
 

 

INTRODUCTION 

 

Weeds refer to the unwanted plants that tend to grow along 

with the crops. These undesirable plants compete for sunlight, 

water and essential nutrients that results in the weakening of 

the crop plants and hence, the crops become more susceptible 

to disease and pest infestation.  Some of the weed species are 

poisonous which, in severe cases, can cause death if 

consumed by human or animals (Azadbakht and Mana, 2003). 

In addition, pollens released by some of the weeds like 

Convolvulus Arvensis, Oxalis Corniculata, Sorghum 

Halepense, Ragweed, Pigweed, Sagebrush, Tumbleweed, and 

Lambs’ Quarter are highly allergic for humans (Khan et al., 

2020). Another major problem caused by weeds is drastic 

decrease in the yield. To increase the quality and production 

of the crop, a suitable weeding methodology is required to be 

implemented according to the size of the field. For small 

fields, weeds can be removed manually whereas for large 

fields, mechanical or chemical methods are adopted. 

Specially for the large fields, manual and mechanical weeding 

is time consuming process that requires large labor force 

which makes the process expensive and tedious along with 

the greater chances of crop damage by the mechanical tools 

(Metwally and Wakeel, 2019). Chemical weeding methods 

aim at spraying herbicides directly on the weeds either to kill 

them or to stop their growth. However, spraying herbicides on 

weed has its drawbacks. In practice, weeding chemicals are 

applied on the whole field instead of applying them 

specifically on the weed plants which boosts the cost of 

application. In addition, spraying excessive herbicides on 

crops may have adverse effects on crop health and the 

environment (Marshall et al., 2019).    

Artificial Intelligence (AI) has brought a great revolution in 

almost every industry including security (Abdalla et al., 

2016), Big Data management (Abdalla et al., 2020), 

agriculture, and many more. In combination with other 

Information Technology tools and AI, Precision Agriculture 

(PA) has revolutionized the traditional ways of weed 

management (Chlingaryan et al., 2018). PA ensures that the 

crops and soil receive exactly what is necessary for their 

optimum productivity and growth and posed new ways to 

protect crop yield from various concerning factors including 

climate change, population growth, and other food security 

problems (Talaviya et al., 2020). By collecting and analyzing 

aerial images of fields for site-specific herbicide application, 

the amount of herbicide can be decreased up to 80% (Andújar 

et al., 2019). This would also eliminate the risk of crop 

damage, environmental pollution, the resistance of pests to 

chemicals, and product contamination. Weed detection 

systems are trained through efficient ML algorithms based on 
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The traditional ways of weed management including spraying of herbicides on the whole field and manually uprooting them, 

are still in practice in many agricultural farms. This leads to herbicide overuse that causes serious health issues due to food 

quality degradation and environmental pollution. Computer aided weed detection systems can help in smart utilization of 

herbicides by detecting weeds through images. The aim of this study is to propose a novel weed detection system that provides 

accurate results in recognizing crops and weed using Machine Learning and Image Processing techniques. The image dataset 

chosen for this work is comprised of four different classes including broadleaf weed, grass, soil, and soybean. The proposed 

algorithm extracts texture and color features from each image in dataset and uses Random Forest algorithm to train a model 

using extracted feature descriptors. The working of the model is evaluated by computing regression metrics, precision, recall 

and F1 scores. Results showed that the model achieved a correct classification accuracy of 91% for weed, 100% for soil, 90% 

for grass and 99% for the soybean crop. The complete program took only 80 sec to execute which is ideal for a real-time 

environment.   
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image processing to differentiate between target weeds and 

non-weeds thus, making real-time and precise predictions 

(Partel et al., 2019; Wang et al., 2019).  

In this study, an AI based weed detection system has been 

proposed aiming to reduce economic loss, herbicide usage, 

and the cost of weeding while improving quality crops and 

production. The proposed system utilizes image processing 

and machine learning techniques to extract, compare, and 

analyze features from the images of the field.  

 

LITERATURE REVIEW 

 

A novel approach was proposed in Slaughter et al. (2008) for 

the automatic classification of leafy vegetables and weeds 

with the help of a robot. The technique used by them was 

named “Crop Signaling” in which all the crop plants were 

marked with a signaling compound that was easily readable 

by the machine. This method took 1.2 seconds to process a 

pair of images with 99% accuracy for crop classification and 

98.11% for weed classification.   

A weed detection system was proposed in Ishak et al. (2008) 

for the successful identification of broad and narrow wed 

plants. The model was based on a Support Vector Machine 

(SVM) classifier that utilizes a combination of Gabor and FFT 

filter to extract features. The accuracy was initially 90% 

which was improved later to 100% by tuning the parameters.  

The method presented in Masuda et al. (2010) utilizes two 

feature categories to identify rice crops from weed plants. The 

researchers had extracted area and moment of order features 

separately from all pixels and then observe the results. Results 

showed that the extracted third-moment order features 

generate better results as compared to the area.  

The research work presented in Dyrmann et al. (2016) utilized 

a Deep Convolutional Neural Network to segment 22 

different plant species at early growth stages. A 5x5 

convolutional layer was applied after segmenting foreground 

from background (soil) pixels. Batch normalization was done 

to bring all the input layers in the same range. The activation 

function used in the work was Rectified Linear Unit (ReLU). 

After that, filter capacity and coverage were determined to 

decide the features that should be mapped and the area of an 

image to be covered, respectively. The training process was 

completed after 18 epochs with a batch size of 200 images. 

Classification accuracy of 86.2% was achieved using this 

technique that could be improved with more training samples.  

Another technique discussed in Pulido et al. (2017) used 

texture features to differentiate between weeds and vegetable 

crops. For this purpose, a Gray-Level Co-occurrence Matrix 

was generated to compute texture features namely correlation, 

contrast, autocorrelation, dissimilarity, energy, homogeneity, 

difference variance and variance. After that, only those 

features were kept which showed maximum variance between 

weed and crop plants. The model was trained using the SVM 

classifier. This model achieved greater than 90% specificity 

and sensitivity values. 

The model elaborated in Gao et al. (2018) utilized spectral 

features to detect weed in maize crops. The feature set was 

comprised of 80 Normalized Difference Vegetation Index 

(NDVI) and 80 Ratio Vegetation Index (RVI) feature 

descriptors. The research then selected only those features 

that provide maximum information by using Principal 

Component Analysis (PCA). The model was trained using 

two algorithms including K-Nearest Neighbor and Random 

Forest. Results showed that Random Forest performed better 

than KNN with a maize classification accuracy of 1 and 0.70, 

0.79, and 0.75 for three weed species. 

  

PROPOSED METHOD 

 

The model in the proposed study is developed for automatic 

weed identification in soybean crops using Image Processing 

and ML techniques. This algorithm involves training the 

model through labelled image data and then evaluating it 

using a validation method. Once the model is trained and 

validated, it can predict new unseen images based on the 

training knowledge. 

Data Acquisition: The image dataset is downloaded from an 

online community of data scientist and ML practitioners 

known as “Kaggle” (Peccia, 2018).  The dataset consists of a 

total of 15,336 images comprising four different classes. 200 

images are randomly selected for each class which accounts 

for 800 images in total.  These classes include broadleaf weed, 

soybean crop, grass and soil images. The images are stored in 

their respective directories in “.TIF” format. This model is 

implemented in Python language using an open-source 

Integrated Development Environment known as Scientific 

Python Development Environment (SPYDER). To achieve 

this goal the Python version used is “Python 3.7.6”.  

Figure 1 exhibits a sample of raw image data containing the 

four classes i.e. Broadleaf weed, Grass, Soil, and Soybean. All 

the images are of different sizes and are captured under 

varying illumination which can natively affect classification 

result. To get rid of this problem, the proposed algorithm 

processes texture features in addition to color features. In this 

way, one feature category can overcome the limitations of 

other categories. 

Image Resizing: The images are then rescaled to a fixed size 

of 300 x 300. This standard size was chosen because the width 

and height of most of the image’s range between 200 to 350 

pix. Therefore, rescaling them to a fixed size did not make 

them blur or affect their quality. Image resizing is done 

through “Interpolation”. This would move pixels from one 

grid to the other. As both image height and width are affected, 

therefore, interpolation is done in two directions. Image 

zooming and shrinkage involves adding and replacing old 

pixels with new pixels having intensities calculated by 

approximating intensities of surrounding pixels. This task is 
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achieved through “Non-Adaptive Interpolation” where 

surrounding pixels are given equal importance in deciding 

new pixel intensities. It further utilizes bilinear interpolation 

that considers a linear combination of four surrounding input 

pixels. Equation (1) represents the bilinear interpolation 

applied to a unit square. 

  

 
Figure 1. Sample of raw images from the dataset. (a) 

Broadleaf images, (b) Grass images, (c) Soil 

images, (d) Soybean images  

 
𝐹(𝑥, 𝑦) = 𝑧00 ∗ (1 − 𝑥) ∗ (1 − 𝑦) + 𝑧10 ∗ 𝑥 ∗ (1 − 𝑦)

+ 𝑧01 ∗ (1 − 𝑥) ∗ 𝑦 + 𝑧11 ∗ 𝑥 ∗ 𝑦 
(1) 

where, F(x,y) represents a point in the unit square matrix. 

Whole value is calculated by considering the weighted 

average of the four surrounding pixels z00, z10, z01 and z11. 

Figure 2 represents the sample of rescaled images from the 

dataset.  

 
Figure 2. Sample of rescaled images with the x-axis 

representing the no. of pixels on the x-axis and 

y-axis showing the no. of pixels on the y-axis. 

(a) Resized grass image, (b) Resized broadleaf 

image, (c) Resized soil image 

 

Conversion to Grayscale: After resizing, all the images are 

converted to greyscale. As a result, it will consume less 

memory and speed up the training process. To produce grey 

images from colored RGB images, we have utilized all the 

three red, green, and blue color channels unlike the typical 

way of using only one channel. This is because a single 

channel greyscale image may end up looking dull and thus it 

may lose a lot of information necessary to recognize textural 

features. The formula used to calculate the grayscale pixel 

value is given in (2). Figure 3 represents the results after 

performing grayscale conversion to the resized RGB image 

samples.  
 

𝐹𝑔(𝑥, 𝑦) = 0.33 ∗ 𝐹𝐵(𝑥, 𝑦) +  0.56 ∗  𝐹𝐺(𝑥, 𝑦)  +  0.11

∗ 𝐹𝑅(𝑥, 𝑦) 
(2) 

 

 
Figure 3. Grayscale conversion on image samples. (a) 

resized grayscale grass image, (b) resized 

grayscale broadleaf image, (c) resized grayscale 

soil image. 

 

Noise Reduction: The next step is to reduce image noise. The 

technique used in this study is known as Bilateral filtering. 

This technique is utilized not only to remove image noise but 

also to preserve useful information about the edges and 

corners in an image. It applies a flat kernel bilateral filter to 

the image and then based on the radiometric resolution 

similarity and spatial closeness of pixels, it calculates the 

average of their intensity values. The spatial closeness is 

measured by a structuring element considering the local pixel 

neighborhood. The pixel values are averaged to have a noise-

free image. Its equation is given in (3): 

𝐵𝐹[𝐼]𝑝 =  1
𝑊𝑝

⁄ ∑ 𝐺𝜎𝑆
𝑞∈𝑆

(‖𝑝 − 𝑞‖)𝐺𝜎𝑟
(|𝐼𝑝 − 𝐼𝑞|)𝐼𝑞  (3) 

where 1 𝑊𝑝
⁄  denotes the normalization factor, 𝐺𝜎𝑆

(‖𝑝 − 𝑞‖) 

represents the space weight and 𝐺𝜎𝑟
(|𝐼𝑝 − 𝐼𝑞|) specifies the 

Range weight. Figure 4 represents zoomed-in version of 

dataset images before and after applying the mean-bilateral 

noise reduction on all four classes of images.  

Feature extraction: Mainly there are four prime feature 

categories i.e. spatial, spectral, morphological, and visual 

features. Spatial refers to the space or location of the 

concerned object, spectral refers to the color and light 

characteristics, visual refers to the object texture features, and 

morphological features refers to the object area or shape. To 

generate good classification results, the model needs to 

extract features that belong to different feature categories. In 

this way, one feature category may overcome the limitations 

posed by the other one. For example, it is possible to have a 

similar texture in different plants therefore, color and shape 

features would be very helpful in generating a good feature 

set. For this reason, we have chosen color and texture features 

after various trials. 

 

          
(a)                                     (b)                                     (c)                                                                                                 

 

   
                      (a)                                         (b)                                     (c)  
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Color or spectral features: Color features can be extremely 

helpful in detecting plants in an image because of the green 

stem and leaves, they can be easily distinguished from a dark 

background or soil. In the proposed work, a “color histogram” 

is used to extract color features. This method works by 

calculating number of occurrences a color within an image. 

This technique can be applied to various color models 

including HSV, RGB, grayscale, or hyperspectral model. We 

have chosen the HSV color model for this study. Figure 5 

represents the sample image of the soybean plant which is 

then converted to the HSV color space to generate its 

respective color histogram.  

As the images were originally in RGB color-space, so they 

are converted to an HSV color-space. The method of 

generating histograms of an HSV image is almost similar to 

that of an RGB image. The reason why we have chosen this 

color space is that the Hue, saturation, and intensity provide 

better spectral information as compared to an RGB image. 

The image’s Hue information is divided into 8 groups, 

saturation is in 2 groups and intensity in 4 groups where every 

group creates its feature vector. This grouping is done because 

maximum feature information is provided by the Hue 

component followed by the intensity and then saturation of 

the HSV image. The value of bins is set to 8. This means that 

the HSV histogram is divided into 8 parts and the number of 

times a pixel occurs in its corresponding part or distribution 

is calculated. To enhance the fine and tiny details of the 

image, the histogram is normalized. This would also prevent 

biased results and keep the contribution of various bins 

relative. 

Texture Features: After color features, texture features are 

extracted to obtain information about the ridges and edges of 

the plant. Textures can be extracted in various ways. The one 

chosen in this research is by using a Gray Level Co-

occurrence Matrix (GLCM). This method utilizes a greyscale 

image and computes the co-occurrence of an ROI (Region of 

Interest) and its neighboring pixels. A pixel adjacency with 

neighboring pixels is calculated in four directions i.e. right 

and left diagonals, vertical, and horizontal in a square 2-D 

matrix. These directions are shown in Figure 6. This matrix 

does not directly give texture information rather, it can be 

used to calculate various image features that correspond to 

image texture information. 

In this proposed methodology, the image texture feature 

information is extracted by calculating the contrast, 

dissimilarity, correlation, and Angular Second Moment 

(ASM). ASM corresponds to the textural uniformity of an 

image. The second feature contrast refers to the measure of 

local variation in an image. The contrast of a pixel with its 

neighboring pixels is calculated. The next texture feature is 

correlation which measures the linear dependency of the 

concerned pixel with the neighbor pixels in GLCM. Its value 

 
Figure 4. Noise reduction on sample images. (a) normal and zoomed-in version of the original and bilateral broadleaf 

image, (b) normal and zoomed-in version of original and bilateral grass image, (c) normal and zoomed-in 

version of original and bilateral soil image, (d) normal and zoomed-in version of original and bilateral 

soybean image. 

 

 
(a) 

(c) 

 
(b) 

(d) 
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ranges from -1 to 1. If the pixels are negatively correlated, 

then the value of correlation will be -1 and vice versa. Lastly, 

dissimilarity calculates the distance between the pixel and its 

surrounding pixels. The ASM, contrast, correlation and 

dissimilarity values are computed using (4), (5), (6), and (7) 

where 𝑎𝑠𝑚 represents the ASM value, 𝑐𝑜𝑛𝑡 shows contrast, 

𝑐𝑜𝑟𝑟  represents correlation and 𝑑𝑖𝑠𝑠  corresponds to 

dissimilarity of the matrix 𝑝 with axis 𝑖, 𝑗. 

 

        
   (a)                                                (b) 

  
(c) 

Figure 5. Soybean plant image converted to HSV. (a) 

Sample soybean plant image, (b) the 

transformed HSV image,  (c) normalized 

histogram of the image 

 

 

 
Figure 6. Adjacency directions to calculate co-occurrence 

of pixel with its neighboring pixels. 

 

 

𝑎𝑠𝑚 =  ∑ ∑ 𝑝(𝑖, 𝑗)2

𝑗𝑖

 (4) 

𝑐𝑜𝑛𝑡 = ∑ ∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑗𝑖

 (5) 

𝑐𝑜𝑟𝑟 =  −
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝑗𝑖 𝜇𝑦

𝜎𝑥𝜎𝑦
⁄   (6) 

𝑑𝑖𝑠𝑠 =  ∑ ∑ 𝑝(𝑖, 𝑗)|𝑖 − 𝑗|

𝑗𝑖

 (7) 

Combining and Rescaling Features: Once the features are 

extracted, they are then combined into a single matrix using 

the “append” method. It works by updating an existing list by 

adding an item to its end. This feature set will be used by the 

classification algorithm to detect weeds. After combining the 

two feature categories into one matrix, the resultant feature 

set is rescaled. It would allow the feature descriptors to fall in 

a specific range. If the features are not rescaled, then certain 

features would have extremely high values as compared to 

others and hence, cause biases in generating results. This task 

is done by using the Min-Max scalar. Its mathematical 

formula is given in (8): 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥  −  𝑋𝑚𝑖𝑛
⁄  (8) 

This function scales and transforms all the features one by one 

in a particular range. It utilizes a maximum and a minimum 

number to rescale data where Xmin  and Xmax  shows the 

minimum and maximum number, respectively. The resultant 

feature set is normalized to a particular range i.e. 0-1. In 

addition to feature normalization, rescaling tends to decrease 

standard deviation (deviation of values from the mean point). 

Therefore, it helps in restraining the consequences of outliers 

in the data.  

Splitting the Dataset: The next step is to split the training 

dataset into two parts test data and train data. The train data 

will be utilized to train the proposed system or classification 

algorithm. On the other hand, test data will be used to test the 

working of the algorithm with the help of a validation 

technique. In the proposed work, the size of test data is equal 

to 0.10. This means that only 10% of the data is involved in 

testing while the rest is used for training purposes. 

Training the Classification Algorithm: The next step is to 

train the classification algorithm based on the extracted 

features. It refers to algorithm learning by using training data 

to find relations, make decisions, and then develop 

understanding. That is why the training data needs to have all 

the necessary information about various classes involved in 

the data. In this study, Random Forest (RF) is used as a 

classification algorithm. The algorithm consists of a forest of 

multiple decision trees. Each one of these trees predicts a 

class. The class that gets the maximum number of votes is 

chosen by the algorithm as the final prediction. The algorithm 

works by generating random feature subsets which are used 

as a basis to split nodes of the decision tree. The reason for 

choosing this algorithm is that it overcomes the limitations 

posed by decision trees by decreasing the variance of a single 

tree and considering majority voting. Figure 7 shows a visual 

representation of the Random Forest algorithm. P(c|f) 

represents the maximum number of outputs for a particular 
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class. A total number of 100 ‘n’ decision trees were involved 

in the RF algorithm. 

The relative importance of features is computed with the help 

of the “Gini” index which is given in the equation below. 

Random Forest is calculating the importance of each feature 

by computing the reduction in the “node impurity” or “Gini 

impurity”. If the observations are from a single class, then the 

Gini impurity will have a smaller value showing that the 

respective information is important. Equation (9) represents 

the mathematical formula to compute Gini impurity. 

𝐺𝑛 = 1 −  ∑[𝑝(𝑐|𝑛)]2

𝑐

 (9) 

where 𝐺𝑛 is the Gini impurity, 𝑝(𝑐|𝑛) represents the relative 

importance or frequency of a particular class 𝑐  at the 

concerned node 𝑛. It is weighted by the probability to reach 

that node which is given in (10). High probability shows that 

the feature provides good information for classification. 

Using these values, the node importance is calculated as in 

(11). 

𝑃𝑛 =
𝑛𝑜. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑛

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (10) 

𝑛𝑗 =  𝑤𝑗𝐺𝑗 − 𝑤𝑙𝑒𝑓𝑡(𝑗)𝐺𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝐺𝑟𝑖𝑔ℎ𝑡(𝑗) (11) 

where ‘n’ represents the node, 𝑛𝑗 shows the importance of the 

node j, 𝑛𝑗 is the weighted samples that reach j, and 𝐺𝑗signifies 

the impurity value. As this equation is for a binary tree so, 

𝑙𝑒𝑓𝑡(𝑗) indicates the left child node and 𝑟𝑖𝑔ℎ𝑡(𝑗) is the right 

child node. From here, we can calculate the feature 

importance for a specific decision tree as shown in (12). 

𝑓𝑖 =  
∑ 𝑗: 𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑗

∑ 𝑛𝑘 ⁄  (12) 

where, 𝑓𝑖 shows the importance of the feature ‘i’, 𝑛𝑗 signifies 

the node j's importance and k features all the nodes. The 

feature importance is normalized using the equation and the 

resultant normalized value is used to find the average as 

represented in equation (13).  

𝑛𝑓𝑖 =
𝑓𝑖

∑ 𝑓𝑎𝑙𝑙
⁄   (13) 

where 𝑛fi indicates the normalized ‘i’ feature importance and 

fall  represents all features. The feature importance values 

generated from each tree are summed and normalized using 

equation (14).  

𝑅𝑓𝑖 =
∑ 𝑛𝑓𝑖𝑡

𝑁
⁄  (14) 

where ∑ nf𝑖𝑡  is the summation of the normalized value of 

feature importance nf𝑖  in decision tree “t” and 𝑁 indicates the 

total no. of decision trees i.e. 100.  

 
Figure 7. Visual representation of Random Forest with n 

decision trees 

 

RESULTS AND DISCUSSION 

 

Training Results: The model is trained using Random Forest 

using a feature set created by vertically combining all the 

extracted feature descriptors in a single array of size (800, 

528). In this array, 800 corresponds to the total number of 

training images and 528 represents the number of feature 

descriptors extracted during the training process. Among 

these 528 feature descriptors, 512 features belong to the HSV 

color histogram while the rest of the 16 features correspond 

to the GLCM features including contrast, dissimilarity, 

correlation, and Angular Second Moment (ASM) of the Gray 

Level Co-occurrence Matrix. All the values in this feature set 

are scaled and normalized to a fixed range of 0-1 thus 

avoiding wrong and unbiased results. The data or feature 

descriptors are stored in an HDF (Hierarchical Data Format) 

file. The reason for choosing this file format is that it supports 

complex and large heterogeneous data to be stored in a 

compressed file. However, one cannot simply read a file 

written in HDF format. So, to analyze the training results, the 

HDF file is retrieved and observed in the form of an np-array 

(Numpy array). The training data (feature descriptors) and 

labels are stored in separate HDF files. The array of training 

labels is of size (800, 1) where each label corresponds to one 

of the 800 training data images.  

Evaluation and Validation Results 

K-fold Cross Validation: After training, the next step is to 

evaluate the ML model proposed in this study by using the k-

fold cross-validation technique. To split the dataset, the size 

of the k-parameter is set to 10. This means that the data 

sample will be divided into 10 randomly generated equal 

groups. One of these groups corresponds to the test dataset 

Table 1. Accuracies computed k-fold cross validation with k=10 

Itr-1 Itr-2 Itr-3 Itr-4 Itr-5 Itr-6 Itr-7 Itr-8 Itr-9 Itr-10 

0.9375 0.95 0.875 0.9375 0.925 0.8375 0.9375 0.9125 0.9625 0.9125 
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and the remaining k-1 groups will be assigned to the sample 

training dataset to fit the model. The results of the evaluation 

are stored while the sample datasets generated for k-fold 

cross-validation is reassigned to the training and test groups 

in the next iteration.  

Since 90% of the images are assigned to the training set so the 

training set contains a total of 720 image which is 90% of 800 

images. Similarly, the remaining 10% of the 800 images i.e. 

80 images are allocated to the test dataset. The whole process 

will be repeated 10 times. The model is evaluated by 

computing its accuracy through the cross-validation 

technique.  Table 1 represents the accuracies achieved after 

10-iterations of the cross-validation technique. The final 

accuracy computed by the k-fold cross-validation technique 

is calculated by taking an average of the ones mentioned in 

Table 1 which is 0.918 or 92%. Mathematically, it is 

computed as given in the equation (15) where Where n is the 

total number of samples, 𝑦 represents true values of the global 

datatset and 𝑦
^
 is the value predicted by the model.  

Acc(𝑦, 𝑦
^

) =
∑ 1(𝑦

^

𝑖 = 𝑦𝑖) 
 𝑛−1

𝑖=0
𝑛

⁄
 

(15) 

Regression Metrics: To further evaluate the performance of 

the Random Forest algorithm, we have utilized the metrics 

including Mean Squared Error, Mean Absolute Error and 

Root Mean Squared Error. These metrics are used specifically 

when the algorithm deals with regression problems. As the 

proposed work is all about designing a model to learn various 

characteristics and patterns and then make accurate 

predictions, therefore we have used the following metrics for 

quantitative assessment of the proposed model.  

Mean Absolute Error (MAE) signifies the errors between the 

actual values of the test dataset and the values predicted after 

fitting the algorithm on the test dataset. The mathematical 

formula to compute its value is given in (16). 

MAE(𝑦, 𝑦
^

) =
1

𝑛
∑ |𝑦𝑖 − 𝑦

^

𝑖|

 𝑛−1

𝑖=0

 (16) 

Where n represents the total number of samples, 𝑦 is the true 

value of the test dataset whereas 𝑦
^
 is the value predicted by 

the model.  

Mean Squared Error (MSE) represents the risk involved in 

predicting some value. In other words, it gives the expected 

value of the squared loss or error. Its equation is given in (17).  

MSE (𝑦, 𝑦
^

) =
1

𝑛
∑(𝑦𝑖 − 𝑦

^

𝑖)
2

 𝑛−1

𝑖=0

 (17) 

Root Mean Squared Error (RMSE) measures how far the 

predicted values are from the best fit line. In other words, 

RMSE calculates their standard deviation. The mathematical 

equation featuring RMSE is given in (18). 

𝑅𝑀𝑆𝐸 =  
√∑ (𝑦𝑖 − 𝑦

^

𝑖)
2

𝑛−1

𝑖=0
𝑛

⁄
 

(18) 

The respective values for all the above-mentioned regression 

metrics are given in Table 2. If an algorithm performs well 

then these metrics are expected to have low values. It can be 

observed from the table that the computed values for MAE, 

MSE, RMSE are close to zero which indicates a better fitting 

algorithm. 

 

Table 2. Results of Regression Metrics (MAE, MSE, 

RMSE) for model evaluation 

Mean Absolute Error 0.1125 

Mean Squared Error 0.1375 

Root Mean Squared Error 0.3708 

 

Confusion Matrix: The performance of the proposed model 

is also evaluated with the help of a confusion matrix. For this 

purpose, the test dataset, obtained after splitting the original 

dataset into train and test set, is utilized. At first, the model is 

fitted on the training dataset and then it is used to predict the 

classes of the test dataset. The confusion matrix is generated 

using the predicted results and the true values of the test 

dataset. Figure 8 shows the multiclass confusion matrix 

generated in the proposed work featuring all four classes 

including broadleaf, soil, grass, and soybean.  

 
Figure 8. Confusion matrix featuring True and 

Predicted labels for soil, grass, broadleaf and 

soybean 

 

Classification Report: The classification report illustrates the 

recall, precision, support, and F1 scores of the concerned 

model. These are the prime classification metrics that are 

measured based on each class separately. Unlike the k-fold 

cross validation that comprises a global accuracy, these 

classification metrics do not mask the functional weakness 

involved in each class and thus allow a deeper insight into the 

performance of the classifier. The precision, recall, F1 and 

support scores belong to each class are given in Table 3. The 
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classification metrics are explained and calculated in terms of 

the number of true positives, true negatives, false positives, 

and false negatives. Among them, precision specifies the 

exactness of the classifier, recall refers to the completeness of 

the classifier or the percentage of all correctly identified 

positives, f1 scores represents the weighted (harmonic) mean 

of precision and recall, and support here measures the 

occurrences of a particular class in a dataset. The 

mathematical representations of the respective classification 

metrics are given in equations (19), (20), and (21) where 𝑝𝑟𝑒𝑐 

refers to precision, 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 indicates true positive, false 

positive, false negative respectively.  

𝑝𝑟𝑒𝑐 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃⁄  (19) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁⁄  (20) 

𝑓1 =  2 ×
𝑝𝑟𝑒𝑐 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙⁄   (21) 

 

Table 3. Results of Classification report representing 

precision, recall, F1 and support values of all 

classes 

 Precision Recall F1 Support 

Broadleaf 0.86 0.83 0.84 23 

Grass  0.80 0.80 0.80 20 

Soil 1.00 1.00 1.00 20 

Soybean 0.94 1.00 0.97 17 

 

It can be seen from Table 3 that the model gives the best 

results with soil images, followed by soybean, broadleaf and 

grass images. The highest precision or sensitivity is achieved 

with soil followed by broadleaf images i.e. 1.00 and 0.94 

respectively. The model achieved an f1 score of 1.00 with soil 

images, 0.97 with soybean images, 0.84 and 0.80 with 

broadleaf and grass images. The overall classification rate of 

the model in the test dataset is 0.9% or 90% which is quite 

good. On calculating the number of TP, TN, FP, FN from the 

confusion matrix in Figure 8, we observe that the number of 

true positives for broadleaf weed images is 19, the number of 

true negatives is 54, and that of a false positive and false 

negative is 4 and 3 respectively from a total of 80 images. This 

means that only 3 out of 80 images, belonged to other classes, 

are classified as a weed. The correct classification and miss-

classification rate of each class are given in Table 4. The 

complete program took only 79.9 seconds to execute which 

makes it ideal for a real-time environment.  

 

Table 4. Results showing correct classification and miss-

classification rate of test dataset broadleaf, grass, 

soil and soybean 

 Correct 

classification 

Miss-

classification 

Broadleaf weed 0.9125 = 91% 0.0875 = 8.75% 

Grass 0.9000 = 90% 0.1000 = 10% 

Soil 1.0000 = 100% 0.0000 = 0% 

Soybean 0.9875 = 99% 0.0125 = 1% 

 

The trained model is also used to predict unseen images from 

the dataset. These images are not included in the training and 

test dataset. Rather these are utilized solely with the purpose 

to test the validity of the model. A total number of 32 images 

were stored in a separate location. Each class comprised 8 

different images captured under varying light conditions. 

Some of these images are also affected by noise. These 

images are passed on to the trained model to predict their 

respective classes. Figure 9 represents four per class images 

predicted by the model. It can be seen from the figure that the 

model is successfully able to classify unseen images. Out of 

32 images, 30 images are predicted correctly. The two miss-

classified images belong to the grass category. All the weed, 

soil and soybean plant images are labelled correctly.  

 
Figure 9. Prediction results on unseen images. Label 1= 

Soybean, label 2 = Soil, label 3 = Grass, label 4 

= Broadleaf weed 

 

Conclusion: The traditional practices of weed management 

are costly and time-consuming. Automatic weed detection 

poses a solution to the prevalent problems including wastage 

of herbicide, high labor costs and poor fruit quality due to 

weed growth. The problem with the existing weed detection 

systems is that they lack robustness. Also, most of these 

systems require large datasets to train the model which would 

eventually result in an increased computation time. So, these 

problems need to be resolved. The proposed model aims to 

solve these problems by reducing average computation time 

and giving accurate results.  
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The model works by loading the image dataset and applying 

various pre-processing steps including image rescaling, grey-

scale conversion, and noise-reduction. These pre-processing 

steps are followed by feature detection and extraction. Two 

kinds of feature categories are extracted during this process. 

Texture features are extracted by calculating contrast, 

correlation, dissimilarity and using a Gray Level Co-

occurrence Matrix. Color features are extracted by first 

converting all images to HSV color space and then computing 

normalized histograms. The next step is to normalize and 

combine all feature descriptors into a single matrix. The 

resultant feature set is used to train the Random Forest Model. 

The performance of the model is evaluated using K-fold 

cross-validation, Regression Metric and by computing 

precision, recall and F1 score of all four classes. At last, the 

model successfully predicts classes of unseen soil, grass, 

soybean and broadleaf images.  
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