

Acquisition of Satellite data and calculation of temporal 

NDVI and LST: For classification, three Landsat L8 

OLI/TIRS satellite images were acquired from the United 

State Geological Survey (USGS) portal 

(https://earthexplorer.usgs.gov/). The study area was covered 

by three images, with path row of P150-R038, P150-R039, 

and P149-R038. Top of atmospheric corrections (TOA) was 

applied by converting the digital number to absolute values of 

TOA reflectance, by following the method described by De 

Keukelaere et al. (2018). 

For the development of the yield forecasting model, the 

temporal images of Landsat L8 OLI/TIRS for the wheat-

growing season (November to April) were acquired with 16 
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days interval. Cloud contaminated pixels were removed from 

each image using a cloud mask provided by NASA, using the 

method described by Gao and Li (2017). 

Where NIR is the near-infrared and red is the visible light. 

Land surface temperature (LST) was calculated using Band-

10 of the Thermal Infrared sensor from the Landsat 8. The 

digital numbers of the sensor were converted into Top of 

Atmosphere (TOA) Reflectance (Masek et al., 2006) and then 

reflectance values were converted into Satellite Brightness 

Temperature by using equation 2. The derived LST was in 

kelvin, which was further converted into degree centigrade 

(°C), subtracting the Kelvin temperature by 273.15. The 

temporal Normalized Difference Vegetation Index (NDVI) of 

100 farms was calculated by using the following formula 

NDVI =  
NIR − Red

NIR+ Red
   (1) 

Where T is the brightness temperature in kelvin, while Lλ is 

Spectral radiance in watts/ (m2 * sr * micrometer) and K1 and 

K2 are the thermal conversion for the band. 

T =  
K2

ln
K1

Lλ
+1

    (2) 

Imaging Classification using Machine Learning: For 

classification, eight machine learning algorithms were trained 

and tested to select the best classifier for landcover 

classification of wheat. The eight algorithms were; linear 

discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), k-nearest neighbor (KNN), Support Vector Machine 

(SVM) with linear kernel, SVM with Radial Basis Kernel, 

decision trees, boosting, and random forests. All statistical 

computing and training of algorithms were conducted in R 

(RCore, 2016). The algorithms were tested with ground-

truthing data using10-k fold cross-validation and the best 

classifier was selected classification of wheat area. In 10-k 

fold cross validation data is divided into 10 equal parts and 

validation is executed by k-1(Anguita et al., 2012). 

The LDA methods are supervised method of classification 

which acquire multiple distinctive class feature from the 

available pixel (Ye et al., 2005). LDA increase the inter-class 

variance, while reduced the intra-class variance that leads to 

generate new feature of data and provide distinctive features 

of classified data. In LDA the measurement and probability 

of landcover class are computed from the Bayes Theorem 

(Lindley, 1958). 

Where "𝑓𝑖" is a linear discriminate function, “𝜇" is a mean of 

class, "𝜇𝑖𝐶
−1𝜇𝑖

𝑇" is Mahalanobis distance (a distance used to 

measure the dissimilarity in classes). The calculation of 

probability is unpractical so the use of relative frequencies of 

each class is calculated by using equation 3. 

𝑓𝑖 = 𝜇𝑖𝐶
−1𝑋𝑘

𝑇 −
1

2
𝜇𝑖𝐶

−1𝜇𝑖
𝑇 + 𝑙𝑛 (𝜌𝑖)  (3) 

In QDA the decision boundaries are in a quadratic curve and 

each landcover class has an individual covariance matrix 

(Tharwat, 2016), as shown in equation 4 

𝜕𝑘(𝑥) = −
1

2
 𝑙𝑜𝑔|Σ𝑘| −

1

2
(𝑥 − 𝜇𝑘)𝑇 ∑ ( 𝑥 − 𝜇𝑘

−1
𝑘 ) +  𝑙𝑜𝑔𝜋𝑘     (4) 

In QDA there is a need to calculate the Σ𝑘 for each class 𝑘 ∈
(1, … . , 𝐾) rather than assuming ∑ =𝑘 Σ 

Random forests construct multiple classification trees with 

training data (Liaw and Wiener, 2002). To classify the 

individual feature of the class, the input class is classified with 

each tree in the forest. The prediction from each tree is pooled 

to get the final prediction (Bosch et al., 2007). The decision 

tree classifier also builds the classification in the form of a 

tree. The data is split into smaller subsets and the topmost 

decision nodes in the tree are assumed to be the best predictor 

(Bertsimas and Dunn, 2017).Each node has a decision based 

on binary whether xi < 𝑎 or not for a fixed a. The diversity is 

measured through a Gini criterion using equation 5 

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖
𝑐
𝑖=1 )2   (5) 

Where pi is the probability of an object being classified to a 

particular class. 

K-Nearest neighbor (KNN) is a classification algorithm that 

estimates the landcover class which is nearest to the training 

data. Where “n” is dimensional space, “q and p” representing 

the Euclidean vector which starts from initial to terminal 

points. The KNN calculates the Euclidean distance (d) 

between training and landcover class as given in equation 6. 

𝑑(𝑞, 𝑝) = √∑ (𝑛
𝑖=1 𝑞𝑖 − 𝑝𝑖)2  (6) 

Support vector machine is algorithms that find the hyperline 

in N-dimensional (N is the number of feature) that distinctly 

classify the landcover class(Heumann, 2011). The boosting is 

a meta algorithm which improved the classification through 

training the sequence of weak model and convert into strong 

learner and each compensate the weaknesses of its 

predecessors(Liu et al., 2005). Where “ fm”  is the weak 

classifier and "θ𝑚" is the corresponding weight. The equation 

for boosting classification is given in Equation 7. 

F (𝑥) =  𝑠𝑖𝑔𝑛 (∑ θ𝑚f𝑚
M
𝑚=1 (𝑥)),   (7) 

All machine learning algorithms were used for landcover 

classification of wheat and accuracy was test by comparing 

with ground-truthing data. The 10 k-fold cross-validation of 

all algorithms was carried to select the best model for final 

wheat classification. 

Principle Component Analysis (PCA) for assessing variable 

importance: A PCA was conducted to assess the highly 

correlated variables with wheat yield. PCA is multivariate 

statistical techniques that emphasize the variation in data and 

find a strong pattern in a data set. PCA extracts the 

information of different variables and expressed them in a 

new set of orthogonal variables which are called principle 

components (Pacheco et al., 2013). PCA transforms the data 

and explorer’s the interrelation between the variables 

(Jackson, 2005). Where “W” is the matrix of the coefficient 

that is determined through PCA and “X” is the variable under 

study. The basic equation of PCA with matrix notation is 

given in equation 8. 

𝑦 =  𝑊 ʹ𝑋     (8) 
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Temporal NDVIs and LSTs were derived from 100 farms 

during the wheat season with 16 days intervals. A total of 

eight times NDVIs and LSTs related to yield of 100 farms 

using PCA analysis. The highly correlate eight times NDVIs 

and LSTs with farms yield was derived by calculating the 

standard deviation, proportion of variance, and cumulative 

proportion through PCA. Biplots were also drawn to show 

which variable is corrected with farm yield. 

Development of yield forecasting model using the Least 

Absolute Shrinkage and Selection Operator (LASSO) 

Analysis: The selected correlated variables with yield in PCA 

analysis were used in the LASSO regression to derive the 

coefficients of the yield forecasting model. LASSO is a type 

of linear regression that uses the shrinkage, where data values 

are shrunk to a central point (Jackson, 2005). LASSO 

regression is used to develop parsimonious models from a 

large number of variables. LASSO computes the regression 

coefficient through a ℓ1-norm penalized least squares. It 

minimized the residual sum of squares by adding ℓ1 penalty 

on the coefficient (Saporta and Niang, 2009) as shown in 

equation 9. 

∑ (𝑦𝑖
𝑛
𝑖=1 − ∑ 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗−1    (9) 

Where 𝜆 showed the shrinkage amount, the 𝜆=0 indicates 

that all features are considered, while 𝜆 =∝ implies no 

features are considered 

In the current study, LASSO was performed using caret and 

glmnet package in the R statistical program. (Friedman et al., 

2010). The selected correlated NDVIs and LSTs of 100 farms 

with yield through PCA were used in LASSO regression to 

develop the coefficient of the yield forecasting model. The 

bootstrapping method was used to develop the yield 

forecasting model. It is a statistical method that relies on 

random sampling with replacement (Holmes, 2003). 70% of 

data were used to train the model while 30% of data were used 

for testing. 

Assessing the interannual yield variability of wheat: The 

developed model was used to predict the wheat yield of four 

semi-arid regions for 10 years (2008-2018). The predicted 

yield of each year is compared with the observed yield 

reported by Crop Reporting Services (CRS) Punjab, Pakistan. 

For this purpose, historical 10 years (2008-2018) satellite 

images of Landsat 7 ETM were downloaded from the USGS 

website and were atmospherically corrected using methods 

described by Flood (2014). Cloud masking and scan-line 

correction were also applied to all images by following the 

protocol (Scaramuzza and Barsi, 2005). After mosaicking, the 

images of each year the wheat area were extracted using a 

landcover map of wheat, developed from the best machine 

learning algorithm. The selected NDVIs and LSTs used in the 

yield forecasting model were derived from images of each 

year (2008-2018). The derived mean NDVIs and LSTs of a 

particular period were used in the developed model to predict 

the regional yield for 10 years, which was compared with the 

CRS yield to assess the interannual variability. The detailed 

methodological framework is given in Figure 2. 

 
Figure 2. Methodological framework for yield forecasting 

and assessing interannual wheat yield 

variability. 

 

RESULTS 

 

Landcover classification of wheat using machine learning 

algorithms: Machine learning algorithms used for landcover 

classification of wheat showed a accuracy between 88- 96% 

as shown in table 1. The hyper-parameter i.e. known as tuning 

was also selected for all algorithms, which was based on 

iterative and grid search approach. Optimization of hyper 

parameter was done to compare the algorithms in fair methods 

without any prior knowledge. The parameters were tuned to 

optimize the performance of each machine learning algorithm 

as shown in Table 1. The results showed that the values for 

optimum termination criteria cost parameters in SVM were 

30.3 for radial and 0.933 for linear. In the random forest, the 

number of tresses was 125 with a node size of 3, while for 

boosting the number of tresses was 100, and the shrinkage 

value was 0.20 (Table 1). The 10-k fold cross-validation and 

hyper parameter showed a higher accuracy of 96% in a 

random forest, while the booting algorithm performed 

relatively poor which showed an accuracy of 88%. The best-

selected model (Random Forest) was used for final landcover 

classification. 

The ground-truthing data were used as training of wheat class 

and then Random forest algorithm was used for classification, 

the classified map of wheat is given in Figure 3. The wheat 

classified area predicted by random forest was 6.18 million-
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acre in the Faisalabad district during 2018, while the CRS 

department reported a wheat area of 6.64 million-acre. The 

estimated area of 6.9% was less than reported by CRS. It 

could be due to fact that the CRS department harvests the 

wheat sample on a small village level and convert into an acre 

and also count the small path and water channel, resulted an 

increase in wheat area. 

 

Table 1. Accuracy of Machine Learning Algorithms and 

selection of parameters  
Model Accuracy Parameters  

SVM-Radial 0.93 cost=30.4, tolerance=1e-5, 

epsilon=0.1 

QDA 0.91 N/A 

Random Forests 0.96 mtry=4, node size=3, no. of 

trees=125 

Trees 0.90 size=3 

SVM-Linear 0.93 cost=0.933, tolerance=1 

epsilon=0.1 

KNN 0.89 k = 4 

LDA 0.90 N/A 

Boosting 0.88 shrinkage=0.20, number of 

trees=100, depth=1 

 

 
Figure 3. Classified area of wheat in Faisalabad during the 

year 2018 

 

Selection of variable through Principle Component 

Analysis: PCA analysis was carried out on temporal NDVIs 

and LSTs with a yield of 100 farms. The results indicated that 

out of eight temporal NDVIs, The NDVI4, NDVI5, and 

NDVI6 are closely related to farm yield (Figure 4a). The 

NDVI4 was derived ~90 days after planting i.e. before 

anthesis of wheat; NDVI5 was derived ~105 days after plating 

i.e., anthesis stage of wheat, while NDVI6 was calculated 

~120 days after planting i.e. after anthesis stage. 

The PCA results of temporal LSTs indicated that LST3 and 

LST4 showed a close association with wheat yield. The LST3 

was calculated ~45 days after planting, while LST4 was 

derived ~60 days after planting (Figure 4b). Further results 

indicated that LST after 60 days of planting showed a negative 

relation with yield, an increase in temperature around the 

anthesis stage (~100-120 days after planting) could reduce 

wheat yield. 

a) 

 
b) 

 
Figure 4. Principle Component Analysis of NDVIs and 

LSTs during the year 2018 in figure 4a the 

"𝑥1, 𝑥2, 𝑥3. . 𝑥8"  represents the temporal NDVIs, 

while Figure 4b shows the temporal LSTs. The “Y” 

indicates the wheat yield of 100 farms. 
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Development of yield forecasting model: The selected 

variables through PCA analysis were used in LASSO 

regression to develop the coefficients of the yield forecasting 

model as shown in table 2. The selected NDVIs and LSTs 

were significantly (Pr>0.001) correlated with wheat yield. 

Results showed that LSTs which are acquired during early 

plant growth stage showed a positive relation with yield. The 

LST3 which was acquired at 45 days after planting (DAP) of 

wheat crop, while LST4 were calculated at 60 DAP are 

significantly correlated with wheat yield. While the peak 

seasons NDVIs were closely related to yield. The NDVI4, 

which was calculated at 90 days after planting (before 

anthesis); the NDVI which was derived at 105 days after 

planting (anthesis or peak stage) and NDVI6 which was 

calculated at 120 days after planting (after anthesis) showed 

close association with yield(Table 2). 

The developed statistical model was developed with70% of 

data and tested with 30% data. The results showed a close 

relationship between observed and predicted wheat yield with 

R2 of 0.87 (Figure 5a). The testing of the model was carried 

out with 30% data which also showed a close match between 

observed and predicted wheat yield with R2 of 0.74 as shown 

in Figure 5b. 

 

Table 2. Developed yield forecasting model through 

LASSO regression. 

 Estimate Std. Error T value Pr(>|t|) 

Intercept  16193.0  2988.1  5.419 5.74e-07*** 

LST3  851.7   170.3  5.001 3.14e-06*** 

LST4  -1005.4   215.3 -4.670 1.15e-05*** 

NDVI4  10573.6  1942.8  5.442 5.22e-07*** 

NDVI5  7356.5  2499.4  2.943 0.004210** 

NDVI6 -22592.9  2413.7 -9.360 1.24e-14*** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 
LST3: 45 days after planting; LST4: 60 days after planting; NDVI4: 

90 days after planting (before anthesis); NDVI5: 105 days after 

planting (anthesis or peak stage); NDVI6: 120 days after planting 

(after anthesis) 

Figure 5. Training and testing of developed yield 

forecasting model through LASSO regression. 

 

Assessment of interannual yield variability: The developed 

model was used to predict the historical wheat yield of 10 

years (2008-2018) in semi-arid regions, which was compared 

with CRS yield to assess the interannual variability. The 

relationship of observed (CRS) and predicted yield of 10 

years showed a close relation with R2 ranged from 0.69 to 

0.75 in the semi-arid region of Punjab, Pakistan (Figure 6). 

The high association (R2=0.75) was recorded in the 

Faisalabad region, followed by Jhang (R2=0.73) and Chiniot 

(R2=0.72) region. The Sargodha region showed relatively less 

agreement between observed and predicted yield (R2=0.69) as 

compared to Faisalabad, Jhang, and Chiniot regions, which 

could be due to fact that citrus is cultivated in the Sargodha 

region and wheat is intercropped win the citrus area, resulting 

in a mixed pixel which can create an error in the derivation of 

NDVI and LST. 

The developed yield forecasting model also predicted the 

interannual variation in wheat yield (Figure 7). In Faisalabad 

and Chiniot regions, the years 2013 and 2014 showed higher 

observed yield, the developed yield forecasting model also 

predicted similar variations in both years (Figure 7a, b). In the 

Chiniot region, the predicted yield was higher than observed, 

which could be due to some terminal stress in crops that 

reduced the observed yield. The model predicted a similar 

yield in the Jhang region during the year 2008, while the 

model under predicted the yield in 2009, 2011, and 2013 as 

compared to the observed yield (Figure 7c). The 

underproduction in yields could be due to biotic and abiotic 

stress by plants when satellite data were collected. The model 

under-predicted the yield in the Sargodha district in all years 

(Figure 7d), however, a close association was recorded 

between observed and predicted yield. 

 
Figure 6. Relationship of observed and predicted wheat 

yield in semi-arid regions of Punjab Pakistan. 
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Figure 7. Interannual yield variability of 10 years (2008-

2018) in semi-arid regions of Punjab Pakistan 

 

DISCUSSION 

 

The objective of this study was to develop a comprehensive 

framework of machine learning algorithms for yield 

forecasting of wheat in Punjab, Pakistan. Various algorithms 

are available for image classification, but it is not yet defined 

which algorithm or technique is best enough to generate 

accurate results for landcover classification especially in 

mixed cropping zone like Faisalabad. Thus, machine learning 

algorithms are useful, cost-effective, and achieving high 

quality and accuracy in landcover classification (Lary et al., 

2018).McIver and Friedl, (2001)found that machine learning 

algorithms like SVM, QDA, KNN, LDA, and random forest 

are reliable and shows greater accuracy if the training sample 

is large in landcover classification. In the current study, a 

more training sample was collected for landcover 

classification as shown in figure 1. Breiman (2008) also found 

that the RF classifier performs better in greater training 

samples. The random forest was also used by Saeed et al., 

(2017) for yield forecasting of wheat using weather data in 

semi-arid environment which showed a greater accuracy with 

R2 of 0.95. 

The performance of algorithms depends upon the iteration of 

hyperparameters, in the current study various parameters 

were tuned as shown in table 1. Hyperparameters is a set of 

function arguments for which has a range of value, in modern 

machine learning the parameters is tuned to get optimal 

predicted performance. A similar approach of tunning the 

machine learning algorithms was also used by Vanli et al. 

(2020) 

PCA analysis was used in the current study for the selection 

of important variables such as NDVIs and LSTs yield. PCA 

is a statistical algorithm that is used to find out the correlated 

variables from the set of values. Bro and Smilde (2014) 

reported that PCA is a multivariate and dimension reducing 

technique that is significantly used to describe the inter-

correlated dependent variables. In the current study, the 

LASSO regression was used to derive the coefficients of the 

model (Table 2). The PCA and LASSO analysis was used by 

Ahmad et al. (2020) for the selection of NDVIs, LSTs and 

further development of yield forecasting model. He further 

found that early stage LSTs and Peak seasons are closely 

related with Maize yield. Kuhn and Johnson (2013) reported 

that LASSO is a useful method in the estimation of predictor 

parameters with low biased. Ahmad et al. (2018) developed a 

yield forecasting model for maize in the semi-arid region and 

used the PCA and LASSO regression to find out the 

coefficient for the model. 

High spatial resolution Landsat satellite images were used in 

the current study for landcover classification (Figure 3). The 

study area has a mixed cropping zone and farmers have small 

landholdings and they mostly grow wheat, maize, sugarcane, 

and fodder. Due to crop diversification and small-sized field, 

however, the use of Landsat-8 data improved the accuracy of 

classification. Fahad et al. (2019) also used Landsat 8 imagery 

for landcover classification of wheat at Faisalabad under 

semi-arid environment. The study results showed that the 

estimated area though remote sensing was 6.9% was less than 

reported by CRS in Faisalabad (Figure 3). The overestimation 

of areas by CRS is due to them that they harvest small areas 

and count the number of acres under cultivation, but on 

ground area cultivated by wheat is not equal to one acre. The 

reasons could be poor patches in the field for wheat, field 

borders, temporary paths within the fields for transportation, 

water channels. However, in remote sensing, these areas are 

excluded by the algorithm in land cover classification. 

In the current study, interannual yield variability was assessed 

for 10 years by predicting the yield from the yield forecasting 

model, which showed a good relationship between observed 

and predicted yield (Figure 6 & 7). The accuracy of 

production forecast depends upon the satellite-derived 

statistical indices. The combination used NDVI and LST in 

the empirical model, improved the accuracy in predicting the 

year-to-year variability (Leroux et al., 2015). The LST is a 

fundamental parameter that affected the crop yield, the LST 

during the vegetative stage of the crop, increases the growth 

and development of the crop (Li et al., 2013), while NDVI is 

a strong satellite-derived vegetative index used for seasonal 

yield forecasting of The variation in observed and predicted 

yield is due to a change in management practices. In case of 

under prediction, the crop might be in stress condition when 

satellite data were collected, after that farmer applied 

fertilizers and pesticides to get more yield. Similarly, in over 

prediction, the crop could be in good condition and later 
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stages faced biotic and abiotic stress, resulted in less yield. 

Similar was discussed by various researcher (Ahmad et al., 

2017, 2018, 2019; Waqas et al. 2019, 2020; Ullah et al., 2018, 

2019; Vanli et al., 2019). 

The proposed method for yield prediction is effective for 

semi-arid regions of Pakistan; however, a few points can be 

improved in this study. The current study used top-of-

atmosphere reflectance for Landsat, which is fine for 

Pakistani conduction where atmospheric conditions are stable 

during the January to April months. However, the other 

regions might have more possibilities of cloud contamination 

thus, the gap-filling technique should be employed as reported 

by Scaramuzza and Barsi (2005). 

 

Conclusion: Machine learning algorithms were used for 

assessing the spatial distribution of wheat area and the 

development of yield forecasting models in semi-arid regions. 

The algorithms showed an accuracy of more than 86%. The 

highest accuracy of 0.96% was recorded in the random forest 

which was further used for classification. The wheat 

estimated area of 6.9% was less than reported by CRS. The 

yield forecasting model was developed by calculating the 

NDVIs and LSTs values of 100 farms. The developed model 

was used to predict the wheat yield of 10 years (2008-2018). 

The relationship of observed (CRS) and predicted yield of 10 

years showed a close relation with R2 ranged from 0.69 to 

0.75 in the semi-arid region of Punjab, Pakistan. The 

developed yield forecasting model is useful for policymakers 

in decision making. 
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