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Abstract: The star puzzle is a variant of the classical Tower of Hanoi problem, where, in addition to the 
three pegs, S, P and D, there is a fourth one such that all disc movements are either to or from the fourth 
peg. Denoting by MS(n) the minimum number of moves required to solve the star puzzle, MS(n) satisfies 
the following recurrence relation: 
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This paper studies more closely the above recurrence relation and gives some new relationships, including 
some local-value relationships.  
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1. INTRODUCTION 

 
The star puzzle, introduced by Stockmeyer [1], is as follows: Three pegs, S, P and D, are arranged in an 
equilateral triangle, and the fourth peg is at the center 0. Each disc movement must be either to or from 0, 
that is, direct moves of discs between any two of the pegs S, P and D are not allowed. Initially, the n 
discs, D1, D2, …, Dn, are placed on the source peg, S, in a tower (in small-on-large ordering) standard 
position (with the largest disc, Dn, at the bottom, the second largest disc, Dn – 1, above it, and so on, with 
the smallest disc, D1, at the top). The problem is to shift this tower of n discs from S to the destination 
peg, D, in minimum number of moves, using the auxiliary peg P, under the condition that each move can 
transfer only the topmost disc from one peg to another such that no disc is ever placed on top of a smaller 
one.  

 
 

Fig. 1. The Star puzzle. 
 
 

 
Let MS(n) denote the minimum number of moves required to transfer the tower of n discs from the 

source peg, S, to the destination peg, D (under the conditions of the problem). Then, MS(n) satisfies the 
following dynamic programming equation, due to Stockmeyer [1]. 
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with 
MS(0)          =         0, MS(1)          =      2.                                                                                              (1.2) 

 
 

 
To transfer the tower of n discs from the source peg, S, to the destination peg, D, the scheme followed is: 
 
 
 

Step 1:      move the tower of topmost (smallest, consecutive) n          –            k discs from the peg S to the peg P, using 
all the four pegs available. 

 
 
 

The (minimum) number of moves required is MS(n   –            k). 
 
 
 

Step 2   :          transfer the remaining k (largest, consecutive) discs from the peg S to the peg D, using the three 
pegs available. 

 
 
 

 

During this step, the pegs S, 0 and D (in this order) may be regarded as being arranged in a row 
(so that, we have the three-in-a-row puzzle with k discs), and the minimum number of moves 
required is 3k

   –   1. 
 
 
 

Step 3:      move the tower (of n          –            k discs) from P on top of the discs on D (using all the four pegs available), 
again in (minimum) MS(n          –           k) number of moves. 

 
 
 
 
 
 
 

The total number of moves involved in the above three steps is 
 
 
 

FS(n,          k)           ≡         2  MS(n      –         k)          +        3k – 1,                                                                            (1.3) 
 
 
 

where k (1          ≤               k            ≤              n     –   1) is to be determined such that FS(n,         k) is minimized. 
 
 

 
 
 

For details on the three-in-a-row puzzle, we refer to the paper of Scorer, Grundy and Smith [2] and 
Majumdar [3]. 
 

An equivalent form of (1.1) is the following 
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The following lemmas have been established by Majumdar [3]. 
 
 

Lemma 1.1 : MS(n) is an even (positive) integer for any integer n    ≥    1. 
 
 

 

Lemma 1.2 : MS(n) is not attained at two consecutive values of k. 
 
 

 

Lemma 1.3 : For n ≥ 4, MS(n) is not attained at k = n – 1. 
 

Lemma 1.4 : MS(n   +   1)   >   MS(n), n   ≥   1. 
 

Lemma 1.5 : For any n     ≥     1, MS(n   +   2) – MS(n   +   1)         ≤   2{MS(n   +   1) – MS(n)}. 
 

This paper gives some local-value relationships related to the star puzzle, in Section 2 below. 
 
 

 

2. SOME  LOCAL-VALUE  RELATIONSHIPS 
 

We start with the following lemma. 
 

Lemma 2.1 : Let MS(n) be attained at t = t1 and MS(n + 1) be attained at t = t2. Then, t2 ≥ t1. 
 
 

Proof : Let, on the contrary, t2 < t1. Now, since 
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we are led to the following chain of inequalities : 
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which is absurd. This contradiction establishes that  t2 ≥ t1. 
 
Corollary 2.1 : Let MS(n) be attained at the point k = k1, and MS(n + 1) be attained at k = k2. Then,  
k2 ≤ k1 + 1. 
 

 
 

Proof : The proof follows from Lemma 2.1, since t1 = n – k1, t2 = n + 1 – k2. 
 

Lemma 2.2 : Let MS(n) be attained at k = k1. Then, MS(n) is not attained at k = k1– 1. 
 
 

Proof : If MS(n) is attained at both k = k1 and k = k1 – 1, then 
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and we are led to a contradiction to Lemma 1.1. 
 
Lemma 2.3 : For any integer n        ≥        1,  
 

 
 

(a) MS(n   +   2) – MS(n   +   1) > MS(n   +   1) – MS(n), 
 
 

 
 

(b) MS(n) is attained at a unique value of k. 
 
 

 
      

Proof : The proof of part (a) is by induction on n. Since 
 
 
 
 
 

MS(3) – MS(2) = 6 > 4 = MS(2) – MS(1), 
 
 
 
 
 

we see that the result is true for n = 1. To proceed by induction, we assume that the result is true for some 
n. 
 

First, we prove that MS(n) is attained at a unique value of k. Let MS(n) be attained at k = k1. By 
Lemma 1.2, MS(n) is not attained at k = k1 + 1. Therefore, 
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Then, MS(n) is not attained at k = k1 + 2, for otherwise 
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which gives 
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But then, (1) and (2), together with the induction hypothesis, give the following chain of inequalities : 
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which is absurd. Therefore, MS(n) is not attained at k = k1 + 2 either. Continuing the argument, we see that 
MS(n) is not attained at any other values of k. 
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Now, let MS(n + 1) be attained at k = k2. We want to show that k2 ≥ k1. Let, on the contrary, k1 > k2. Now, 
since 
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we get the following chain of inequalities : 
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which violates the induction hypothesis. Thus, k2 ≥ k1. In fact, by virtue of Corollary 2.1, k1 and k2 satisfy 
the condition that k1 ≤ k2 ≤ k1 + 1. 
 
 
 

We now complete the proof of part (a) of the lemma. 
 
 
 

Let MS(n + 2) be attained at k = k3. Then, one of the following four cases may arise. 
 
 
 
 
 
 

Case (A) : Let  k1 = k2 = k3 = K.  
In this case,  

 
 
 

MS(n   +   2) – MS(n   +   1) = 2[MS(n – K  +   2) – MS(n – K + 1)], 
 
 
 
 
 

MS(n   +   1) – MS(n) = 2[MS(n – K  +   1) – MS(n – K)], 
 

and the result follows by virtue of the induction hypothesis. 
 
 
 

 
 
 

Case (B) : Let  k1 = k2 = K, k3 = K + 1. 
 
 
 

Here, 
,13)Kn(MS213)1Kn(MS2)1n(MS 1KK −+−<−++−=+ +
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so that 
MS(n   +   2) – MS(n   +   1) > 2[MS(n – K  +  1) – MS(n – K)] = MS(n + 1) – MS(n). 

 
 
 

 
 

Case (C) : Let  k1 = K, k2 = k3 = K + 1. 
 

In this case, 
 

,13)1Kn(MS2)2n(MS 1K −++−=+ +  
 
 

,13)1Kn(MS213)Kn(MS2)1n(MS K1K −++−<−+−=+ +  
 
 

so that 
MS(n   +   2) – MS(n   +   1) > 2.3K = MS(n   +   1) – MS(n), 

 
 
 

and the result follows. 
 
 
 
 
 
 
 
 

Case (D) : Let  k1 = K, k2 = K + 1, k3 = K + 2. 
Here, 

MS(n   +   1) – MS(n) = 2.3K. 
 
 
 
 
 
 

Now, if MS(n + 2) is attained at k = K + 2, so that 
 

,13)Kn(MS2)2n(MS 2K −+−=+ +  
 

then 
MS(n   +   2) – MS(n   +   1) = 2.3K

  

+
  

1 = 3[MS(n  +  1) – MS(n)], 
 
 
 
 
 

which violates Lemma 1.5. Hence, this case cannot occur. 
 
 

All these complete the proof of the lemma. 
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Corollary 2.2 : If, for some integer n ≥ 1, MS(n) is attained at the point k = k1 and MS(n + 1) is attained at 
k = k2, then k1 ≤ k2 ≤ k1 + 1. 
 
Corollary 2.3 : If, for some integer n ≥ 1, MS(n) is attained at the point k = K and MS(n + 1) is attained at 
k = K + 1, then MS(n + 2) must be attained at k = K + 1. 
 

From the computational point of view, Corollary 2.2 allows us to calculate recursively the value of k 
where MS(n + 1) is attained, starting with the value of k at which MS(n) is attained. Part (a) of Lemma 2.3 
shows that, MS(n) is (strictly) convex in n in the sense of the inequality therein. It also shows that, MS(n   +   

1) – MS(n) is strictly increasing in n. 
 

Lemma 2.4 : Let, for some integer n ≥ 2, 
 
 
 
 
 

MS(n) – MS(n – 1) = 2s for some integer s ≥ 1.                                                   (2.1) 
 
 
 
 
 

Then, MS(n – 1) and MS(n) both are attained at the same value of k. 
 

Proof : Let MS(n) be attained at k = k1, so that 

.13)kn(MS2)n(MS 1
k
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If MS(n – 1) is not attained at k = k1, then it must be attained at k = k1 – 1, so that 
 
 

.13)kn(MS2)1n(MS
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1
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But then, 
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1
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which violates the condition (2.1). This contradiction establishes the lemma. 
 
Since 
 

MS(1) – MS(0) = 2. 
 
 
 
 
 
 

MS(2) – MS(1) = 22, 
 
we see that such an n (satisfying the relationship (2.1)) exists. In this case, 

 
 
 
 
 

,13)1kn(MS2)1n(MS 1
k

1 −+−−=−  
so that 
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which shows that, MS(n – k1 – 1) and MS(n – k1) both are attained at the same value of k. 
 

Note that the converse of Lemma 2.4 is not true. Thus, if MS(n – 1) and MS(n) both are attained at the 
same value of k, then MS(n – 1) and MS(n) need not satisfy the condition (2.1). For example, MS(4) and 
MS(5) both are attained at k = 2, with 
 
 
 
 
 
 

MS(5) – MS(4) = 12. 
 
Lemma 2.5 : Let, for some integer n ≥ 1, 
 
 
 
 
 

MS(n) – MS(n – 1) = 2.3ℓ for some integer ℓ ≥ 0.                                                (2.2) 
 
 
 
 
 

Let MS(n) be attained at k = K. Then, MS(n – 1) is attained at k = K – 1. 
 

Proof : By assumption, 
.13)Kn(MS2)n(MS K −+−=  

 
 
 

Then, MS(n – 1) must be attained at k = K – 1, for otherwise, it is attained at k = K, so that 
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which violates the condition (2.2). This contradiction establishes the lemma. 
 

In course of proving Lemma 2.5, we also proved the following 
 
Corollary 2.4 : For some integer n ≥ 1, MS(n – 1) and MS(n) satisfy the relationship (2.2) if and only if 
MS(n – 1) and MS(n) are attained at different values of k. 
 
Corollary 2.5 : Let, for some integer n ≥ 1, MS(n – 1) and MS(n) satisfy the relationship (2.2). Let MS(n) 
be attained at k = K. Then, MS(n + 1) is attained at k = K. 
 
 

Proof : If MS(n + 1) is not attained at k = K, then it must be attained at k = K + 1, so that 
 
 
 
 
 

,13)Kn(MS2)1n(MS 1K −+−=+ +  
which gives 

,3.2)n(MS)1n(MS K=−+  
so that 
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violating Lemma 1.5. Therefore, MS(n + 1) is attained at k = K, so that 
 
 
 
 
 

,13)Kn(MS213)1Kn(MS2)1n(MS 1KK −+−<−++−=+ +  
and hence, 
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Since 
 

MS(1) – MS(0) = 2 = 2.30, 
 
 
 
 
 
 

MS(3) – MS(2) = 6 = 2×3, 
 
 
 
 
 

we see that such an n (satisfying the relationship (2.2)) exists. 
 

 
For any n ≥ 1 fixed, let 

 
 
 

FS(n,   t)           ≡         2  MS(t)          +        3n
  

–
   

t – 1;  1          ≤               t            ≤              n     –   1.                                                             (2.3) 
 
Lemma 2.6 : FS(n, t) is strictly convex in t in the sense that 

 
 
 

FS(n, t + 2) – FS(n, t + 1) > FS(n, t + 1) – FS(n, t) for all 0 ≤ t ≤ n – 2. 
 

Proof : Since  
 

FS(n, t + 2) – FS(n, t + 1) = 2[MS(t + 2) – MS(t + 1)] – 2.3n –
    

t – 2, 
 
 
 

 
 
 
 
 

FS(n, t + 1) – FS(n, t) = 2[MS(t + 1) – MS(t)] – 2.3n – t – 1, 
we get 

[FS(n, t + 2) – FS(n, t + 1)] – [FS(n, t + 1) – FS(n, t)] 
 
 

 
 
 
 

= 2[{MS(t + 2) – MS(t + 1)} – {MS(t + 1) – MS(t)}] + 4.3n –
  

t – 2. 
 
 
 
 
 
 

The result now follows by virtue of Lemma 2.3(a). 
Lemma 2.7 : Let N ≥ 1 be such that MS(N – 1) is attained at k = K – 1 and MS(N) is attained at   k = K, so 
that 
 
 
 
 

MS(N) – MS(N – 1) = 2.3K
 

–
 

1.                                                                              (2.4) 
 
 
 
 
 

Then, there is an integer M ≥ 1 such that  
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MS(N + M + 1) – MS(N + M) = 2.3K.                                                                   (2.5) 
 
 

Proof : Since MS(N + 1) is attained at k = K, we get 
 
 
 
 
 

 MS(N + 1) = 2MS(N + 1 – K) + 3K − 1 < 2MS(N – K) + 3K
    

+
    

1 – 1, 
so that 
 

MS(N − K + 1) – MS(N − K) < 3K. 
 
 
 
 
 

Continuing in this way, we see that 
 
 
 
 
 
 

MS(N − K + m) – MS(N − K + m − 1) < 3K; m = 1, 2, 
 
 
 
 
 

Since for  N ≥ 1 and K ≥ 1 fixed, { }∞
=−+−−+− 1m)1mKN(MS)mKN(MS  is strictly increasing in m, 

there is an integer m ≥ 1 such that 
 
 
 
 
 
 

MS(N + m − K + 1) – MS(N + m − K) > 3K. 
 
 
 
 
 

For minimum such m, say, m = M, MS(N + M) is attained at k = K, but MS(N + M + 1) is attained at  
k = K + 1, so that 
 
 
 
 
 

MS(N + M + 1) – MS(N + M) = 2.3K.                                                                   (2.6) 
 
 
 
 
 

Thus, the lemma is established. 
 

From the above proof, we see that, for all m with 1 ≤ m ≤ M, 
 
 
 
 
 
 
 

2.3K
 

–
  

1 < MS(N + m) – MS(N + m − 1)  
 
 
 
 
 
 
 
 

= 2[MS(N – K + m) – MS(N – K + m – 1)] < 2.3K.                                                (2.7) 
 
Now, since 

MS(N + M + 1) = 2MS(N + M – K) + 3K
 

+
 

1 − 1 < 2MS(N + M – K + 1) + 3K – 1, 
we see that 

MS(N + M – K + 1) – MS(N + M – K) > 3K > MS(N) – MS(N – 1). 
Therefore, 

N + M – K + 1 > N, 
that is, 

M ≥ K. 
 

Let an be defined by 
 
 
 
 
 

an = MS(n) − MS(n − 1), n ≥ 1.                                                                              (2.8) 
 
 

Let mj ≥ 1 be the integer, defined as follows : 
 
 
 
 
 

,0 j ;3.2)1m(MS)m(MSa j
jjjm ≥=−−=  

with 
m0 = 1, m1 = 3. 

 
 
 

Then, MS(mj – 1) is attained at k = j, and for all n with mj ≤ n ≤ mj+1 – 1, MS(n) is attained at k = j + 1. 
Let N be such that  

 
 
 
 
 

MS(N + 1) – MS(N) = 2s for some integer s ≥ 1.                                                 (2.9) 
 
 
 
 
 

Then, MS(N) and MS(N + 1) both must be attained at the same value of k, say, k = K, so that 
 
 
 
 
 

MS(N) = 2MS(N – K) + 3K – 1 < 2MS(N – K + 1) + 3K
  

–
  

1 – 1, 
 
 
 
 
 

MS(N + 1) = 2MS(N – K + 1) + 3K – 1 < 2MS(N – K) + 3K
 

+
  

1 – 1, 
 
 
 
 
 

and we get the following chain of inequalities : 
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2.3K
 

–
  

1  < MS(N + 1) – MS(N) 
 
 
 
 
 

= 2[MS(N – K + 1) – MS(N – K)] < 2.3K.                                                     (3) 
 

Let MS(M) and MS(M + 1) both be attained at k = L. Then, 
 
 
 
 
 

MS(M + 1) = 2MS(M – L + 1) + 3L – 1, 
 
 
 
 
 

MS(M) = 2MS(M – L) + 3L – 1, 
so that 

MS(M + 1) – MS(M) = 2[MS(M – L + 1) – MS(M – L)].                                   (2.10) 
Letting 

M – L = N,                                                                                                               (4) 
 
 
 
 
 

we see that the next pair of functions is MS(M) and MS(M + 1), with 
 
 
 
 
 

MS(M + 1) – MS(M) = 2s
 

+
 

1. 
Now, since 

2.3L
 

–
  

1 < MS(M + 1) – MS(M) < 2.3L,                                                                      (5) 
 
 
 
 
 

from (3) and (5), we must have 
 
 
 
 
 

4.3K > 2.3L
  

–
  

1, 2.3L > 4.3K
  

–
 

1, 
so that 

K ≤ L ≤ K + 1. 
 

From (3), we may estimate s of (2.9) as follows : Since 
 
 
 
 
 

3K
 

–
 

1 < 2s
  

–
 

1 < 3K, 
we get 

.1Ks1)1K( 2ln
3ln

2ln
3ln +<<+−                                                                           (2.11) 

 
Thus, for example, if K = 1, the only s satisfying the inequality (2.11) is s = 2, while for K = 2, there are 
two values of s satisfying (2.11), namely, s = 3, 4. 
 

Let the integers kj ≥ 1 be defined as follows : 
 
 
 
 
 

,0 j ;2.2)1k(MS)k(MSa j
jjjk ≥=−−=  

with 
k0 = 1, k1 = 2. 

 
Lemma 2.8 : For all j ≥ 1, MS(kj) is attained at k = kj − kj    −   1. 
 
 

Proof : The proof is by induction on j. Since MS(k1) = MS(2) is attained at k = k1 − k0 = 2 − 1 = 1, we see 
that the result is true for j = 1. So, we assume that the result is true for some j, that is, we assume that 
MS(N + 1) = MS(kj) is attained at k = kj − kj     −     1. 
Now, the above analysis shows that MS(M + 1) = MS(kj + 1) is attained at k = L. From (4), 
 
 
 
 
 

L = M − N = kj  + 1 − kj. 
 
 
 
 
 

Thus, the result is true for j + 1 as well, completing induction. 
 

Let { }∞
=1nnb  be the sequence of integers in increasing order : 

 
 
 

bn   =   2i
   3ℓ, i     ≥     0, ℓ     ≥     0,                                                                                             (2.12) 

 
 
 
 

(so that, {bn} is the sequence of numbers {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, …}). Then, we have the 
following result, due to Matsuura [4]. 
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Lemma 2.9 : Let n be such that 2i < bn < 2i

  

+
  

1 for some integer i ≥ 1. Then, 
 
 
 
 
            

bn     =           3bn  −   i  −  1. 
 
 
 
 

 

Corollary 2.6 : Let cn be defined as follows : 
 
 
 
 
 
 

cn   =            2bn, n     ≥     1. 
 
 
 
 
 
 
 

Let 2i < bn < 2i
  

+
  

1 for some integer i ≥ 1. Then, 
 
 
 
 
 

cn   =          3cn   −  i    −  1. 
 
 
 
 

 

Given any integer K ≥ 1, a related problem of interest is to find the number of elements of the sequence 
{ }∞

=1nnb  such that 
 
 
 
 
 

3K
   < 2i

   3ℓ < 3K+1.                                                                                                        (6) 
 
 
 
 

Now, since the above inequality reduces to 
 
 
 
 
 
 
 

3K−
   

ℓ
   < 2i

  

 < 3K
  

−
    

ℓ
   

+
   

1, 
 
 
 
 

we see that i must satisfy the following inequality : 
 
 
 
 
 
 

(K − ℓ) 2ln
3ln < 

 i < (K − ℓ + 1) 2ln
3ln .                                                                               (7) 

 
 
 
 
 
 
 

Thus, for example, with K = 1 in (7), for ℓ = 0, we have i = 2, 3; and for ℓ = 1, we have i = 1; that is, there 
are exactly three elements of the sequence { }∞

=1nnb  satisfying the inequality 
 
 
 
 
 

3   <                     2i
   3ℓ < 32, 

 
 
 
 

namely, 22, 23 and 2×3. 
 

Let N(n, K) denote the number of elements of the sequence { }∞
=1nnb  satisfying the inequality (6), that 

is, 
 

{ } { } . 3323:b   3b3:b  )K ,n(N 1KiK
n

1K
n

K
n

++ <<=<<=   
 
 
 
 

Then, we have the following lemma. 
 
Lemma 2.10 : For any integer K ≥ 1, 
 
 
 
 
 

{ } . 323  :  i  )K ,n(N)1K ,n(N 2Ki1K ++ <<+=+  

Proof : From (7), we note that, for K + 1 with ℓ = 1, 2, ..., K + 1 corresponds to the case K with  
ℓ = 0, 1, ..., K. Hence, the result follows. 
Lemma 2.11 : For any integer K ≥ 1, 
 
 
 
 

(a) { } { }, 32:i max 3b3  :b  1Ki1K
n

K
n

++ <=<<  
 
 
 

(b)  { } { } . 3.2c32.  :c   3b3  :b  1K
n

K
n

1K
n

K
n

++ <<=<<  

Proof : Part (a) follows from Lemma 2.10 by induction on K. The proof of part (b) is evident from part 
(a), by virtue of Corollary 2.6. 
 

3. DISCUSSION 
 
Stockmeyer [1] gave a sketch of the proof that MS(n) can be expressed as 
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1m
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but his argument is rather heuristic in nature, and is not supported by any theoretical development. In 
particular, the following points remain to be resolved : 
1. There is a one-to-one correspondence between the sequences { }∞

=1nna  and { }∞
=1nnb , 

2. The sequences { }∞

=
−

1n
1n3  and { }∞

=1nnb2  exactly partition the sequence { }∞
=1nnb , as has been claimed by 

Stockmeyer [1] without any proof. 
 

This paper gives an exact analysis of the recurrence relation (1.1), which reveals some interesting 
properties. For example, if mj ≤ n ≤ mj+1 – 1, MS(n) is attained at the unique point k = j + 1, a result which 
justifies the claim of Stockmeyer [1]. 
 

Corollary 2.2 may be exploited to find MS(n) recursively. In Table 1, we give the values of MS(n) for 
n = 13(1)24 to supplement Table given in Majumdar [3]. 
 
Table 1. Values of MS(n) and k   =   k(n) for n   =   13(1)24.   
 

n 13 14 15 16 17 18 19 20 21 22 23 24 
MS(n) 324 396 492 600 728 872 1034 1226 1442 1698 1986 2310 

k 4 4 4 4 4 4 5 5 5 5 5 
 

5 
 

In a recent paper, Majumdar [4] has treated in detail the following recurrence relation, due to Matsuura 
[5]. 

{ }
1nk0               

,)3 ,kn(S) ,k(T        min        ),n(T
−≤≤

−+αα=α  
 

where S(n, 3) = 2n − 1 is the solution of the Tower of Hanoi problem. It is an interesting problem to show 
that MS(n) = 2T(n, 3) for all n ≥ 1, directly from the corresponding optimality equations. 
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