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1.	 INTRODUCTION

Fractional calculus provides a very supportive tool 
to describe natural phenomena more realistically 
by making beautiful and accurate modeling of 
physical phenomena [1]. There is much literature 
survey available which deals with the theory and 
applications of fractional differential equations [2, 
3, 4, 5]. The applications of fractional derivative 
and fractional integral cover a broad field of 
complex systems including: chemistry, physics, 
visco-elasticity, signal processing, bioengineering, 
mathematical biology, and fluid mechanics, 
see, for example [6, 7, 8, 9]. Not only in applied 
mathematics, fractional calculus also has great 
applications in pure mathematics, see [10]. One 
of the hottest problems of fractional calculus is 
fractional differential equations with boundary 
conditions. These types of equations help to 
model many complex systems including: blood 
flow, thermo-elasticity, underground water flow, 
population dynamic, see, for example [11, 12, 13, 
14, 15]. BVPs of fractional order are also applied 
in various physical processes of stochastic transport 
and many applications in the liquid filtration in a 
strongly porous medium, as described in [16].
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Generally, numerical solution techniques are 
preferred when dealing with fractional models 
since the analytical solutions are available for a few 
simple cases. Following this numerous numerical 
techniques was developed to tackle fractional order 
boundary value problems

2.	 MATERIALS AND METHODS

Many algorithms have been developed and 
implemented for the numerical approximation 
of fractional order differential equations; see, 
for example [17, 18, 19, and 20]. Several new 
techniques are created for the solution of linear 
fractional order BVPs [21].  H. Demir have used 
shooting method to obtain solution of fractional 
order boundary value problem in [24]. Mohamed 
have investigated fractional Euler method and 
modified Trapezoidal rule in [25]. M.A. Anwar et al 
proposed the finite difference scheme for fractional 
order boundary value problem in [26]. Rahman dealt 
these boundary value problem by finite difference 
method in which discretization is done by 2nd order 
finite difference scheme and Caputo operator [27].
In this paper, we develop a numerical scheme for 
the approximation of nonlinear fractional order 
BVPs with high accuracy.



2.1. Derivative Approximation

We approximate the derivatives in the developed scheme (Section 2.3) using central difference formulae. 
The stencil of fourth order implicit compact finite difference scheme used to approximate the first and 
second-order derivatives for the interior nodes is:

{ }, , ,     2,3,..., 2.1 1x x x for i nii i = −− +

Nodes for central difference scheme are shown in Fig 1. It means that if we are at location ,i  then we 
need one grid node to the left of it and one grid point to the right of it. It is noticeable that, mutual distance 
between nodes is equal to 0nx xh

n
−

= . We consider the following implicit compact finite difference scheme

( )1
1 1 2 1 1 1 2 3 12f f f f f fi ii i i ih

α α β β β′′ ′′ ′′+ + = + +− + − +
.				    (1)

We are interested in finding the values of unknowns in such a way that we can achieve fourth order 
accurate approximation of second-order derivative. On expanding equation (1) around 1x , we obtain the 
following system of algebraic equations:
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ββ
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− − + + + =

− − − + =

− − + + =

			   (2)

By solving the system of equations (2), we obtain

1 1 6 12 6
,  ,  ,  ,  1 2 1 2 310 10 5 5 5

α α β β β= = = = =                    (3)

To find the approximations of first-order derivatives at the interior nodes, we consider the following model

( )1
1 1 2 1 1 1 2 3 1f f f f f fi ii i i ih

α α β β β′ ′ ′+ + = + +− + − + .	                         (4)

Fig. 1. Nodes for central difference scheme
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After expanding equation (4), we get the following system of algebraic equations:

		

0,1 2 3
0,1 3 1 2

31 0,1 22 2

31 1 2 0,
6 6 2 2

31 1 2 0.
24 24 6 6

β β β

β β α α

ββ
α α

ββ α α

ββ α α

+ + =

− + + =

− − − + =

− + + =

− − − + =

  (5)

Solving this system, we get

1 2 1 2 3
1 1 3 3,  ,  ,  0,  
4 4 4 4

α α β β β= = = − = =                (6)               

Similarly, for one sided approximation for boundary nodes and solving system of equations, we obtain 
the following coefficients:
for second-order derivative, we use the following scheme

( )1 ,1 1 2 2 3 3 4 4 5 51 2 2f f f f f f f
h

α β β β β β′′ ′′+ = + + + +           			     (7)

where, 145 76 29 4 110,   ,  ,  ,  ,  51 2 3 412 3 2 3 12α β β β β β= = = − = = − =                              (8)

for first-order derivative, the proposed scheme is

( )1 ,1 1 2 2 3 3 4 4 5 51 2f f f f f f fhα β β β β β′ ′+ = + + + +  (9)

where, 37 2 2 14,   ,  ,  3,  ,  51 2 3 412 3 3 12α β β β β β= = − = = = − =                                               (10)

2.2. Integral Approximation

We approximate the integrals in the developed scheme (Section 2.3) by the Trapezoidal method

		                                             (11)

where, ( ) and 1x h x xj j i iξ ξ= = − − is a uniform step size.

2.3. Proposed Iterative Scheme
To describe the proposed iterative scheme, consider the following non-homogeneous nonlinear fractional 
order BVP

( ) ( ) ( ),     (0,1),   0 1D y D y p x f y g x xβα β α−− ′′ + + = ∈ ≤ ≤ < ,               (12)

with the boundary conditions:
(0) (1) 0y y= = .
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Where,  and D D βα −−  are fractional orders derivatives in Caputo sense and is a nonlinear function. The 
fractional order differential equation (12) can also be written as

( ( ) ( ) ( )).y D y D g x p x f yα β α−′′ = − + −                          (13)

For a given smooth function, we define

1( ) ( ) ( ) ,    0(1 ) 0

1 1 1                (0) ( ) ( )(1 ) (1 ) 0

x
D w x x s w s ds

x
x w x s w s ds

α α αα

α α
α α

 
 
 
 

− − ′= − >∫Γ −

− −′ ′′= + −∫− Γ −

                             (14)

We can write equation (13) with the help of equation (14) as

( ) ( )

111 1( )(0) ( )(1 ) (1 )1 10
11 ( )           (0) (0) (0) (0) (0) + ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )1 10

        

x x sxy y y s d

x x sx g p y p y g s p s y s p s y s p s y s ds

γγ
γ αγ γ

αα
α α

 
 
 
 

 
 
 
 

−− −′′ ′ ′′= − + +∫Γ − Γ −− −

−− −′ ′ ′ ′′ ′′ ′ ′ ′′− − − − −∫− −

where, .γ α β= −

We discretize [0,1]  for a given number of n nodes and compute a uniform step size

(1 0) / ( ) 1 / ( )h n n= − =

Furthermore, we use central difference approximation of order four for the approximation of first and 
second-order derivative as given in Section 2.1. Whereas, integrals in our work are approximating by using 
composite trapezoidal method (11). The above equation can also be written as

( )

1 1( ) (0) ( )1(2 )
1 1          (0) (0) (0) (0) (0) ( ) ( ) ( ) ( ) ,52 3 4(2 )
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  (15)
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Here, we implement a very robust iterative process. Equation (18) can also be written as

( )1 ,n ny y+ = Φ                                                                   (16)

where, [ , , ..., ]1 2
Ty y y yn=  is the nth  approximation to the solution of discretized form of equation (18) 

and ( )yΦ  is the right-hand side.

3. RESULTS AND DISCUSSION 

To quantify the quality, in terms of convergence and accuracy, of the above developed iterative scheme, 
we perform extensive numerical testing on a collection of test problems. In all our numerical testing, we 
approximate the numerical solution of five non-linear fractional order (0 ≤ β ≤ α < 1) BVPs by solving 
iteratively equation (16) to obtain a sequence of presumably convergent vectors , , , ...,  till 0 0 0 1y y y y ynn − ≤+  
some specified tolerance.

Problem 1
Consider the following nonlinear fractional differential equation:

( )
( ) ( ) ( )

2 3 13/4 2 1 2097152 8
663 45886995

7
8

41
10241/4 1/8

8

31 172 2128 133 1

32 (32 17)
4

D y D y x y x sin

x x x

x x π

π

π −− −′′ + + = − −

−Γ − + −

 Γ − 
 

With boundary conditions:
	 (0) 0 (1)y y= =

Note that, the exact solution for this problem is 5 2( ) (1 )y x x x= − .

Approximated solution and relative error of this problem are shown in Table 1. Analytic solution and 
approximated solution are shown graphically in Fig 2.

Fig. 2. Comparison between analytical and numerical solutions

1 2
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Problem 2
Consider the following nonlinear fractional differential equation:

( ) ( )
( ) ( )

2
619/2 2(224 143)5120 8000000000 1 91/2 1/10 10

3003 583657942329 10 10
6 2 310 (1 )1 22 25600 5751 1

y x xD y D y x x sin

x xx x e x

e ππ

π

−− −′′ + + = − − Γ

−−− + −

With boundary conditions:
	 (0) 0 (1)y y= =

Note that, the exact solution for this problem is 6 2( ) 10 (1 )y x x x= − .
Approximated solution and relative error of this problem are shown in Table 2. Analytic solution and 

approximated solution are shown graphically in Fig 3.

Table 1. Approximate solution and relative error

Table 2. Approximate solution and relative error

Fig. 3. Comparison between analytical and numerical solutions.
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Problem 3
Consider the following nonlinear fractional differential equation:

( )
( ) ( )

2 3
517/2 3 2(896 2912 3432 1287)128 40000000 11/2 1/10 10

3003 583657942329 10
9 1 14 3 3 33 2           112000 453600 690120 350811 ( 1) (1 (1 ) )10

x x x xD y D y x x sin

x x x x x x

y ππ

π

− + −− −′′ + + = +

−Γ − + − + − − −

With boundary conditions:
	 (0) 0 (1)y y= =

Note that, the exact solution for this problem is 4 3( ) ( 1)(1 (1 ) )y x x x x= − − − .

The numerical results of this problem are shown in Fig 4 and Table 3.

Fig. 4. Comparison between analytical and numerical solutions

Table 3. Numerical results of Problem 3
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Problem 4
Consider the following nonlinear fractional differential equation:

2
7/2 5 4 3 2(21504 91392 152320 123760 48620 7293)1281/2 1/10

51051
5140000000 1 9           10766342878277977 10 10

5 4 3 144000000 727200000 1470560000 14889
          

y x x x x x xD y D y x

x sin

x x x

ye
π

π
   
   
   

− + − + −− −′′ + + = −

− Γ

− + − 242000 755106300 153538281

5 5(1 )7 5          (1 )

x x

x xx x e

π

 
 
 

+ −

−+ −

With boundary conditions:
	 (0) 0 (1)y y= =

Note that, the exact solution for this problem is 5 5( ) (1 )y x x x= − .

The numerical results of this problem are shown in Fig 5 and Table 4.

Fig. 5. Comparison between analytical and numerical solutions

Table 4. Numerical results of Problem 4
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Problem 5
Consider the following nonlinear fractional differential equation:

2 3

969969

9451562165428383

9/2 5 4 2(118272 46189)5121/2 1/10

61800000000 9           + 10 10 10
5 4 2 88000000 177600000 272053600 9

          

204288 217056 176358

275454270

x x x x xD y D y x

x sin

x x x x

y

π

π

  
      

+− −′′ + + =

Γ

− + +

− + −

−

3 320 6

3129777

          (1 ) ( 1)x x x x
π

 
 
 

+ − − +

With boundary conditions:
	 (0) 0 (1)y y= =

Note that, the exact solution for this problem is 36 2( ) (1 ) ( 1)y x x x x x= − − + .

The numerical results of this problem are shown in Fig 6 and Table 5.

Table 5. Numerical results of Problem 5

Fig. 6. Comparison between analytical and numerical solutions

	 Numerical scheme for nonlinear BVPs of fractional order  	 67



4. CONCLUSION

A new iterative scheme for the numerical 
approximation of nonlinear fractional order 
BVPs involving Caputo’s derivative is proposed 
and hence, successfully applied in this paper. We 
used implicit compact finite difference scheme of 
order four for first and second-order derivatives 
and trapezoidal rule for numerical computation of 
integrals. Numerical experiments are performed 
on a collection of five nonlinear fractional orders 
BVPs. For the five test problems considered in 
this paper, convergence of the proposed iterative 
scheme till reaching optimal accuracy is achieved 
after no more than 20 iterations. We believe that 
the optimal accuracy can further be improved by 
using higher order finite difference schemes for 
the derivatives involved and using other numerical 
integration techniques for numerical computation 
of the integrals.
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