
Research Article

Proceedings of the Pakistan Academy of Sciences:	 Pakistan Academy of Sciences
A. Physical and Computational Sciences 55 (1): 59–69 (2018)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

————————————————
Received, March 2017; Accepted, March 2018
*Email: Muhammad Majid Gulzar: majidgulzar3@gmail.com

1.	 INTRODUCTION

There is a significant requirement in various
engineering automation industries for accuracy and
high speed processing. The improvement execution
would have several gains in terms of manufacturing
efficiency, preciseness and processing time [1-
4]. Therefore high speed accurate motion control
model is very challenging and demanding research
focus in different areas to manage the motion of
various types of multiple-axis machinery. Mostly
the controller for motion control systems rely
on a microprocessor or Digital Signal Processor
(DSP), and the system also consists of some
additional circuits like interface and memory cards
or may have some software motion libraries [5-
7]. So multiple functions are required by motion
controllers for immediate and precise execution of

such complicated and complex tasks [8-10].

Moreover, standard arithmetic computation
techniques for such functions have various
complexities. It may include iterative computations
for complicated multiplication, division, non-linear
and trigonometric functions. This condition leads
to a complicated hardware structure, exclusive
computation, enhanced structure size, high power
consumption and expensive design [11, 12].
As FPGA technology is practical that could be
reconfigured and implemented at the same time
[13]. In addition, it has some salient features like
low power consumption, short cycle design, high
density and programmability, which makes it to
suitable for digital systems as well [14, 15].

So a better consensus performance of multiple-

Design and Implementation of FPGA-based Concurrent Controller

Muhammad Majid Gulzar1*, Ali Faisal Murtaza1, K M Hasan2, Syed Tahir Hussain Rizvi3,
Muhammad Yaqoob Javed4, and Sajid Iqbal2

1Faculty of Engineering, University of Central Punjab, Lahore, Pakistan
2University of Engineering and Technology, Lahore, Pakistan

3Politecnico di Torino, Turin, Italy
4COMSATS Institute of Information Technology, Lahore, Pakistan

Abstract: In this paper, a concurrent motion control system is designed and implemented to control and achieve the
consensus of a multi-axis structure using inverse kinematic technique. Speed and precision were the main targets.
Thus a synthesizable model to support floating point calculations is presented using a combinational divider. This
model is used to implement trigonometric equation using Look up Tables (LUT) and hence can easily be implemented
on FPGA devices. The gate level demonstration of the entire model containing Arithmetic Logic Unit (ALU), multi-
plier and divider are also presented. As FPGA has a concurrent structure for high-speed arithmetic calculations, which
can be utilized for parallel control of several motors, so this algorithm has improved the efficiency and has reduced
execution time from 5.2 μsec to 1.4 μsec with an accuracy of ±1 to manipulator position. For more precision, the trade-
off is between accuracy and execution time. Synthesis model to support floating point division calculations up to n-bits
is designed, where implementation results for floating digit 1 to 11 are given with their time lag, slices and LUT used.
The test points were verified in simulation and on hardware platform which exhibits the high speed implementation
of the proposed model.

Keywords: VHDL, FPGA, Spatan-3 kit, Xilinx, floating point, inverse kinematics

axis machine can be achieved using FPGA because
it provides an interchange between an Application
Specific Integrated Circuit (ASIC) and a general
standard processor [16]. Furthermore, the execution
time for Personal Computers (PCs) and DSPs are
comparatively high as they use sequential approach
in contrast to FPGA-based system which has
concurrent design. Also in FPGA, large size values
can be processed due to the support of arbitrary
length of data arrays.

Floating point computations are not easy to
manage using FPGA, so an optional solution was
to utilize DSP kit as an auxiliary device for floating
digit computation. But it was an expensive solution,
so the low-cost idea was to round floating points
to the nearby whole integer wherever needed,
particularly after the implementation of arc cosine,
arc tangent and square root function. Also integer
division and floating point in FPGA designs is hard
to synthesize and execute due to a high demand for
the structural resources of the kit. In VHDL, divide
operator is not synthesizable and returns only one
value as an output. Thus a synthesizable model of
a divider is discussed which returns more compact
solution with remainder and quotient as outputs. To
solve the floating point problem a simple technique
is developed which can be easily implemented
on FPGA. Although due to recent advancement
in FPGA technology, manufacturers introduced
commercial intellectual property (IP) cores based
FPGA and these operations can be performed but
there is a compromise between support of operations
and cost, especially in concurrent operation. Also
in IP-core, there is drawback of latency as the
involvement of pipelined synchronous cores and
clock induce time lag and higher power consumption
which is undesirable especially in very high speed
design. The main aim of our work is to enhance the
performance of the angular manipulator by:

•	 Precise estimation of the angles through inverse
kinematics algorithm.

•	 Synthesis model to support floating point
division calculations up to n-bits.

•	 Arithmetic and non-algebraic functions are
implemented without using FPGA IP-core.

•	 Simultaneous movement of the manipulator’s
arms by giving them parallel instructions using
the concurrent architecture of FPGA.

To verify the performance, the inverse
kinematic algorithm is implemented in Xilinx®
software (Version Xilinx® ISE 9.1) which has a
processor of XC3S200, to create the execution
file. The execution file is transferred to the FPGA
(Spatan-3) architecture which is connected to the
two-axis manipulator while the desired position is
given through a computer keyboard. The complete
setup is tested by giving the various angles to the
manipulator. In each case, the manipulator shows
the satisfactory consensus performance by reaching
the desired position with excellent precision and
all the desired positions have been reached by the
manipulator within time duration of 1.4μsec with
an accuracy of ±1 to manipulator position. For more
precision, depending on the floating point digit
there will be a slight increase in execution time.

In section 2, proposed block diagram is
presented while section 3 briefly introduces
inverse kinematic algorithm. Section 4 describes
the concurrent control system using divider and
floating point digits. Simulation results are shown
in section 5. Results and discussion can be seen in
section 6, whereas for verification of the proposed
system, practical implementation is demonstrated
in section 7. Finally, concluding remarks are made
in Section 8.

2.	 PROPOSED MODEL

The proposed model is meant to operate the several
axis machines to ensure the required objectives
using FPGA. The comprehensive block diagram of
software and hardware co-design of manipulator’s
arm with computer interface and FPGA kit is given
in Fig.1. The appropriate approach for manipulator’s
arm computation was designed and compiled in
Xilinx® using inverse kinematics technique.

3.	 INVERSE KINEMATICS ALGORITHM

3.1 Inverse Kinematics Calculation

Inverse kinematics technique computes the joints
angles (θ1,θ2, andψ) according to manipulator’s
arm tip location (x,y) given in the Cartesian plan.
Arithmetic calculations for the proposed approach
are as follow.

x= L1cos(θ1) + L2cos(θ1 + θ2)

60	 Muhammad Majid Gulzar et al

y = L1 sin(θ1) + L2sin(θ1 + θ2)

x2 + y2 = L12 + L22 + 2L1L2cos (θ 2)

Using “cosines law” for θ1

Here we have two options

θ1=β+Ψ , θ1=β-Ψ

3.2	 Inverse Kinematics Algorithm
Implementation

The inverse kinematic algorithm can be implemented
using sequential and concurrent approach. Brief
introductions of both the techniques are given
below.

3.2.1	 Sequential Method

Due to the sequential implementation, DSP
kit or any other pipeline device will take 26 steps
to compute the manipulator’s arm angles from
the predefined Cartesian points. Fig.3 shows
the complete sequential architecture with their
calculations.

3.2.2	 Concurrent Approach

As FPGA has a concurrent approach for
arithmetic computations so it is selected for
the effective compilation of inverse kinematic
technique. It also ensures the fast arithmetic
calculation resulting in improved multi-axis
efficiency. Hence all motors of the manipulator’s
arm can be operated in concurrent way, ensuring
the reduced execution time. This technique also

Fig. 1. Multiple axis machine with computer interface and FPGA kit.

Fig. 2.	 Geometric solution of inverse kinematic.

	 Design and Implementation of FPGA-based Concurrent Controller 	 61

Fig. 3.	 Sequential solution of inverse kinematic algorithm.

Fig. 4.	 Concurrent design of inverse kinematic algorithm.

62	 Muhammad Majid Gulzar et al

offers a low-power, highly sampled, flexible, and
compact movement control design [17].

Due to parallel implementation, high computing
power, low power consumption and fast sampling
rate FPGA acquires only seven steps to compute
the expected angles from the given Cartesian
position. The complete concurrent design of inverse
kinematic architecture can be seen in Fig.4.

The supporting language of FPGA is the VHDL
which can execute multiple tasks concurrently as
well as sequentially using process function. To
perform multiple operations with high speed,
VHDL’s parallel compilation capability makes it
superior selection to control multiple operations of
complex arithmetical equations.

3.3	 Calculation Module of Inverse Kinematics

Proposed design can be implemented on memory
blocks of FPGA which are particularly known
as LUT [18, 19]. As concurrent architecture can
execute multiple blocks of code in parallel so
the entire computational module with multiplier,
divider, square root, ALU, arc tangent and arc
cosine LUP is presented in Fig.5 for the given
technique.

4.	 SYNTHESIS MODEL FOR CONCURRENT
CONTROL

Spartan-3 FPGA kit has a processor of 50M Hz,
therefore for execution of one instruction it will
take 200nsec unless the internal delay should not
be greater than this particular time.

Time required for executing one instruction on
FPGA = 1/50M=200nsec

Total time required in pipeline architecture = 200 *
26 = 5200nsec = 5.2μsec

Total time required time in concurrent architecture
= 200 * 7 = 1400nsec = 1.4μsec

So after implementing concurrent design using
FPGA, the execution time has been cut down from
5.2μsec to 1.4μsec. This is just a ratio of 50M Hz
processor while using external faster clock better
high-speed result can be achieved. The algorithm
comparison is presented in Table 1.

The purpose of using VHDL is to compute
algorithm execution in parallel. Therefore,
manipulator joints movement would be in parallel
to achieve quicker response. But VHDL does not
have square roots, divisions, tangent inverse and
cosine inverse functions. In addition, FPGA does

Fig. 5.	 Calculation module for inverse kinematic.

Table 1. Architecture comparison.
Number of Steps Required Time (μsec)

Pipeline Technique 26 5.2
Concurrent Technique 7 1.4

	 Design and Implementation of FPGA-based Concurrent Controller 	 63

not support floating point numbers. Different
methods are used to compile these functions in
VHDL. If only the given divider module is used
then the speed will be increased and system will be
quite simple, but if the precision is of more concern
then along divider model floating point model
should also be used.

4.1	 The Divider Model

Synthesizable model of divider comes up from
algorithm which is explained in [20, 21]. Here,
simple comparison technique is used to perform
division operation as shown in Table. 2.

Primarily, the number of bits of dividend (a_
input), divisor (b_input) and outputs (Quotient and
Remainder) should be the same. If required, the
condition can be fulfilled by padding zeros in front
of the narrower operand. In this case, dividend,
divisor and outputs (Quotient and Remainder) are of
4 bits (n+1). If decimal value of dividend is 11 and
decimal value of divisor is 3, so for this particular
case values of both quotient and remainder would
be 2. Comparison is performed on shifted version
of the divisor. The divisor is shifted left to reach the
length of 2n+1 bits (7 bits =(2(3) + 1)).

Both dividend and divisor inputs are compared
with each other. If the dividend is less than the
divisor, the value of the quotient is 0. If the dividend
is greater than the divisor, the value of the quotient
would be 1 and the divisor would be subtracted
from the dividend. This new outcome would
substitute the value for the next comparison. This
entire operation would be completed in n steps.
After final iteration, updated value of the dividend
would have a remainder and all bits received from
comparison would make value of quotient. Here,

the bits are added to the lowest positions and zero
padded is done from left side. Also if the divisor is
zero, then it will return all ones to the quotient and
dividend as remainder.

Division operation model is implemented to
calculate digits representing floating point. But the
issue to apply inverse cosine and inverse tangent
is that the inputs of these operations have floating
point numbers while normally VHDL does not hold
floating point digits. So there is one technique that
can easily be implemented as to round the values to
the nearest whole number for fast execution. After
divider model, a LUT of inverse cosine and inverse
tangent are saved and now this result would be used
to choose particular value.

4.2	 Floating Point Representation Model

Synthesizable model of the floating point
representation comes from hand-written division.
Above defined divider model is used to get values
of quotient and remainder, these values can be used
to extract value after decimal point. If 22 is divided
by 7, remainder is 1 and quotient is 3. Now, this
remainder can be used further to take digits after
decimal point. Now the value of remainder is 1
that is smaller than divisor 7, it cannot be directly
divided. Therefore, remainder is multiplied by 10,
if the value is still smaller, than multiply again with
10. Now division of this value provides the first
digit after decimal point and it will continue until
n digits are made.

Only using the divider model, time will be
reduced to 1.4μsec with an accuracy of ±1 degree.
But for more precise calculation the floating point
model can be used, which is an exchange between
accuracy and time lag.

Table 2. Implementation of division function.

a_input Comparison b_input Y (Quotient) Operation on 1st Column
1011 < 0011000 0 None
1011 < 0001100 0 None
1011 > 0000110 1 a_input- b_input
0101 > 0000011 1 a_input- b_input

0010 (rem) 0011(quot)

64	 Muhammad Majid Gulzar et al

Table 3. Implementation results.

Floating Points Time Lag (μsec) LUT Used Slices Used
1 1.4+0.06506 474/3840 = 12 % 264/1920 = 13 %
3 1.4+0.06730 988/3840 = 25 % 548/1920 = 28 %
5 1.4+0.06771 1502/3840 = 39 % 812/1920 = 42 %
8 1.4+0.06831 2273/3840 = 59 % 1260/1920 = 65 %
11 1.4+0.06891 3044/3840 = 79 % 1686/1920 = 87 %

Table 4. Test points with their respective angles.
(x,y) θ_1 θ_2
(2,12) 57 77
(6,10) 34 84

(12,7) 15 47

Results of floating point implementation are
given below in Table 3 where by using slices, critical
path delay between input and output and number of
LUT are compared for increasing number of digits
after decimal point. These results are obtained from
synthesis report generated from ISE 9.1i.

Accuracy of 11 decimal points can be achieved
using 1686 slices out of 1920 slices, so nearly 87%
of resources are utilizing. By using larger FPGA
like XC3S1500, this model can be suitable for
implementing floating representation. If the same
code is executed in FPGA XC3S1500, it will utilize
only 12% of resources because its total slices are
13312. So compromise is between accuracy and
resources used, but this solution is implemented on
cheaper hardware kit.

4.3	 Angles Verification with test points

In the first half of the Cartesian plan three test points
are selected for angle verification. These test points
are used to compute θ1 and θ2 by using already
calculated inverse kinematic equations as presented
in equation (1) and (2). Table 4 demonstrates all the
test points with their respective angles.

Geometrically these angles are also verified,
which conclude that the actual measured angles and
angles calculated from equation are same as shown
in Fig. 6.

5.	 SIMULATION RESULTS

In FPGA the most considerable feature that must
be considered while concurrent computation is
implemented using floating point is the compromise
between the need of acceptable precision and the
expenditure of logic area [1]. So after applying the
entire code in Xilinx®, ISE (Integrated Software
Environment) simulator displayed the simulation
test bench. In Fig. 7, it can be seen from test
bench that for the 1st experimental point (x1,y1) =
(2,12) the output angles are θ1 =57 and θ2 = 77, as
previously calculated using equation (1), (2) and
geometrically.

Test bench results illustrate that θ2 and θ1 are
attained in 5th and 7th step respectively and total
required time to compute both angles is 1.4μsec. In
the same way remaining two test points can also
be verified and their ISE simulation test benches
are shown in Fig. 8 and Fig. 9 respectively. Test
bench performance shows that the purposed model
is preferable to the original one, considering the

Fig. 6.	 Geometric solution of test points.

	 Design and Implementation of FPGA-based Concurrent Controller 	 65

Fig. 7.	 ISE Simulator test bench for experimental point (2, 12).

Fig. 8.	 ISE Simulator test bench for experimental point (6, 10).

Fig. 9.	 ISE Simulator test bench for experimental point (12, 7).

resources required and execution speed.

6.	 RESULTS AND DISCUSSION

Recently high speed computation algorithms
required to compile multi real-time processing
tasks within micro (μ) or mili (m) seconds in order
to achieve fast processing. Therefore, pipeline

computing machines and processors may not
carry out the implementation requirements due to
a massive number of transcendental functions and
numeric operations. Also due to the involvement
of vast calculations, such a task may be beyond
the limitations of various sequential architectures
[22]. So the preferable choice is FPGA due to
its concurrent architecture processor. It offers a

66	 Muhammad Majid Gulzar et al

(a)

(b)

Fig. 10. Gate Level Implementation: (a) One block;
(b) Complete.

comparatively less processing time, regardless of
the control algorithm complexity [17].

FPGA is a reprogrammable integrated circuits
device where new codes can be burnt over
repeatedly, after replacing old ones. Also large
numbers of gates are required to implement the
complete architecture which contains multiplier,

divider and ALU. The above described model of
floating point representation is implemented in
Spartan 3 FPGA kit (XC3S200-FT256). The code
embedded on processor kit mentions the capacity
of gates in this chip. As XC3S200 have 220k gates,
so this kit is appropriate for our system as gates
required to execute our algorithm is less then 220k
[23].

FPGA carries large number of logic blocks and
according to VHDL code they are wired together.
Logical operation and complex mathematical
equations are carried out with the interconnection
of these logic blocks. As the complete gate level
illustration is quite congested, so only one block of
gate level implementation is shown in Fig. 10 (a),
whereas gate level Xilinx® implement of the whole
algorithm with its interconnection is shown in Fig.
10 (b).

The proposed model is very efficient because,
as the structure density of the latest devices is
growing, the element cost is decreasing. Meanwhile,
combinational design radiation is weaker when
compared to the general IP-cores that can be used
for sequential dividers as they do not require a
clock that is needless for a combinational solution.

7.	 PRACTICAL IMPLEMENTATION

To verify the proposed algorithm experimentally,
the code was burnt in FPGA Spartan-3 kit and
exhibited on 7-segment display, where each pair
of 7-segment ensured the corresponding resultant
angles. The outcome of all three test points is
shown in Fig. 11. The experimental set up of the
manipulator is shown in Fig. 12 along with the
angled sheet of test points.

Here, two servo motors are used which receives
a PWM signal as input. So FPGA must generate
a PWM signal of 50Hz (20msec) continuously
for maintaining the particular position of shaft,
otherwise it will come back to 0°. A pulse of 0.5
msec positions the shaft at 0° and pulse of 2.5 msec
positions the shaft at180°. As rotation is limited
from 0° to 180° and resolution is (2.5msec-0.5
msec=2msec). So the amount of rotation required
for 1o is 11.11μsec.

	 Design and Implementation of FPGA-based Concurrent Controller 	 67

8.	 CONCLUSIONS

This paper performs the concurrent performance
which reduced the execution time. Using
synthesizable divider, inverse kinematics algorithm
was implemented on VHDL. Along the system for
its functional verification, code was burnt in Xilinx®
software using ISE test bench as a simulation
tool. Results of execution in Xilinx® Spartan-3,
maximum time-lag and amount of FPGA resources
used are also mentioned. The paper also introduces
a synthesizable model to support floating point
calculations. This is a VHDL component which
can be extended to increase accuracy of design.
Implementation results up to 11 decimal places are
performed. Instead of using IP-core based FPGA,
algorithm is designed and implemented on cheaper
FPGA kit. Accuracy of results can be increased
by just minor modifications, but the compromise
is between accuracy and resources of hardware.
Simulation results have confirmed the divider
functionality.

Simulation and hardware implementation
of an FPGA based controller have proven the
effectiveness of the proposed method. Hence it has

reduced the execution time from 5.2μsec to 1.4μsec
due to its parallelism, supporting the high speed
computation. In all cases, the two-axis manipulator
shows the reasonable consensus performance
by reaching the desired position with acceptable
precision and performing the task within time
limitations.

9.	 REFERENCES

1.	 Sánchez, D.F., D.M. Muñoz, C.H. Llanos, & J. M.
Motta. FPGA implementation for direct kinematics
of a spherical robot manipulator. In: Proceedings
International Conferenceon ReConFigurable
Computing & FPGAs, 9-11 Dec, Quintana Roo,
Mexico, p. 416–421 (2009).

2.	 Saifee, M.A. Design and implementation of
2-axis circular interpolation controller in field
programmable gate array (FPGA) for computer
numerical control (CNC) machines and robotics.
International Journal of Computer Applications
106 (13): p.1–7 (2014).

3.	 Aghdam, F.A., & S. S. Haghi. Implementation of
high performance microstepping driver using FPGA
with the aim of realizing accurate control on a linear
motion system. Chinese Journal of Engineering: p.
1–8 (2013), DOI 10.1155/2013/425093.

4.	 Quang, N.A., Y.S. Kung, and Q.P.Ha. FPGA-based
control architecture integration for multiple-axis
tracking motion systems.In: Proceedings of IEEE/
SICE International Symposim on System Integration,
20-22 Dec, 2011, Kyoto, Japan, p. 591–596 (2011).

5.	 Fei, J., R. Deng, Z. Zhang, & M. Zhou. Research on
embedded CNC device based on ARM and FPGA.
In: International Workshop on Automobile, Power
& Energy Engineering. 16: p. 818–824 (2011).

6.	 Lin, F.J., & P.H. Shen. Robust fuzzy neural network
sliding-mode control for two-axis motion control
system. IEEE Transaction on Industrial Electronics
53 (4): 1209–1225 (2006).

7.	 Chang, T.N., B.C.B. Cheng, & P. Sriwilaijaroen.
Motion control firmware for high speed robotic
systems. IEEE Transactions on Industrial
Electronics 53 (5): 1713–1722 (2006).

8.	 Jose, D., P.N. Kumar, J.A. Shirley, & S. Ghayathrrie.
Implementation of genetic algorithm framework for
fault tolerant system on chip. Information Japan 17
(8): 3921-3945 (2014).

9.	 Chan, Y.F., M. Moallem, & W. Wang. Design
and implementation of modular FPGA-based
PID controllers. IEEE Transactions on Industrial
Electronics 54(4): 1898–1906 (2007).

10.	 Simoni, L., M. Beschi, G. Legnani, & A. Visioli.
Friction modeling with temperature effects for

Fig. 11.	Screenshot for different test points.

Fig. 12. Experimental setup of the robotic arm with
angle sheet.

68	 Muhammad Majid Gulzar et al

industrial robot manipulators. In: Proceedings of
IEEE/RSJ International Conference onIntelligent
Robots & Systems, 28 Sept, Hamburg, Germany, p.
3524-3529 (2015).

11.	 Park, S.W., & J.H. Oh. Hardware realization of
inverse kinematics for robot manipulators. IEEE
Transactions on Industrial Electronics, 41 (1):
p.45–50 (1994).

12.	 Gulzar, M.J., & Zain-ul-Abdeen. Optimal pitch
control design of an airplane with analysis and
verification using Matlab / Simulink. Journal of the
Institution of Electrical & Electronics Engineers
Pakistan (76): 26-30 (2012).

13.	 Rais, M.H, & M.H.Al Mijalli. FPGA based fixed
width 4×4, 6×6, 8×8 and 12×12-bit multipliers using
Spartan-3AN. International Journal of Computer
Science & Network Security 11(2): p. 61–68 (2011).

14.	 Pimentel, J.C.G, & H. Le-Huy. A VHDL-based
methodology to develop high performance servo
drivers. In: In: Proceedings of IEEE Industry
Applications Conference, 8-12 Oct, Rome, Itlay, p.
1502-1512 (2000).

15.	 Kung, Y.S., K.H. Tseng, & T.Y.Tai. FPGA-based
servo control IC for X-Y table. In: Proceedings
of IEEE International Conference on Industrial
Technology, 15-17 Dec, 2006, Mumbai, India, p.
2913-2918 (2006).

16.	 Ying-Yu, T., & Tien-Sung Kuo. Design and
implementation of all FPGA-based motor control
IC for permanent magnet AC servo motors. In:

Proceedings of International Conference on
Industrial Electronics, Control & Instrumentation,
14 Nov 1997, New Orleans, USA, p. 943–947
(1997).

17.	 Cho, J.U., Q.N. Le, & J.W. Jeon. An FPGA-based
multiple-axis motion control chip. 56 (3): 856–870
(2009).

18.	 Tao, Y, H. Lin, Y. Hu, X. Zhang, & Z. Wang.
Efficient implementation of CNC position controller
using FPGA. IEEE International Conference on
Industrial Informatics,13-16 July, Daejeon, Korea,
p. 1177–1182 (2008).

19.	 Iqbal, S., S.A. Qureshi & M.M. Gulzar. Concept
building through block diagram using Matlab/
Simulink. Journal of the Institution of Electrical
& Electronics Engineers Pakistan (66-67): 30-34
(2010).

20.	 Pedroni, V.A. Circuit Design with VHDL. MIT
Press, London, England (2004).

21.	 Fedra, Z. & J. Kolouch. VHDL procedure
for combinational divider. In: Proceedings of
International Conference on Telecommunication
& Signal Processing, 18-20 Aug 2011, Budapst,
Hungary, p. 469–471 (2011).

22.	 Yang, Y., Y. Wu, & J. Pan. Parallel dynamics
computation using prefix sum operations. IEEE
Robotics and Automation Letters 2 (3): 1296-1303
(2017).

23.	 Fritz, D. Spartan 3 FPGA Tutorial Design.
Oklahoma State University, USA (2005).

	 Design and Implementation of FPGA-based Concurrent Controller 	 69

