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Abstract: Stability analysis of a model of glucose insulin glucagon system in humans is made which is one 
of the important factors for study of model for healthy life. If glucose, insulin or glucagon is negative then 
it will not be stable and cannot be treated for controllability or observability. Sorenson’s Model is used for 
this purpose because it is most comprehensive model for glucose, insulin and glucagon in humans. 
Equilibrium points for different case of concentration of glucose are calculated for stability of the system. 
Results are refined by using fsolve and fminsearch techniques in Matlab which turn out to be negative 
value of labile Insulin for all cases and techniques. In this situation we will be unable to find the control of 
the system in this model. 
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1. INTRODUCTION 

Mathematics is a branch of science that has a great role in the development of other branches of sciences. 
Its involvement enriches in any field. Biomathematics is one of its major examples which are a pioneer 
branch of Biology that is growing day by day. It is obvious that it cannot be developed without the help of 
a Mathematician. Hence the involvement of Mathematics in Biosciences is mandatory for its progress and 
development[1, 2]. Diabetes is a worldwide problem of the day. It is a group of diseases enclosed in a 
single term diabetes mellitus. It is caused by disorder of the pancreatic endocrine hormonal secretions in 
the human body. When blood glucose level is too much increased in the body then a chronic condition 
known as diabetes mellitus is diagnosed in the body. Pancreas and its secretions insulin and glucagon are 
responsible to regulate the sugar level in our body. Normally when blood glucose concentration is too 
high in the body then insulin is secreted which stimulates the cells to absorb the extra glucose for the 
energy or fuel, that they need. Similarly, on the other hand when blood glucose level is getting very low 
then stimulation will occur in pancreas to secrete glucagon to increase the blood glucose level up to 
normal level to regulate the system in the body. On the basis of deficiency and insufficiency diabetes is of 
two types called type 1 and type 2 [4]. 

The level of blood glucose is mainly controlled by two hormones having opposite effects. While 
insulin clears out blood glucose by stimulating its uptake by muscles and adipose tissues and storing it as 
glycogen in the liver, glucagon supplies bloodstream by glucose produced through liver gluconeogenesis 
and glucogenolysis. In other words, insulin is secreted in order to avoid that the level of blood glucose 
goes beyond an upper bound after meals, whereas glucagon is secreted to counter hypoglycemia after 
fasting or meals without carbohydrates. Consequently, any dysfunction in the secretion of insulin or 
glucagon will lead to problems in the control of glycaemia [7].  
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Controllability is concerned to the opportunity of forcing the system into a particular state by 
using suitable control the signal. If a state is not convenient, then no signal will be capable to control the 
state. Observability is associated to the possibility of examining through output capacity, the state of the 
system. If a state is not visible the controller will never be able to establish the behavior of an 
unobservable state, and hence cannot use it to claim the system. A control system can only be used in the 
form of closed loop controlled to stabilize the system. [6] 

A physiological model using anatomical organ and tissue compartments was developed for 
simulating glucose metabolism and its regulation by insulin and glucagon in normal (non-diabetic) man in 
[3]. Physical parameters such as blood flow rates and distribution volumes were selected to represent a 
normal 70kg adult male. Hormonal regulation by insulin and glucagon were including in the model 
formulation. The model is a physiologically structured explanatory representation of the glucose 
regularity system and is used for generating predictions of response to a wide spectrum of glucose and 
insulin inputs. This model also has a few limitations. First hormonal effects of epinephrine (adrenalin) 
cortisol and growth hormone have been neglected. Second physiology related to changes in amino acid 
and free fatty acid sub travel levels has not been considered. Third, initial conditions for the model reflect 
normal basal post absorptive metabolism and changes in fuel utilization associated with prolonged fasting 
and starvation such as hepatic glycogen depletion and displacement of brain glucose utilization, have not 
been incorporated into the model formulation. Mass balance equations were written to account blood 
flow, exchange between compartments and the metabolic processes causing addition or removal of 
glucose, insulin and glucagon yielding simultaneous differential equations. The model is divided into 
three subsections named Glucose model, Insulin model and Glucagon model. The mass balance equations 
for each of models are written which yields a 22 nonlinear ODE's model with 42 parameters and11 
nonlinear input functions. 

In this paper we find the equilibrium point of the model to check whether the solution is in 
feasible region. We need point or equilibrium point to check the stability of the model.  
 

2. MATERIALS AND METHODS 

2.1 Glucose Model 
The body has been divided into six physiological compartments: 1) Brain which represents the central 
nervous system, 2) Heart and lungs which represents the rapidly mixing vascular volumes of heart, lungs, 
and arteries, 3) Periphery which includes skeletal muscle and adipose tissue, 4) Gut,  5) liver,  6) Kidney. 
Arrows connecting the physiological compartments represent the direction of blood flow. The heart and 
lungs compartment serves to close the circulatory loop representing simply the blood volume of the 
cardiopulmonary system and the major arteries. The mass balance in each compartment results in 8 
ODE's with linear and nonlinear terms which are related to each specific metabolic rate. 
Brain; 

𝑉𝑉𝐵𝐵𝐵𝐵𝐺𝐺 𝐺̇𝐺𝐵𝐵𝐵𝐵 = 𝑄𝑄𝐵𝐵𝐺𝐺(𝐺𝐺𝐻𝐻 − 𝐺𝐺𝐵𝐵𝐵𝐵) − 𝑉𝑉𝐵𝐵𝐵𝐵
𝑇𝑇𝐵𝐵

(𝐺𝐺𝐵𝐵𝐵𝐵 − 𝐺𝐺𝐵𝐵𝐵𝐵)    (1.1.1) 

𝑉𝑉𝐵𝐵𝐵𝐵𝐺̇𝐺𝐵𝐵𝐵𝐵 = 𝑉𝑉𝐵𝐵𝐵𝐵
𝑇𝑇𝐵𝐵

(𝐺𝐺𝐵𝐵𝐵𝐵 − 𝐺𝐺𝐵𝐵𝐵𝐵) − 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵     (1.1.2) 
Heart and Lungs: 
   𝑉𝑉𝐻𝐻𝐺𝐺𝐺̇𝐺𝐻𝐻 = 𝑄𝑄𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵 + 𝑄𝑄𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿 + 𝑄𝑄𝐾𝐾𝐺𝐺𝐺𝐺𝐾𝐾 + 𝑄𝑄𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃 + 𝑄𝑄𝐻𝐻𝐺𝐺𝐺𝐺𝐻𝐻 − 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  (1.1.3) 
Gut: 
   𝑉𝑉𝐺𝐺𝐺𝐺𝐺̇𝐺𝐺𝐺 = 𝑄𝑄𝐺𝐺𝐺𝐺(𝐺𝐺𝐻𝐻 − 𝐺𝐺𝐺𝐺)− 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺      (1.1.4) 
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Liver: 
   𝑉𝑉𝐿𝐿𝐺𝐺𝐺̇𝐺𝐿𝐿 = 𝑄𝑄𝐴𝐴𝐺𝐺𝐺𝐺𝐻𝐻 + 𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑄𝑄𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿 + 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻    (1.1.5) 
Kidney: 
   𝑉𝑉𝐾𝐾𝐺𝐺𝐺̇𝐺𝐾𝐾 = 𝑄𝑄𝐾𝐾𝐺𝐺(𝐺𝐺𝐻𝐻 − 𝐺𝐺𝐾𝐾) − 𝑟𝑟𝐾𝐾𝐾𝐾𝐾𝐾      (1.1.6) 
Periphery: 
   𝑉𝑉𝑃𝑃𝑃𝑃𝐺𝐺 𝐺̇𝐺𝑃𝑃𝑃𝑃 = 𝑄𝑄𝑃𝑃𝐺𝐺(𝐺𝐺𝐻𝐻 − 𝐺𝐺𝑃𝑃𝑃𝑃) − 𝑉𝑉𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃
𝐺𝐺 (𝐺𝐺𝑃𝑃𝑃𝑃 − 𝐺𝐺𝑃𝑃𝑃𝑃)    (1.1.7) 

𝑉𝑉𝑃𝑃𝑃𝑃𝐺̇𝐺𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑃𝑃
𝑇𝑇𝑃𝑃
𝐺𝐺 (𝐺𝐺𝑃𝑃𝑃𝑃 − 𝐺𝐺𝑃𝑃𝑃𝑃) − 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃     (1.1.8) 

 

Physiological processes leading to metabolic source, hepatic production, with rate function of live 
glucose (nonlinear), liver insulin (nonlinear) and plasma glucagon (nonlinear). The metabolic sinks and 
red blood cell uptake with rate function of constant, Brain uptake with rate function of constant, Gut 
uptake with rate function of constant, peripheral uptake with rate function of peripheral interstitial glucose 
(linear) and peripheral interstitial insulin (nonlinear), urinary excretion with rate function of kidney 
plasma glucose (nonlinear) and hepatic uptake, with rate function of liver glucose (nonlinear) and liver 
insulin (nonlinear). 

 

Fig. 1. Schematic representation of the Glucose model. 

 

2.1.1  Metabolic Source and Sink 

𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵 = 70 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 (Constant) 

𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 10 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 (Constant) 

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺 = 20 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 (Constant) 

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃

𝐺𝐺 𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵  

𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵  = 35 mg / min 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼 = 7.03 + 6.52𝑡𝑡𝑡𝑡𝑡𝑡ℎ [0.338(𝐼𝐼𝑃𝑃𝑃𝑃𝑁𝑁 − 5.82)] 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
𝐺𝐺 = 𝐺𝐺𝑃𝑃𝑃𝑃𝑁𝑁  
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𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝛤𝛤 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐺𝐺 𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵  

𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵  = 155 mg/min 

𝑀̇𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 =  1

𝜏𝜏𝐼𝐼
(𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐼𝐼∞ −𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 )      (1.1.9) 

𝜏𝜏1 = 25 min 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼∞ = 1.21 − 1.14𝑡𝑡𝑡𝑡𝑡𝑡ℎ [0.62(𝐺𝐺𝐿𝐿𝑁𝑁 − 0.89)] 

𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝛤𝛤 = 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝛤𝛤0 − 𝑓𝑓2 

𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝛤𝛤0 = 2.7 𝑡𝑡𝑡𝑡𝑡𝑡ℎ[0.39𝛤𝛤𝑁𝑁] 

𝑓𝑓2̇ = 1
𝜏𝜏𝛤𝛤

[�𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝛤𝛤0 −1
2

� − 𝑓𝑓2]       (1.1.10) 

𝜏𝜏𝛤𝛤 = 65 𝑚𝑚𝑚𝑚𝑚𝑚 

𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐺𝐺 = 1.42 − 1.41𝑡𝑡𝑡𝑡𝑡𝑡ℎ [1.66(𝐼𝐼𝐿𝐿𝑁𝑁 − 0.497)] 

𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐺𝐺 𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵  

𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵 = 20 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 

𝑀̇𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 =  1

𝜏𝜏𝐼𝐼
(𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐼𝐼∞ −𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 )      (1.1.11) 

𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼∞ = 2.0𝑡𝑡𝑡𝑡𝑡𝑡ℎ [0.55𝐼𝐼𝐿𝐿𝑁𝑁] 

𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐺𝐺 = 5.66 + 5.66𝑡𝑡𝑡𝑡𝑡𝑡ℎ [2.44(𝐺𝐺𝐿𝐿𝑁𝑁 − 1.48)] 

𝑟𝑟𝐾𝐾𝐾𝐾𝐾𝐾 = �71 + 71 𝑡𝑡𝑡𝑡𝑡𝑡ℎ[0.11(𝐺𝐺𝐾𝐾 − 460)] ,     0 < 𝐺𝐺𝐾𝐾 < 460 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚
−330 + 0.83𝐺𝐺𝐾𝐾 ,                                         𝐺𝐺𝐾𝐾 ≥ 460𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚  

 
2.1.2 Description of Variables 

G = Glucose Concentration (mg/dl),  
T = Diffusion rate (min),  
Q = Vascular Plasma flow rate (dl/min),  
V = Volume (dl),  
r = Metabolic source and sink rate (mg/min),  
t = Time (min),  
M = Multiplier of basal MR (dimensionless) and 
τ = Time constant (min) 

2.1.3 First Subscript: Physiological Compartment 
B = Brain,  
G = Gut,  
H = Heart and Lung,  
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L = Liver,  
K = Kidney,  
P = Periphery and  
A = Hepatic artery  

2.1.4 Second Subscript: Physiological Compartment  

I = Interstitial fluid space and  

V = Vascular plasma space  

2.1.5  Metabolic Rate Subscript 

BGU = Brain glucose uptake,  

GGU = Gut glucose utilization,  

HGP = Hepatic glucose production,  

HGU= Hepatic glucose uptake,  

KGE = Kidney glucose excretion,  

PGU = Peripheral glucose uptake and  

RBCU = Red blood cell glucose uptake  

2.1.6 First Subscript 

G = Glucose,  

I = Insulin, 

Γ = Glucagon,  

B = Basal value and  

N = Normalized value  

2.1.7 Second Subscript 

0 = Initial value,  

∞ = asymptotic or final steady state value [6] 

2.2  Insulin Model 

The body was divided into the same physiological compartments described for glucose model. But in 
terms of compartments, the insulin sub-system considers the pancreas as an additional compartment. 
Differences arise however, with respect to the extravascular fluid space access in the brain and liver 
compartments. The blood brain barrier capillary structure is impermeable to insulin passage into 
cerebrospinal fluid thus the brain interstitial space has been omitted from the insulin formulation. Also 
unlike the case for glucose the liver cell membrane is not freely permeable to insulin and the intracellular 
fluid volume has thus been omitted as insulin is degraded via binding to cell membrane receptors. The 
mass balance in each compartment results in 7 ODE's with linear and nonlinear terms which are related to 
each specific metabolic rate. 

Brain: 
𝑉𝑉𝐵𝐵𝐼𝐼𝐼𝐼𝐵̇𝐵 = 𝑄𝑄𝐵𝐵𝐼𝐼 (𝐼𝐼𝐻𝐻 − 𝐼𝐼𝐵𝐵)       (1.1.12)  

Heart and Lungs: 
   𝑉𝑉𝐻𝐻𝐼𝐼 𝐼𝐼𝐻̇𝐻 = 𝑄𝑄𝐵𝐵𝐼𝐼 𝐼𝐼𝐵𝐵 + 𝑄𝑄𝐿𝐿𝐼𝐼𝐼𝐼𝐿𝐿 + 𝑄𝑄𝐾𝐾𝐼𝐼 𝐼𝐼𝐾𝐾 + 𝑄𝑄𝑃𝑃𝐼𝐼 𝐼𝐼𝑃𝑃𝑃𝑃 + 𝑄𝑄𝐻𝐻𝐼𝐼 𝐼𝐼𝐻𝐻    (1.1.13) 
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Gut: 
   𝑉𝑉𝐺𝐺𝐼𝐼𝐼𝐼𝐺̇𝐺 = 𝑄𝑄𝐺𝐺𝐼𝐼 (𝐼𝐼𝐻𝐻 − 𝐼𝐼𝐺𝐺)       (1.1.14) 
Liver: 
   𝑉𝑉𝐿𝐿𝐼𝐼𝐼𝐼𝐿̇𝐿 = 𝑄𝑄𝐴𝐴𝐼𝐼 𝐼𝐼𝐻𝐻 + 𝑄𝑄𝐺𝐺𝐼𝐼 𝐼𝐼𝐺𝐺 − 𝑄𝑄𝐿𝐿𝐼𝐼 𝐼𝐼𝐿𝐿 − 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿    (1.1.15) 
Kidney: 
   𝑉𝑉𝐾𝐾𝐼𝐼𝐼𝐼𝐾̇𝐾 = 𝑄𝑄𝐾𝐾𝐼𝐼 (𝐼𝐼𝐻𝐻 − 𝐼𝐼𝐾𝐾)− 𝑟𝑟𝐾𝐾𝐾𝐾𝐾𝐾      (1.1.16) 
Periphery: 
   𝑉𝑉𝑃𝑃𝑃𝑃𝐼𝐼 𝐼𝐼𝑃̇𝑃𝑃𝑃 = 𝑄𝑄𝑃𝑃𝐼𝐼 (𝐼𝐼𝐻𝐻 − 𝐼𝐼𝑃𝑃𝑃𝑃) − 𝑉𝑉𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃
𝐼𝐼 (𝐼𝐼𝑃𝑃𝑃𝑃 − 𝐼𝐼𝑃𝑃𝑃𝑃)    (1.1.17) 

𝑉𝑉𝑃𝑃𝑃𝑃𝐼𝐼𝑃̇𝑃𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑃𝑃
𝑇𝑇𝑃𝑃
𝐼𝐼 (𝐼𝐼𝑃𝑃𝑃𝑃 − 𝐼𝐼𝑃𝑃𝑃𝑃) − 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃      (1.1.18) 

Physiological processes leading to metabolic source, pancreatic insulin release, with rate function 
of heart and lung glucose (nonlinear). The metabolic sinks are, liver clearance, with rate function of liver 
insulin (linear), kidney clearance, with rate function of kidney insulin (linear) and peripheral clearance, 
with rate function of peripheral interstitial insulin (linear). 

 

 

Fig. 2. Schematic representation of the Insulin model. 

2.2.1 Metabolic Sink and Source 

𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿[𝑄𝑄𝐴𝐴𝐼𝐼 𝐼𝐼𝐻𝐻 + 𝑄𝑄𝐺𝐺𝐼𝐼 𝐼𝐼𝐺𝐺 + 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃] 

𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 = 0.40 

𝑟𝑟𝐾𝐾𝐾𝐾𝐾𝐾 = 𝐹𝐹𝐾𝐾𝐾𝐾𝐾𝐾[𝑄𝑄𝐾𝐾𝐼𝐼 𝐼𝐼𝐾𝐾] 

𝐹𝐹𝐾𝐾𝐾𝐾𝐾𝐾 = 0.30 

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐼𝐼𝑃𝑃𝑃𝑃

[(1 − 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃

)( 1
𝑄𝑄𝑃𝑃𝐼𝐼

− 𝑇𝑇𝑃𝑃𝐼𝐼
𝑉𝑉𝑃𝑃𝑃𝑃

)]
 

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 = 0.15 
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𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑆𝑆(𝐺𝐺𝐻𝐻)
𝑆𝑆(𝐺𝐺𝐻𝐻𝐵𝐵)

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵  

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵 = 4 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 

𝑃̇𝑃 = 𝛼𝛼[𝑃𝑃∞ − 𝑃𝑃]        (1.1.19) 

𝐼𝐼̇ = 𝛽𝛽[𝑋𝑋 − 𝐼𝐼]         (1.1.20) 

𝑄̇𝑄 = 𝐾𝐾[𝑄𝑄 − 𝑄𝑄0] + 𝛾𝛾𝛾𝛾 − 𝑆𝑆]      (1.1.21) 

𝑆𝑆 = [𝑀𝑀1𝑌𝑌 + 𝑀𝑀2(𝑋𝑋 − 𝐼𝐼)0+]𝑄𝑄 

𝑆𝑆 =
(𝐺𝐺𝐻𝐻)3.27

(132)3.27 + 5.93(𝐺𝐺𝐻𝐻)3.02 

𝑃𝑃∞ = 𝑌𝑌 = (𝑋𝑋)1.11 
P = Potentiator (dimensionless),  
I = Inhibitor (dimensionless), 
Q = labile insulin,  
𝑃𝑃∞, Y, X = Intermediate variable (dimensionless) 

2.2.2  Description of Variables 
I = Insulin Concentration (mg/dl),  
T = Diffusion rate (min),  
Q = Vascular Plasma flow rate (dl/min),  
V = Volume (dl),  
r = Metabolic source and sink rate (mg/min),  
t = Time (min),  
F = Fractional clearance (dimensionless)  and  
t = Time constant (min) 

2.2.3  First Subscript: Physiological Compartment 
B = Brain,  
G = Gut,  
H= Heart and Lung,  
L = Liver,  
K = Kidney,  
P = Periphery and   
A=Hepatic artery  

2.2.4  Second Subscript: Physiological Compartment  
I = Interstitial fluid space,  
V = Vascular plasma space  

 
2.2.5  Metabolic Rate Subscript 

KIC = Kidney Insulin clearance  ,  
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LIC = Liver insulin clearance,  
PIR = Peripheral insulin release  and  
PIC= Peripheral insulin clearance 

2.2.6  First Subscript 
I = Insulin,  
B = basal value  [6] 

2.3  Glucagon Model 

A schematic representation of an Insulin model. Here a simple one compartment formulation was 
employed, representing the whole body fluid distribution volume for glucagon. The mass balance in 
compartment results in 1 ODE with linear and nonlinear terms which are related to each specific 
metabolic rate. 

   𝑉𝑉𝛤𝛤𝛤̇𝛤 = 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃       (1.1.22) 

Physiological processes leading to metabolic source, pancreatic glucagon release with rate 
function of heart and lung glucose (nonlinear) and heart and lung insulin (nonlinear). The metabolic sink 
is plasma clearance with rate function of plasma glucagon (linear). 

 

 

Fig. 3. Schematic representation of the Glucagon model. 

 

2.3.1 Metabolic Sink and Source 

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝛤𝛤 

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = 9.10 

𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
𝐺𝐺 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃

𝐼𝐼 𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵  

𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵 = 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝛤𝛤𝑩𝑩 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
𝐺𝐺 = 2.93− 2.10𝑡𝑡𝑡𝑡𝑡𝑡ℎ [4.18(𝐺𝐺𝐻𝐻𝑁𝑁 − 0.61)] 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼 = 1.31− 0.61𝑡𝑡𝑡𝑡𝑡𝑡ℎ [1.06(𝐼𝐼𝐻𝐻𝑁𝑁 − 0.47)] 

2.3.2 Description of Variables 

𝛤𝛤 = Glucagon Concentration (pg/ml),  

V = Glucagon volume (dl),  

r = Metabolic source and sink rate (pg/min),  

t = time (min), M = Multiplier of basal MR (dimensionless)and  
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t = time constant (min) 

2.3.3 Metabolic Rate Subscript 

PΓC = Plasma glucagon clearance,  

MΓC = Metabolic glucagon clearance,  

PΓR = Pancreatic glucagonrelease 

2.3.4 First Subscript 

G = Glucose,  

I = Insulin,   

Γ = Glucagon  

B = basal value  and 

N = normalized value [6] 

 
Table 1. Parameters values of the model. 

Parameter Value Parameter Value 

𝑄𝑄𝐵𝐵𝐺𝐺  5.9 dl/min 𝑄𝑄𝐻𝐻𝐺𝐺  43.7 dl/min 

𝑄𝑄𝐴𝐴𝐺𝐺  2.5 dl/min 𝑄𝑄𝐿𝐿𝐺𝐺  12.6 dl/min 

𝑄𝑄𝐺𝐺𝐺𝐺  10.1 dl/min 𝑄𝑄𝐾𝐾𝐺𝐺  10.1 dl/min 

𝑄𝑄𝑃𝑃𝐺𝐺  15.1 dl/min 𝑉𝑉𝐵𝐵𝐵𝐵𝐺𝐺  3.5 dl 

𝑉𝑉𝐻𝐻𝐺𝐺 13.8 dl 𝑉𝑉𝐿𝐿𝐺𝐺 25.1 dl 

𝑉𝑉𝐺𝐺𝐺𝐺 11.2 dl 𝑉𝑉𝐾𝐾𝐺𝐺 6.6 dl 

𝑉𝑉𝑃𝑃𝑃𝑃𝐺𝐺  10.4 dl 𝑉𝑉𝑃𝑃𝑃𝑃 67.7 dl 

𝑉𝑉𝐵𝐵𝐵𝐵  4.5 dl 𝑇𝑇𝑃𝑃𝐺𝐺 5.0 min 

𝑇𝑇𝐵𝐵 2.1 min 𝑉𝑉𝛤𝛤 11310 𝑚𝑚𝑚𝑚 

𝑉𝑉𝐵𝐵𝐼𝐼  0.26𝑙𝑙 𝑄𝑄𝐴𝐴𝐼𝐼  0.18𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

𝑇𝑇𝑃𝑃𝐼𝐼  20𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝐻𝐻𝐼𝐼  0.99𝑙𝑙 

𝑄𝑄𝐵𝐵𝐼𝐼  0.45𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝐺𝐺𝐼𝐼 0.94𝑙𝑙 

𝑄𝑄𝐻𝐻𝐼𝐼  3.12𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝐿𝐿𝐼𝐼 1.14𝑙𝑙 

𝑄𝑄𝐿𝐿𝐼𝐼  0.90𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝐾𝐾𝐼𝐼  0.51𝑙𝑙 

𝑄𝑄𝐾𝐾𝐼𝐼  0.72𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝑃𝑃𝑃𝑃𝐼𝐼  0.74𝑙𝑙 

𝑉𝑉𝑃𝑃𝑃𝑃𝐼𝐼  6.74𝑙𝑙 𝑄𝑄𝐺𝐺𝐼𝐼  0.72𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

𝑄𝑄𝑃𝑃𝐼𝐼  1.05𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 𝛼𝛼 0.0482 𝑚𝑚𝑚𝑚𝑛𝑛−1 

𝛽𝛽 0.931𝑚𝑚𝑚𝑚𝑛𝑛−1 𝐾𝐾 0.00794𝑚𝑚𝑚𝑚𝑛𝑛−1 

𝑀𝑀1 0.00747𝑚𝑚𝑚𝑚𝑛𝑛−1 𝑀𝑀2 0.0958𝑚𝑚𝑚𝑚𝑛𝑛−1 

𝛾𝛾 0.575 𝑈𝑈/𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄0 6.33𝑈𝑈 
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Model after substitutions of constant and parameter values, we get model for different cases of G 
 

Case I (0 < G < 460) 

𝐺̇𝐺𝐵𝐵𝐵𝐵 = 1.69𝐺𝐺𝐻𝐻 − 2.3𝐺𝐺𝐵𝐵𝐵𝐵 + 0.61𝐺𝐺𝐵𝐵𝐵𝐵      (1.1.1a)  

𝐺̇𝐺𝐵𝐵𝐵𝐵  = 0.48𝐺𝐺𝐵𝐵𝐵𝐵 − 0.48𝐺𝐺𝐵𝐵𝐵𝐵 − 15.56      (1.1.1b) 

𝐺̇𝐺𝐻𝐻   = 0.43𝐺𝐺𝐵𝐵𝐵𝐵 + 0.91𝐺𝐺𝐿𝐿 + 0.73𝐺𝐺𝐾𝐾 + 1.09𝐺𝐺𝑃𝑃𝑃𝑃 − 3.17𝐺𝐺𝐻𝐻 − 0.72  (1.1.1c) 

𝐺̇𝐺𝐺𝐺   = 0.9(𝐺𝐺𝐻𝐻 − 𝐺𝐺𝐺𝐺) − 1.79       (1.1.1d) 

𝐺̇𝐺𝐿𝐿   = 0.1𝐺𝐺𝐻𝐻 + 0.4𝐺𝐺𝐺𝐺 − 0.5𝐺𝐺𝐿𝐿 + 6.18𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 (2.7 tanh(0.389𝛤𝛤)− 𝑓𝑓2)(1.42−  

141𝑡𝑡𝑡𝑡𝑡𝑡ℎ((0.006𝐺𝐺𝐿𝐿 − 0.31))− 4.5𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 (1 + tanh(0.024𝐺𝐺𝐿𝐿 − 3.61)) (1.1.1e) 

𝐺̇𝐺𝐾𝐾   = 1.53𝐺𝐺𝐻𝐻 − 1.53𝐺𝐺𝐾𝐾 − 10.72− 10.72(0.11𝐺𝐺𝐾𝐾 − 50.6   (1.1.1f) 

𝐺̇𝐺𝑃𝑃𝑃𝑃 = 1.45𝐺𝐺𝐻𝐻 − 2.75𝐺𝐺𝑃𝑃𝑃𝑃 + 1.3𝐺𝐺𝑃𝑃𝑃𝑃      (1.1.1g) 

𝐺̇𝐺𝑃𝑃𝑃𝑃  = 0.2𝐺𝐺𝑃𝑃𝑃𝑃 − 0.2𝐺𝐺𝑃𝑃𝑃𝑃 − 0.005𝐺𝐺𝑃𝑃𝑃𝑃(7.03 + 6.52 tanh(0.016𝐼𝐼𝑃𝑃𝑃𝑃 − 1.97)) (1.1.1h) 

𝑀̇𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 = −0.04𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐼𝐼 + 0.05− 0.045𝑡𝑡𝑡𝑡𝑡𝑡ℎ (0.078𝐼𝐼𝐿𝐿 − 1.48)   (1.1.1i) 

𝑓𝑓2̇ = −0.05𝑓𝑓2 − 0.008 + 0.02𝑡𝑡𝑡𝑡𝑡𝑡ℎ (0.389𝛤𝛤)     (1.1.1j) 

𝑀̇𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 = −0.04𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐼𝐼 + 0.08𝑡𝑡𝑡𝑡𝑡𝑡ℎ (0.026𝐼𝐼𝐿𝐿)     (1.1.1k) 

𝐼𝐼𝐵̇𝐵 = 1.73𝐼𝐼𝐻𝐻 − 1.73𝐼𝐼𝐵𝐵        (1.1.1l)  

𝐼𝐼𝐻̇𝐻 = 0.45𝐼𝐼𝐵𝐵 + 0.91𝐼𝐼𝐿𝐿 + 0.72𝐼𝐼𝐾𝐾 + 1.06𝐼𝐼𝑃𝑃𝑃𝑃 − 3.15𝐼𝐼𝐻𝐻               (1.1.1m) 

𝐼𝐼𝐺̇𝐺 = 0.77𝐼𝐼𝐻𝐻 − 0.77𝐼𝐼𝐺𝐺        (1.1.1n) 

𝐼𝐼𝐿̇𝐿 = 0.1𝐼𝐼𝐻𝐻 + 0.378𝐼𝐼𝐺𝐺 − 0.79𝐼𝐼𝐿𝐿 + 0.53𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃     (1.1.1o) 

𝐼𝐼𝐾̇𝐾 = 1.41𝐼𝐼𝐻𝐻 − 1.83𝐼𝐼𝐾𝐾        (1.1.1p) 

𝐼𝐼𝑃̇𝑃𝑃𝑃 = 1.42𝐼𝐼𝐻𝐻 − 1.88𝐼𝐼𝑃𝑃𝑃𝑃 + 0.46𝐼𝐼𝑃𝑃𝑃𝑃      (1.1.1q) 

𝐼𝐼𝑃̇𝑃𝑃𝑃 = 0.05𝐼𝐼𝑃𝑃𝑃𝑃 − 0.111𝐼𝐼𝑃𝑃𝑃𝑃       (1.1.1r) 

𝑃̇𝑃 = −0.05𝑃𝑃 + 0.05 � (𝐺𝐺𝐻𝐻)3.27

(132)3.27+5.93(𝐺𝐺𝐻𝐻)3.27�
1.11

     (1.1.1s) 

𝐼𝐼̇ = −0.93𝐼𝐼 + 0.93 � (𝐺𝐺𝐻𝐻)3.27

(132)3.27+5.93(𝐺𝐺𝐻𝐻)3.27�     (1.1.1t) 

𝑄̇𝑄 = 0.008𝑄𝑄 + 0.58𝑃𝑃 − 0.008 �
(𝐺𝐺𝐻𝐻)3.27

(132)3.27 + 5.93(𝐺𝐺𝐻𝐻)3.27�
1.11

𝑄𝑄 − 0.05− 

0.0958 � (𝐺𝐺𝐻𝐻)3.27

(132)3.27+5.93(𝐺𝐺𝐻𝐻)3.27�
0+

𝑄𝑄     (1.1.1u) 

𝛤̇𝛤 = −0.0008𝛤𝛤 + 0.0008(2.93− 2.10 tanh(0.041𝐺𝐺𝐻𝐻 − 2.55))(1.31−  
0.61tanh(0.05𝐼𝐼𝐻𝐻 − 0.5)       (1.1.1v) 

 

The systemic nominal basal values [14] 𝐺𝐺𝐵𝐵 = 101.11𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑, 𝐼𝐼𝐵𝐵 = 21.31𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑, and 𝛤𝛤𝐵𝐵 =
1.002𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑are used along parameter valued provided in [3]. 

For equilibrium the left hand side of the equations (1.1.1a)-(1.1.1v) are substituted zero. Using 
(1.1.1s), (1.1.1t) and (1.1.1u) we get, 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 = 3.143𝑃𝑃𝑃𝑃and with this substitution to equation (1.1.1o). We 
end up 22 equations in 22 variables which are to solve simultaneously to get equilibrium points. After 
manual arrangement and simplifications we get  
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0 = 0.813𝐺𝐺𝐿𝐿 − 55.136 + 34.59(1 + tanh ((0.024𝐺𝐺𝐿𝐿 − 3.61))− 77.11(1.42 − 1.41 tanh(0.006𝐺𝐺𝐿𝐿 −
0.31))            (1.1.2) 

Solving on Matlab, we get a single real valued real solution for the equation (1.1.2), i.e., 

𝐺𝐺𝐿𝐿 = 125.0046. By using this value for rest variables. The equilibrium point we get  

𝑋𝑋0 = (104.24, 71.82, 115.94, 133.95, 125, 136.48, 100.86, 83.48, 1.27, -0.13, 0.88, 1.38, 1.38,1.38, 4.26, 
1.79, 1.07, 0.11, 0.26, 0.3, -17.02, 1.37).  

To verify and refine the result we used fsolve and fminsearch by taking our manual solution as 
the starting value for fsolve and then its solution as starting value for fminsearch. Even tried with a couple 
of different choices of starting value for fsolve including all positive values and mixed values but result 
came out same although with different number of iterations. The results turn out are 

Using fsolve 

X = (104.24, 71.82, 115.94, 133.95, 125, 136.48, 100.86, 83.48, 1.27, -0.13, 0.88, 1.38, 1.38,1.38, 4.26, 
1.79, 1.07, 0.11, 0.26, 0.3, -17.02, 1.37) with 9 iterations and function values multiple of  10-13. 

Using fminsearch: 

X = (104.24, 71.82, 115.94, 133.95, 125, 136.48, 100.86, 83.48, 1.27, -0.13, 0.88, 1.38, 1.38,1.38, 4.26, 
1.79, 1.07, 0.11, 0.26, 0.3, -17.02, 1.37) 

with 3386 iterations and function values are -0.000010. 

Case II (G > 460) 

𝐺̇𝐺𝐵𝐵𝐵𝐵 = 1.69𝐺𝐺𝐻𝐻 − 2.3𝐺𝐺𝐵𝐵𝐵𝐵 + 0.61𝐺𝐺𝐵𝐵𝐵𝐵      (1.1.3a)  

𝐺̇𝐺𝐵𝐵𝐵𝐵  = 0.48𝐺𝐺𝐵𝐵𝐵𝐵 − 0.48𝐺𝐺𝐵𝐵𝐵𝐵 − 15.56      (1.1.3b) 

𝐺̇𝐺𝐻𝐻   = 0.43𝐺𝐺𝐵𝐵𝐵𝐵 + 0.91𝐺𝐺𝐿𝐿 + 0.73𝐺𝐺𝐾𝐾 + 1.09𝐺𝐺𝑃𝑃𝑃𝑃 − 3.17𝐺𝐺𝐻𝐻 − 0.72  (1.1.3c) 

𝐺̇𝐺𝐺𝐺   = 0.9(𝐺𝐺𝐻𝐻 − 𝐺𝐺𝐺𝐺) − 1.79       (1.1.3d) 

𝐺̇𝐺𝐿𝐿   = 0.1𝐺𝐺𝐻𝐻 + 0.4𝐺𝐺𝐺𝐺 − 0.5𝐺𝐺𝐿𝐿 + 6.18𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 (2.7 tanh(0.389𝛤𝛤)− 𝑓𝑓2)(1.42−  

-1.41𝑡𝑡𝑡𝑡𝑡𝑡ℎ((0.006𝐺𝐺𝐿𝐿 − 0.31)) − 4.5𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 (1 + tanh(0.024𝐺𝐺𝐿𝐿 − 3.61)) (1.1.3e) 

𝐺̇𝐺𝐾𝐾   = 1.53𝐺𝐺𝐻𝐻 − 1.66𝐺𝐺𝐾𝐾 + 49.5      (1.1.3f) 

𝐺̇𝐺𝑃𝑃𝑃𝑃 = 1.45𝐺𝐺𝐻𝐻 − 2.75𝐺𝐺𝑃𝑃𝑃𝑃 + 1.3𝐺𝐺𝑃𝑃𝑃𝑃      (1.1.3g) 

𝐺̇𝐺𝑃𝑃𝑃𝑃   = 0.2𝐺𝐺𝑃𝑃𝑃𝑃 − 0.2𝐺𝐺𝑃𝑃𝑃𝑃 − 0.005𝐺𝐺𝑃𝑃𝑃𝑃(7.03 + 6.52 tanh(0.016𝐼𝐼𝑃𝑃𝑃𝑃 − 1.97)) (1.1.3h) 

𝑀̇𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 = −0.04𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐼𝐼 + 0.05− 0.045𝑡𝑡𝑡𝑡𝑡𝑡ℎ (0.078𝐼𝐼𝐿𝐿 − 1.48)   (1.1.3i) 

𝑓𝑓2̇ = −0.05𝑓𝑓2 − 0.008 + 0.02𝑡𝑡𝑡𝑡𝑡𝑡ℎ (0.389𝛤𝛤)     (1.1.3j) 

𝑀̇𝑀𝐻𝐻𝐻𝐻𝐻𝐻
𝐼𝐼 = −0.04𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻

𝐼𝐼 + 0.08𝑡𝑡𝑡𝑡𝑡𝑡ℎ (0.026𝐼𝐼𝐿𝐿)     (1.1.3k)  

𝐼𝐼𝐵̇𝐵 = 1.73𝐼𝐼𝐻𝐻 − 1.73𝐼𝐼𝐵𝐵        (1.1.3l)  

𝐼𝐼𝐻̇𝐻 = 0.45𝐼𝐼𝐵𝐵 + 0.91𝐼𝐼𝐿𝐿 + 0.72𝐼𝐼𝐾𝐾 + 1.06𝐼𝐼𝑃𝑃𝑃𝑃 − 3.15𝐼𝐼𝐻𝐻   
 (1.1.3m) 

𝐼𝐼𝐺̇𝐺 = 0.77𝐼𝐼𝐻𝐻 − 0.77𝐼𝐼𝐺𝐺        (1.1.3n) 

𝐼𝐼𝐿̇𝐿 = 0.1𝐼𝐼𝐻𝐻 + 0.378𝐼𝐼𝐺𝐺 − 0.79𝐼𝐼𝐿𝐿 + 0.53𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃     (1.1.3o) 

𝐼𝐼𝐾̇𝐾 = 1.41𝐼𝐼𝐻𝐻 − 1.83𝐼𝐼𝐾𝐾        (1.1.3p) 

𝐼𝐼𝑃̇𝑃𝑃𝑃 = 1.42𝐼𝐼𝐻𝐻 − 1.88𝐼𝐼𝑃𝑃𝑃𝑃 + 0.46𝐼𝐼𝑃𝑃𝑃𝑃      (1.1.3q) 
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𝐼𝐼𝑃̇𝑃𝑃𝑃 = 0.05𝐼𝐼𝑃𝑃𝑃𝑃 − 0.111𝐼𝐼𝑃𝑃𝑃𝑃       (1.1.3r) 

𝑃̇𝑃 = −0.05𝑃𝑃 + 0.05 � (𝐺𝐺𝐻𝐻)3.27

(132)3.27+5.93(𝐺𝐺𝐻𝐻)3.27�
1.11

     (1.1.3s) 

𝐼𝐼̇ = −0.93𝐼𝐼 + 0.93 � (𝐺𝐺𝐻𝐻)3.27

(132)3.27+5.93(𝐺𝐺𝐻𝐻)3.27�     (1.1.3t) 

𝑄̇𝑄 = 0.008𝑄𝑄 + 0.58𝑃𝑃 − 0.008 �
(𝐺𝐺𝐻𝐻)3.27

(132)3.27 + 5.93(𝐺𝐺𝐻𝐻)3.27�
1.11

𝑄𝑄 − 0.05− 

0.0958 � (𝐺𝐺𝐻𝐻)3.27

(132)3.27+5.93(𝐺𝐺𝐻𝐻)3.27�
0+

𝑄𝑄     (1.1.3u) 

𝛤̇𝛤 = −0.0008𝛤𝛤 + 0.0008(2.93− 2.10 tanh(0.041𝐺𝐺𝐻𝐻 − 2.55))(1.31−  

0.61tanh(0.05𝐼𝐼𝐻𝐻 − 0.5)       (1.1.3v) 

Following the steps as in case I, we get equilibrium point  

𝑋𝑋0 = (105.35, 74.04, 118.32, 129.59, 121.12, 136.68, 101.93, 87.83, 1.23, -0.13, 0.87, 1.26, 1.26,1.26, 
4.18, 1.37, 1.36, 0.12, 0.29, 0.31, -18.51, 1.31).  

Again we used fsolve and fminsearch by taking our manual solution as the starting value for 
fsolve and then its solution as starting value for fminsearch. The results turn out are 

Using fsolve 

X = (131.35, 98.94, 143.05, 141.06, 139.06, 161.67, 140.51, 137.67, 0.63, -0.1, 1.21, 19.67, 19.67, 19.67, 
26.93, 15.16, 16.70, 7.52, 0.36, 0.40, -31.72, 0.86) with 10 iterations and function values multiple of 10-12. 

Using fminsearch 

X = (131.42, 99.01, 143.12, 141.13, 139.10, 161.73, 140.60, 137.79, 0.50, -0.09, 1.21, 19.69, 19.69, 
19.69, 26.96, 15.17, 16.71, 7.51, 0.36, 0.40, -31.63, 1.17) with 3369 iterations and function values are -
0.000144. 

An equilibrium point is a constant solution to a differential equation. An equilibrium point of 
a dynamical system generated by an autonomous system of ordinary differential equations (ODEs) is a 
solution that does not change with time. For example, each motionless pendulum position in corresponds 
to an equilibrium of the corresponding equations of motion, one is stable, the other one is not. For 
linearized the model, we need point or equilibrium point to check the stability of the model. We did not 
linearizing the model since equilibrium point not lie in the feasible region. In this model f2 is the 
degradation of the maximum response of the glucagon action on the hepatic glucose production and Q is 
the labile insulin. f2 and Q both are negative in each case of the model and these are the concentration in 
healthy person which never be negative. If the equilibrium point lies in the feasible region then by using 
the Jacobian by taking the partial derivative with each variable, convert the nonlinear system of equation 
into linearized system.Because if a linear system is controllable and observable, then a nonlinear system 
may or may not be controllable and observable. If a linear system is not controllable and observable then 
nonlinear is not controllable and observable. 

 

3. RESULTS AND DISCUSSION 

In case I the equilibrium point includes two negative values one for f2which is degradation of the 
maximum response of glucagon action on the hepatic glucose production and other for labile insulin Q. 
On using fsolve and fminsearch it turn out to be a single negative value only of Q. In case II again the 
equilibrium point has two negative values for same variables which also remain negative even after using 
fsolve and fminsearch.f2 is the degradation of the maximum response of the glucagon action on the 
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hepatic glucose production and f2 is positive or the maximum response is zero as glucose concentration is 
equal to the basal BGL. Q is the labile insulin and is taken in Units so it cannot have a negative value. 
This is the most comprehensive model in the GIG (Glucose insulin Glucagon) dynamics for human but 
the result show that this model has some deficiency in it since the equilibrium point is not in feasible 
region. The glucagon model considered is a very simple one as compare to model for insulin. Although 
the glucagon effect is not as complicated as the insulin but this can be one of the reasons. 

f2 and Q both are negative in each case in the model and these variables are the concentration in 
healthy person which never be negative. Since controllability and observability are sufficient conditions 
for the existence of a stabilizing feedback control further investigations should consider also the weaker 
properties of detectability and stabilizability for the models which provide a set of necessary and 
sufficient conditions for the existence of a stabilizing control. Q is dependent on P (periphery) and G both 
are in glucose subsystem can be improved. 

As discussed in [5] under the nominal parameter values the Sorensen's Model can represent 
glucose metabolism for one subject with the assumption that parameter values remained unchanged with 
respect to time. Sorenson’s Model can reproduce a systematic basal glucose level around 190 mg/dl for 
any initial condition but basal level can reach more than 300 mg/dl in diabetes patient. The equilibrium 
point can be modified but it is unique even if the parameter values have changed. Thus, a different basal 
level is reached as the parameter values change. 
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