
 

 

INTRODUCTION 

 

The United Nations Convention to Combat Desertification 

(1994) refers to desertification as an extreme form of land 

degradation, affecting the arid, semi-arid and dry sub-humid 

regions, or drylands, of the world. About 41% of the world’s 

total land area is covered by drylands, which are home to more 

than two billion people (Reed and Stringer, 2016). These 

areas have some of the highest poverty rates (Anjum et al., 

2010). Desertification processes in drylands can reduce crop 

productivity, with significant economic consequences.  

Around 90% of the land in Pakistan is either currently 

desertified or susceptible to desertification in the future 

(Anjum et al., 2010; Khan and Ali, 2015). Agriculture forms 

the second most significant sector of Pakistan’s economy 

(Raza et al., 2012) contributing 19.8% of GDP and employing 

42.3% of the country’s total labour force (Iftikhar and 

Mahmood, 2017). The country suffered a significant decline 

in its agriculture sector’s growth rate, from 2.9% in 2013 to 

2.1% in 2014, owing to the extreme weather conditions (GoP, 

2014). With a population of nearly 208 million (GoP, 2017), 

of which almost 63% reside in rural areas, millions of people 

are either directly or indirectly associated with agriculture 

(Raza et al., 2012). The country’s drylands provide a source 

of livelihood to two-thirds of its population (Playán and 

Mateos, 2006). For agrarian economies like Pakistan, an 

increase in spatial coverage and intensity of aridity is 

emerging as a major environmental problem (IUCN, 2017). 

The research presented in this paper seeks to advance 

knowledge to help manage the aridity challenge.  

It is common for plants, not only in dryland regions, to suffer 

from deficits of both soil and atmospheric water during their 

life cycle. This water deficit has severe impacts on the plant’s 

primary productivity (Wilson et al., 2001). Plants respond 

differently to water stress, depending on their genotypes, and 

while plants have built-in capabilities of stress avoidance, and 

tolerance, these attributes vary among species. Responses 

may vary from adaptive changes to damaging impacts on the 

plants (Chaves et al., 2002). Plant stress among the winter 

wheat farms of the study area is measured in this paper and 

linked to the desertification vulnerability of different parts of 

the region. 

Photosynthetic performance, physiology and many other 

plant characteristics are influenced by water stress (Osakabe 

et al., 2014; Gonulal, 2020). One of the most widely used 

indexes for detecting fluctuations in water deficit of plants, 

calculated using canopy temperatures, is the crop water stress 

index (CWSI). The CWSI has been used to assess the crop 

water deficit of various crops like grapes, wheat, rice, and 

cotton etc., as it is directly related to a reduction in yield 
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Unmanned Aerial Vehicles (UAVs) can help farmers to monitor their crops and provide irrigation and inputs as and when the 

crops need, reducing risks to yields. This study uses UAV imagery to measure water and plant stress in the winter wheat fields, 

lying in high, medium and low Desertification Vulnerability Indexed (DVI) zones of South Punjab, a region that has an agrarian 

economy subject to severe desertification. UAV flights were conducted in nine wheat fields in three districts of Bahawalpur, 

Rahim Yar Khan and Rajanpur. Flights were operated at 15 m altitude above ground level at midday, February 2019, presenting 

good resolution images of 30.48ppi, in RGB, with a pixel depth of 16 Bit, from a DJI Phantom 3 Standard quadcopter. 

Dronedeploy was used for image pre-processing and generating orthomosaics of the nine fields. Orthomosaics were uploaded 

on the Agremo app, where water stress and plant stress analysis of the sampled fields was performed. Agremo generated maps 

were reclassified in Arc Map 10.5. Fatehpur Union Council, lying in the High DVI zone, was found to suffer most severe plant 

stress, potential plant stress, and water stress with 34.83%, 51.16% and 42.35% of the crop affected respectively. The sample 

fields in high DVI zones in two of the three study districts suffered the highest amounts of plant stress and water stress. The 

conclusions offer guidance to policy makers on where water redistribution may need to be considered so that exacerbating 

desertification risk can be avoided, particularly in the most vulnerable zones.  
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(Ganji and Kaviani, 2013; Möller et al., 2006, p. 99; Park et 

al., 2017; Zhang and Kovacs, 2012). The CWSI is also used 

for managing irrigation practices (Wanjura et al., Reginato 

and Garrett as cited in Irmak et al., 2000). For Crop Water 

Productivity (CWP) to be enhanced, proper irrigation 

management is necessary (Yihun et al., 2013) and by being 

able to identify the specific areas in fields under water stress, 

time and resources can be optimally used. Determining the 

crop water availability in drought vulnerable areas such as 

drylands has become a necessity (Dalezios et al., 2019). 

While satellite imagery has long been used to calculate CWSI 

at a large scale, there has been a recent shift towards the use 

of UAV imagery to monitor shifts in CWSI at a smaller scale, 

with a higher spatial resolution (Berni et al., 2009; Zarco-

Tejada et al., 2012), giving more precise information about 

when and where crops require water. This paper picks up on 

this new technology and tests it in the context of wheat 

cultivation in Pakistan, focusing on study fields in areas with 

different vulnerabilities to desertification.  

The values of CWSI calculated for a selected crop in different 

soils and climates can prove instrumental in deciding the 

irrigation timing and shaping the yield per hectare. This 

technique is in turn helpful in estimating the plant stress 

(Irmak et al., 2000). Air and soil water content, transpiration 

along with crop water stress, have a great impact on the 

canopy temperature (Jackson et al., 1981). Water deficiency 

leads to stomata closure, which becomes a direct cause of 

higher canopy temperatures in that particular area (Guilioni et 

al., 2008). A strong positive relationship exists between 

canopy temperature and crop water stress, while a negative 

relationship exists between the former with transpiration and 

soil moisture (Chaves et al., 2002). Thus, farmers are able to 

assess the irrigation requirements of the field, by measuring 

the crop water stress (Chaves et al., 2002; Hoffmann et al., 

2016; Irmak et al., 2000). Studies show that the temperature 

of the leaves increases due to stomatal closure, followed by a 

reduction in evaporative cooling and transpiration, which 

might result from short-term water deficit. This kind of 

temperature increase has a strong correlation with crop water 

stress level (Gago et al., 2013), and has been studied through 

thermal infrared thermometers (Alchanatis et al., 2010; 

Santesteban et al., 2017). The UAV platform can be used with 

various sensors (RGB, multispectral, infrared, thermal, etc.) 

(Matese et al., 2015; Nebiker et al., 2016), each of which offer 

strengths for different purposes. RGB images captured 

through UAV in the present study are also used for water and 

plant stress analysis for the fields under study 

UAV images have been used in recent studies to predict grain 

yield according to the entire growth cycle of wheat, to 

quantify impacts of different elements like nitrogen (N), 

phosphorus, zinc etc., on wheat crops, and explore 

relationships between Leaf Area Index (LAI) and Normalized 

Difference Vegetation Index (NDVI), and between nitrogen 

uptake and Green Normalized Difference Vegetation Index 

(GNDVI) in wheat fields (Hassan et al., 2019; Latif et al., 

2018; Schirrmann et al. 2016; Lelong et al., 2008).  

UAV have been used around the world to investigate plant 

stress (Su et al., 2018), develop water stress maps (Hoffmann 

et al., 2016), assess water status within a vineyard 

(Santesteban et al., 2017), and measure water stress in 

nectarine and peach orchards (Park et al., 2017). Schirrmann 

et al. (2016) mention that use of UAV in precision agriculture 

can only become more practically applicable in fields across 

the globe, if image processing and analysis is made as 

convenient for the farmer as possible. For such purposes, 

various online applications are available. Agremo is one such 

app, available on the Dronedeploy UAV and mapping 

platform. The same app and mapping platform were used in 

this study for easy image processing. The ideal time to 

perform plant stress analysis is in the mid-season (Agremo). 

Agremo uses advanced Artificial Intelligence, machine 

learning and computer vision to go beyond NDVI, so that 

commercial drones and RGB sensors can be sufficient for 

remote sensing. 

The Plant Health tool in Dronedeploy permits analysis of 

plant health variability within a field, and can quantify 

damage and even predict the yield within a field. Relative 

vegetation health is demonstrated by comparing the value 

captured of each band, RGB, in the current study. Constant 

monitoring can help to identify plant health trajectories over 

time, and can help farmers to better understand the onset of 

drought conditions (Gopinath, 2015). 

Wheat crops continue to provide essential daily nutrition for 

35% of the world’s population. However, there remains a 

dearth of improved means to enhance wheat yields (Holman 

et al., 2016). By quantifying the amount of plant and water 

stress that the wheat plants in the study area were witnessing 

at the time of survey (Feb, 2019), this study paves the path for 

future research to focus on understanding the reasons behind 

plant and water stresses, while also demonstrating novelty by 

linking the findings to DVI zones. Building on and extending 

the growing body of existing work, the current study therefore 

aims to investigate whether UAV imagery can prove helpful 

in analysing the plant and water stress level in the comparative 

wheat fields, in different desertification vulnerability zones of 

South Punjab. Desertification intensity varies in the study 

region, and thus the stresses that the crops endure were also 

anticipated to differ.  

 

MATERIALS AND METHODS 

 

The study area comprised three districts in South Punjab, 

Pakistan, namely Bahawalpur, Rahim Yar Khan and 

Rajanpur, all lying in the dryland region of south Punjab, with 

a highly agrarian economy (Fig. 1). The Global Aridity Index 

values for these districts, for the year 2016 are 0.04, 0.04 and 

0.07 respectively, while the Erinc Aridity Index values for the 

study area districts were 3.3, 3.28 and 6.15 respectively 
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(Javid, 2017). A recent study on the climatic classification of 

Pakistan, placed the three districts under study in the current 

research, in the category of Arid and Drought stricken 

regions, concluding that the arid area in Pakistan has 

increased from 20.9% to 22.7% over the period 2000 to 2018 

(Javid et al., 2019).  

 
Figure 1. Study area 

 

This region was focused on because it is emblematic of the 

challenges faced across Pakistan’s drylands. The 

meteorological characteristics of the study area have been 

presented in Table 1. 

Wheat (Triticum aestivum) is the staple food crop and most 

widely grown food grain in the region, with 841,000 ha under 

wheat cultivation in 2014-15 (GoP, 2017). Three wheat fields 

in three different union councils were surveyed in each district 

(Table 2), based on desertification vulnerability mapping 

performed for the region, which divided each district into 

High, Medium and Low desertification vulnerability zones 

(Mazhar et al., 2018). The three union councils of each district 

were chosen on the basis of ease of accessibility given the 

difficult terrain. Due to limitation of time and funds, only one 

wheat field from each category of DVI zones, in each district, 

was surveyed, thus the findings of these nine fields are not 

fully representative of the entire study area. Many aspects can 

be improved in future studies. For example, lack of resources 

caused the present study not to take into account the variations 

in the plant stress and water stress for the entire growth season 

of the wheat crop under study, since the sample fields were at 

a great distance from one another, situated in different 

desertification vulnerability zones of three districts, covering 

a total area of 49, 029km2 (GoP, 1999a; GoP, 1999b; GoP, 

2000). Therefore, in future studies it is recommended that 

three flights in different stages of crop development must be 

conducted in each sample field and an average of their NDVI 

values could be used to prepare efficient crop health maps.  

In all the sample fields, the wheat was at the booting stage of 

growth, and a uniform area of 1 acre (0.404 ha) was chosen 

for the survey. The survey was performed during the period 

25-27 Feb 2019. In the month of February, wheat in Pakistan 

ideally has entered the heading or flowering stage, where 

water requirements increase and water deficiency may have 

severe impacts on the yield (Naheed and Mahmood, 2009). 

Despite the intention, during the study, the wheat crop was 

found to be at the late booting stage, owing to late sowing and 

water availability issues. However, another research explores 

impacts of irrigation water on wheat plants, concluding that 

booting is the most sensitive stage to salinity caused due to 

mismanaged irrigation practices (Mojid et al., 2013). This 

suggests the timing of our study, therefore, still has relevance.  

UAV flights consisted of a single flight at 15 m altitude, per 

field, above ground level at midday, presenting good 

resolution images of 30.48ppi, in RGB, with a pixel depth of 

16 Bit. RGB areal images were captured from the DJI 

Phantom 3 Standard quadcopter, which has a built in 2.7K 

camera and a 3-Axis Gimbal, capable of capturing 12MP still 

photos, and which uses GPS for positioning outdoors. 

Throughout the fieldwork, images were captured with the 

gimbal facing vertically downwards, to enhance the aerial 

Table 1. Meteorological characteristics of the study area. 

District Rainfall Mean Maximum 

Annual Temperature 

Mean Minimum 

Annual Temperature 

Potential 

Evapotranspiration 

Bahawalpur 112.20 mm 33.58°C 19.56°C 235.85 mm 

Rahim Yar Khan 119.13 mm 35.42°C 19.62°C 252.54 mm 

D. G. Khan 205.73 mm 32.94°C 18.76°C 226.46 mm 

 Data source: PMD Data source: (Javid, 2017) 
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quality of the images, as mentioned by Su et al. (2018). In the 

djigo app, the waypoint route for all the nine wheat fields were 

generated to obtain more than 60% overlap of frontal and 

lateral photos. The survey was performed at nadir view angle 

in clear sky conditions.  

 

Dronedeploy for image Pre-Processing: The obtained 

multispectral images were uploaded on Dronedeploy, a drone 

surveying and 3D mapping application which generated the 

orthomosaic photos of the sample fields after performing 

orthorectification in the geometric correction phase during 

image pre-processing. 

 
Figure 2. Methodological Framework 

 

Similar software is used for pre-processing of images in other 

studies as well, for example, Su et al. (2018). The Agremo app 

of Drondeploy was used to perform the water stress and plant 

stress analysis of the nine sample fields. The Agremo 

generated maps were finalized in Arc Map 10.5 and 

reclassified to segregate the area of the classes of the different 

plant health analysis performed in this study. The detailed 

methodological process is presented in figure 2. The 

definitions used in the study are set out below regarding the 

different stresses that were analysed. 

Plant Stress Analysis: Plant stress has been defined as ‘any 

unfavourable condition or substance that affects or blocks a 

plant’s metabolism, growth or development’ (Lichtenthaler as 

cited Kranner et al., 2010 p. 656). Initial stress, which might 

be triggered due to many reasons, most commonly water 

deprivation, converts into strain, which can cause plant 

damage, and in severe cases of irreversible damage, might 

lead to plant death (Kranner et al., 2010).  

Water Stress Analysis: Hopkins and Huner, 2009, as cited in 

Gerhards et al. (2016 p. 27) define water stress as 

“dehydration in the plant due to lack of available water 

required to keep cell concentrations at an acceptable and 

healthy level”. Water stress is regarded as the most critical 

factor that leaves drastic impacts on plant growth, 

productivity and photosynthesis activity (Klem et al., 2018; 

Osakabe et al., 2014). Its significance is further enhanced 

under climate change. The Agremo website declares that the 

analysis of water stress can prove instrumental in spotting the 

areas suffering from drought, or standing water, water 

deficiencies in crops, or areas suffering from irrigation 

problems within a field. This analysis is helpful for the 

farmers to adjust their irrigation according to the precise 

needs of crops in different parts of fields. There is no ideal 

time for this analysis; for the regular crop monitoring cycle 

this analysis can be performed throughout the cropping 

season (Agremo). 

CSWI: CWSI is the thermal normalized index developed to 

address the environmental variabilities that affect the 

relationship between plant temperature and stress (Leinonen 

et al., 2006). CWSI results in values ranging from 0 to 1, with 

those close to 1 showing higher levels of stress (Idso et al., 

1981). The formula to calculate CWSI is presented in 

equation 1: 

CWSI = (Tcanopy-Twet)/(Tdry-Twet)                    (1) 

Where Tcanopy represents the canopy’s surface temperature, 

and Tdry are “reference surfaces that are completely wet or dry 

to simulate maximum and minimal leaf transpiration under 

Table 2. Location of nine sample winter wheat fields. 

District Union Council Basti/village Latitude Longitude Survey date DVI Zone 

Bahawalpur 

 

Sanjar Hafiz Abad 29.435 71.805 25-2-2019 High 

Gaddan Gaddan 29.4821 72.0028 25-2-2019 Medium 

Chak no. 75/DB Chak 75/DB 29.1680 71.8610 25-2-2019 Low 

Rahim Yar 

Khan 

Mianwali Sheikhan Basti Gamo Khan Jatoi 28.7106 70.4280 27-2-2019 High 

Amangarh Moza Sar Bhori 28.3953 70.3599 27-2-2019 Medium 

Sadiqabad Chak 173/P 28.2532 70.0843 27-2-2019 Low 

Rajanpur Fatehpur Basti Talok 29.1990 70.2937 26-2-2019 High 

Asni Basti Cheema 29.0691 70.3290 26-2-2019 Medium 

Rakh Kot Mithan Basti Kalar 28.9677 70.3721 26-2-2019 Low 
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the exposed environmental conditions” (Gago et al., 2013, p. 

16; Zarco-Tejada et al., 2013). CWSI continues to be an 

efficient indicator of crop water stress, since it takes into 

account the difference between foliage and air temperature 

(Park et al., 2017). Water stress was calculated in the current 

study, using Agremo app, in Dronedeploy. 

 

RESULTS AND DISCUSSIONS 

 

Plant Stress Analysis Results: The results demonstrated that 

among the three fields surveyed in Bahawalpur District, the 

Plant stress was highest in the wheat field of Sanjar union 

council, which was in the High Desertification Vulnerability 

Zone, with 12.31% of its wheat crop affected, and 36.07% of 

the crop under potential plant stress. Gaddan union council of 

District Bahawalpur (Fig. 3a), lying in the medium DVI zone, 

undergoes plant stress affecting 5.71% of its crop and 

potential plant stress affecting another 22.85% of its one-acre 

sample wheat field.  

The results suggest that in District Rahim Yar Khan, the 

sample wheat field in Sadiqabad union council, lying in the 

Low Desertification Vulnerability zone has 5.55% of the 

wheat plants under plant stress (Fig. 3b). Amangarh union 

council, lying in the Medium Desertification Vulnerability 

zone, undergoes greatest potential plant stress of 20.93% as 

compared to other two union councils of Mianwali Sheikhan 

and Sadiqabad (Table 3). 

In District Rajanpur, Fatehpur union council, lying in the 

High Desertification Vulnerability zone, undergoes the 

greatest plant stress of 34.83% and potential plant stress of 

51.16%, i.e., more than half of the field is under severe 

potential plant stress (Table 3), thus rendering the crop 

vulnerable to failure. Among the remaining two union 

councils, Rakh Kot Mithan stands more vulnerable than Asni, 

since its one-acre sample field suffers 4.76% plant stress and 

31.42% potential plant stress (Fig. 3c).  

Water Stress Analysis Results: The water stress analysis of 

the sample fields of Bahawalpur revealed that the one-acre 

sample field in Sanjar union council (Fig. 4a), which falls in 

the High Desertification Vulnerability zone according to 

(Mazhar et al., 2018) suffers the greatest amount of water 

stress, i.e. 25.51% and a potential water stress of 15.83% 

(Table 4). Therefore, almost 41% of the wheat in the sample 

field is under water stress or potential water stress, and thus is 

not getting enough water to be a healthy crop. Among the 

other two union councils of District Bahawalpur, which fall 

under the Medium and Low Desertification Vulnerability 

zones, Chak 75/B has greater potential water stress of 39.06% 

as compared to 22.85% of the sample wheat field in Gaddan 

union council (Fig.4a).  

Table 3. Plant Stress Analysis for the Fields in High, Medium and Low DVI Zones of Bahawalpur, Rahim Yar Khan 

and Rajanpur. 

District Union Council DVI Zone Fine (ha) % Fine Potential Plant 

Stress (ha) 

% Potential 

Plant Stress 

Plant 

Stress ha) 

% Plant 

Stress 

Bahawalpur Sanjar High 0.17 51.61 0.12 36.07 0.04 12.31 
Gaddan Medium 0.02 71.42 0.00 22.85 0.00 5.71 
Chak 75/B Low 0.13 61.32 0.05 27.83 0.02 10.84 

Rahim Yar 
Khan 

Mianwali Sheikhan High 0.09 90.90 0.00 5.05 0.00 4.04 
Amangarh Medium 0.03 76.74 0.00 20.93 0.00 2.32 
Sadiqabad Low 0.01 94.44 0.00 0.00 0.00 5.55 

Rajanpur Fatehpur High 0.01 13.95 0.04 51.16 0.03 34.83 
Asni Medium 0.16 77.10 0.03 14.48 0.01 8.41 
Rakh Kot Mithan Low 0.06 63.80 0.03 31.42 0.00 4.76 

 

Table 4. Water Stress Analysis for the Fields in High, Medium and Low DVI Zones of Bahawalpur, Rahim Yar 

Khan and Rajanpur.  

District Union Council DVI Zone Fine (ha) % Fine Potential 

water stress 

(ha) 

% Potential 

water stress 

Water 

stress (ha) 

% 

Water 

stress 

Bahawalpur Sanjar High 0.20 58.65 0.05 15.83 0.08 25.51 
Gaddan Medium 0.02 77.14 0.00 22.85 0.00 0.00 
Chak 75/B Low 0.13 60.93 0.08 39.06 0.00 0.00 

Rahim Yar 
Khan 

Mianwali Sheikhan High 0.09 90.90 0.00 5.05 0.00 4.04 
Amangarh Medium 0.03 75.00 0.00 20.45 0.00 4.54 
Sadiqabad Low 0.01 100.00 0.00 0.00 0.00 0.00 

Rajanpur Fatehpur  High 0.02 31.76 0.02 25.88 0.03 42.35 
Asni Medium 0.06 57.54 0.00 5.66 0.03 36.79 
Rakh Kot Mithan  Low 0.16 77.10 0.03 14.48 0.01 8.41 
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Figure 3. Plant Stress in Wheat Fields in Experimental 

Fields of a) Bahawalpur b) Rahim Yar Khan      

c) Rajanpur 

 

 

 
Figure 4. Water Stress in Wheat Fields in Experimental 

Fields of a) Bahawalpur b) Rahim Yar Khan                  

c) Rajanpur 
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Among the three districts, the sample fields in the union 

councils of Rahim Yar Khan were under least water stress, 

with Amangarh suffering from 4.54% water stress (highest 

water stress among the three union councils of Rahim Yar 

Khan) and 20.45% potential water stress (Table 4). Mianwali 

Sheikhan had 4.04% while Sadiqabad had 0% of their sample 

wheat fields, under water stress (Fig. 4b). The wheat field in 

Fatehpur union council in District Rajanpur, lying under the 

high DVI zone, faces the most threatening water stress of 

42.35%, with potential water stress of 25.88% (Table 4). Rakh 

Kot Mithan’s wheat field was the second most severely hit by 

water stress, with 8.41% of the field under water stress and 

14.48% under potential water stress. In Asni union council of 

District Rajanpur, the situation was not as severe as compared 

to the former two union councils of Rajanpur, where 36.79% 

of the sample field was under water stress and 5.66% was 

under potential water stress (Fig. 4c). 

The results of the current study demonstrate that the plant and 

water stress analysis performed on the images captured 

through the use of DJI Phantom 3, were able to reveal a 

snapshot of the stress levels of winter wheat in different DVI 

zones of South Punjab, in an efficient manner. UAV imagery 

was used for calculating the plant stress and water stress for 

wheat crop, and took into consideration the spatial location of 

such stress variations in high and medium low, desertified 

zones. This analysis extended the water stress analysis already 

presented in the literature (Irmak et al., 2000; Park et al., 

2017; Santesteban et al., 2017), as it makes an explicit link to 

desertification intensity, and thus provides an insight into the 

vulnerability of the farming community of the region. 

Comparing the nine wheat fields, plant stress and water stress 

were highest in Fatehpur union council’s wheat fields, lying 

in the High DVI zone of District Rajanpur (Fig. 3c and 4c), 

which implies that there exists a positive relation between the 

DVI zones and the amount of stress that the wheat crop of the 

region undergoes. Potential plant stress is also highest in the 

Fatehpur union council, whereas potential water stress is 

highest in Chak 75/B lying in Low DVI zone of District 

Bahawalpur. The High DVI zones in two among the three 

districts under study, i.e., Rajanpur and Bahawalpur, had 

highest plant stress and water stress. However, the areas lying 

in Medium DVI zone might be facing high levels of plant and 

water stress in future, since their vulnerability might shift on 

the intensity scale. Many natural and anthropogenic factors 

are responsible for plant stress and water stress on the wheat 

crop of this region, including its geographical location on the 

periphery of the Cholistan desert, weak canal systems in the 

area, extreme temperatures and low annual rainfall. Together, 

these aspects make it even more vital that farmers use 

accessible technologies to stay informed and be in a position 

to efficiently manage their irrigation.  

The plant stress and water stress values suggest decreased 

yields at harvest time. Timely irrigation to the most water 

stressed parts of the fields, provided by the farmer, can 

minimize their financial losses. The patterns of stresses 

identified through this study can prove to be helpful for the 

local farming community since this region faces some of the 

most catastrophic climate risks (Ghazanfar et al., 2015). 

UAV captured images are a reliable input for the water and 

plant stress analysis of the wheat fields in desertified 

landscapes. Similar results regarding water stress in barley 

crops (Hoffmann et al., 2016) were able to show that WDI 

maps generated by UAVs were capable of determining 

accurate absolute water stress values and variations within 

fields. Park et al. (2017) mapped the water stress for nectarine 

and peach orchards and compared between full and deficient 

irrigation impacts, however, water and plant stress analysis 

has not been studied before in relation to the severity of 

desertification in any region, and the present study aimed at 

filling this void of literature. More research needs to be 

conducted for calculating indices like the TCARI/Optimized 

Soil Adjusted Vegetation Index (OSAVI), Photochemical 

Reflectance Index normalized (PRlonrm), and NDVI, to 

check if they correlate with the indicators of water stress like 

stomatal conductance and water potential, in desertified 

landscapes (Baluja et al., 2012; Berni et al., 2009; Zarco-

Tejada et al., 2013). 

Precise monitoring and more efficient irrigation are two ways 

that desertification can be managed and mitigated. Timely 

irrigation is essential since both under and over irrigation can 

result in including reduced crop yields and quality (Adeyemi 

et al., 2017). Precision agriculture allows farmers to make 

adjustments to irrigation and other inputs as required 

(Mahlein, 2016). This enables them to achieve improved 

production from the agricultural fields using optimized 

agronomic inputs and fostering a more sustainable 

environment. Precision farming supports enhancements in 

management efficiency. Farmers can be equipped with the 

ability to execute alternative plans to enhance their crop yield, 

only if they can identify the vulnerable regions that lie within 

their fields, using real time monitoring of the water status of 

their field (Park et al., 2017). Use of UAV in precision 

agriculture offers a promising advancement in this regard 

(Latif et al., 2018). However, it needs to be accompanied by 

the water management systems that can support farmers to 

respond quickly to the information provided by UAV.  

 

Conclusion: This study concludes that low cost UAV based 

imagery can be successfully used for plant stress and water 

stress analysis in wheat fields lying in different DVI zones. 

The use of online resources like Dronedeploy and Agremo 

app, offer easy handling of data, and make analysis easier for 

farming communities to perform relevant analysis for the 

optimal agricultural production.  

The farmers of the study area are mostly unable to afford a 

UAV on their own, which would be desirable for the constant 

monitoring of their crop during the entire growth season. 

Thus, it is recommended that the Agricultural Mechanization 
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Research Institute, Multan, Pakistan, could carry out 

conducive research about the benefits of crop monitoring 

using UAV in this arid zone of south Punjab to better identify 

the most appropriate timings and regularity of crop stress 

assessments. The Field Director General Agriculture, for 

Punjab, Pakistan, is a department with one of the functions to 

promote farm mechanization in Punjab, so could play a useful 

supporting role. Farm mechanization is carried out through 

research which facilitates the adaptation of modern equipment 

in agriculture in order to ensure greater outputs per hectare. It 

is recommended that the Field Director General Agriculture 

for Punjab could plan team based surveys using UAV in the 

High DVI zones of the study area, at regular intervals, on 

priority basis, followed by similar surveys for the Medium 

DVI zone, during the entire growth period. Such initiatives by 

the Government can play a pivotal role in reducing the risks 

of crop failure, particularly in those zones that have been 

shown to be highly vulnerable to desertification. Similar 

Government supports will also be needed such that in light of 

the information provided by UAV surveys, farmers can act to 

modify their irrigation timings and practices accordingly. 

Government, in this regard, is suggested to provide sufficient 

water supply in the canals of the region, to ensure higher 

yields of wheat, from this region. Special measures on an 

urgent basis should be taken to support farmers residing in the 

high DVI zone, since UAV provide a reliable platform to 

analyze the crop health of wheat fields. For more extensive 

analysis, similar plant and water analyses are suggested to be 

performed on the same fields for the entire growing season. 

In desertified zones across the globe, similar timely analysis 

of stresses that the crops suffer from, during the entire 

growing season, are recommended to be performed using 

UAV. This is essential for timely identification of exact areas 

that need farmer and policy attention, in order to ensure 

production potentials are reached. 
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