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Abstract:  In this article, the sensitivity and generalized sensitivity analyses of the SIR and SEIR models of 
the dynamics of computer virus is presented. From the sensitivity studies of the SIR model, it follows that 
both the parameters in the model affect the model output in the beginning. The sensitivity of the SEIR 
model shows that the susceptible computers in the network are affected majorly by the rate at which 
external computers are connected to the network and the recovery rate of the susceptible computer due to 
the anti-virus ability of the network. From the generalized sensitivity of the SIR model, it follows that both 
the infected rate and the recovery rate are sensitive in the beginning and are highly correlated. The 
generalized sensitivities of the SEIR model show that the recovery rate of the infected computers that are 
cured is insensitive with respect to the measurements from all compartments. 
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1. INTRODUCTION 

Worldwide, there are 3,179,03,200  internet  users as of August 07,  2015. They represent more than 40 
percent of the population of the world. Their largest number is in China followed by the United States and 
India. The total number of the websites with a unique host name online increased from one website 
(info.cern.ch) in 1991 to one billion websites in September, 2014. This huge network aimed at sharing 
useful information in the form of hypertext amongst the users is open for everyone. In this network, any 
computer can communicate with any other computer as long as they are both connected to the Internet. 
However, there are many which make wrong use of this facility and share such computer codes which are 
self-replicating and causing severe damages to the computer community and are called the so-called 
computer virus. 

A biological virus is an infective agent that consists of a nucleic acid molecule in a protein coat and is 
too small to be seen by the light microscope and has the ability to multiply only within the living cells of 
a host.  For example, “hepatitis B virus”.  A computer virus is a piece of code which is capable of copying 
itself and typically has a detrimental effect like corrupting the system or destroying data. Computer 
viruses include worms, trojan horses, ransomware, spyware, adware, scareware, etc. 

The first academic work on the theory of self-replicating computer programs was done in 1949 by 
John von Neumann. His work was published as the “Theory of self-reproducing automata”, and described 
how a computer program could be designed to reproduce itself.  Von Neumann’s design for a self-
reproducing computer program is considered the world’s first computer virus, and he is considered to be 
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the theoretical father of computer virology [1]. In 1980, Kraus [2] postulated that computer programs can 
behave in a way similar to biological viruses. Creeper virus was first detected on ARPANET, the 
forerunner of the internet, in the early 1970s [3]. Before the start of the computer networks, many users 
regularly exchanged information and programs on removable media like floppies, discs, magnetic tapes 
and magnetic drums, etc., so the computer virus spread from one media to another. Traditional computer 
viruses emerged in the 1980s, driven by the spread of personal computers. Then after the advent of the 
internet in 1991, their transmission became rampant from computer to computer through messaging. In 
the same year, the first mathematical model of the dynamics of the computer virus was proposed based on 
the work of Kermack and Mc Kendrick [4-7]. Several models explaining the dynamics of the computer 
virus were proposed which gave description of the computer virus dynamical system in the form of 
parameters. However, there has been no work made over the sensitivity of these parameters of the 
computer virus as yet. 

Sensitivity analysis is a very useful tool for the analysis of mathematical models. In the analysis of 
such models, it is of great importance to understand how small variations in the parameters affect the 
model output. Precisely, the researchers need to evaluate the sensitivities of the model variables with 
respect to the parameters. It is desired to obtain the maximum benefit from the measurements or 
observations. In particular, the input to the system should be such that it maximizes the sensitivity of the 
state variable to parameters [8]. In the context of the measurements, Generalized Sensitivity Functions 
(GSFs) describe the effects of the measurements over the estimates of the parameters. The GSFs have the 
benefit that they show the correlation between the parameters as well. 

To take initiative of this work, the author has selected two such widely-studied models by the experts 
in the field for their sensitivity studies. In Section 2, the two models SIR and SEIR are described briefly, 
and an overview of the sensitivity and the generalized sensitivity functions is given. Section 3 describes 
the numerical scheme of the method applied. Major results and conclusions of the study are given in 
Section 4 and Section 5, respectively.  
 
 
2. MATERIAL AND METHODS 

Two well-studied models of computer virus dynamics and the theory of the sensitivity and the generalized 
sensitivity functions are presented in this section. 
 
2.1. Computer Virus Models 

At any time a computer is classified as either internal or external depending on weather it is connected to 
internet or not respectively. The two models of dynamics of computer virus are described as under: 
 
2.1.1.   SIR Model 

In the SIR model, all of the internet computers are further categorized into three classes: 
i. Susceptible computers, i.e., uninfected computers and new computers which are connected to 

network, 
ii. Infectious computers, 
iii. Removed computer, the computers which are broken-out or were removed from the network. 

Now if their corresponding number 𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) at any time 𝑡𝑡, be denoted simply by 𝑆𝑆, 𝐼𝐼 
and 𝑅𝑅, then the SIR  model is given by the following system of differential equations: 
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    𝑆𝑆 ′ =  𝜌𝜌𝜌𝜌𝜌𝜌, 
                                                                                𝐼𝐼 ′ = 𝜌𝜌𝜌𝜌𝜌𝜌 –  𝛽𝛽𝐼𝐼,                                                                          (1) 

  𝑅𝑅 ′ =  𝛽𝛽𝛽𝛽, 
 
With initial conditions (𝑆𝑆(0), 𝐼𝐼(0),𝑅𝑅(0))  = (𝑆𝑆0,𝐼𝐼0, 𝑅𝑅0). The total population 𝑆𝑆 +  𝐼𝐼 +  𝑅𝑅 is considered 
to be constant. The parameter  𝜌𝜌 denotes the infected rate or the rate of interactions between susceptible 
and infected computers and 𝛽𝛽 denotes the rate of the removing process. 

The basic reproduction number (basic reproductive ratio, or incorrectly basic reproductive rate and 
denoted by 𝑅𝑅0, ) of the SIR model is defined by: 

                                                                           𝑅𝑅0 = 𝜌𝜌𝑆𝑆0
𝛽𝛽

                                                                                             (2)  

When 𝑅𝑅0 <  1, the infection will die out in the long run and if 𝑅𝑅0 >  1, the infection will spread in a 
population. 
 
2.1.2. SEIR Model 

In this model, all of the internet computers are further categorized into four classes at any time 𝑡𝑡, namely: 
i. Susceptible computers, that is, uninfected computers and new computers 
which connected to the network, 
ii. Exposed computers, i.e., infected but not yet broken-out, 
iii. Infectious computers, i.e., the ones which spread virus in the population, 
iv. Recovered computers, i.e., the virus-free computers having immunity. 

Let 𝑆𝑆(𝑡𝑡), 𝐸𝐸(𝑡𝑡),  I(t), 𝑅𝑅(𝑡𝑡) denote their corresponding numbers at time 𝑡𝑡, without ambiguity; if they 
are abbreviated by 𝑆𝑆,𝐸𝐸, 𝐼𝐼,𝑅𝑅, respectively, then the SEIR model is formulated as the following system of 
differential equations: 

𝑆𝑆′ = (1 –  𝑝𝑝)𝑁𝑁 − 𝛽𝛽1𝑆𝑆𝑆𝑆 − 𝛽𝛽2𝑆𝑆𝑆𝑆 − 𝑝𝑝𝑝𝑝 − 𝜇𝜇𝜇𝜇, 
 

  𝐸𝐸′ = 𝛽𝛽1𝑆𝑆𝑆𝑆 + 𝛽𝛽2𝑆𝑆𝑆𝑆 − 𝐾𝐾𝐾𝐾 − 𝛼𝛼𝛼𝛼 − 𝜇𝜇𝜇𝜇,              
 

                                                       𝐼𝐼 ′  = 𝛼𝛼𝛼𝛼 − 𝑟𝑟𝑟𝑟 − 𝜇𝜇𝜇𝜇,                                                                                               (3) 
 

  𝑅𝑅 ′ = 𝑝𝑝𝑝𝑝 +  𝐾𝐾𝐾𝐾 +  𝑟𝑟𝑟𝑟,                                       
 
with initial conditions (𝑆𝑆(0), 𝐸𝐸(0).  𝐼𝐼(0), 𝑅𝑅(0))  = (𝑆𝑆0,  𝐸𝐸0, 𝐼𝐼0, 𝑅𝑅0). The total population 𝑆𝑆 + 𝐸𝐸 + 𝐼𝐼 + 𝑅𝑅 
is considered to be constant. Since the first three equations in this Model (3) are independent of the fourth 
equation, therefore we will omit the fourth equation for our numerical calculations.  

In the model (3), 𝑁𝑁 represents the rate at which external computers are connected to the net-work,  𝑝𝑝 
is the recovery rate of susceptible computer due to the anti-virus ability of network, 𝐾𝐾 is the recovery rate 
of exposed computer due to the anti-virus ability of the network,  𝛽𝛽1 shows the rate at which, when 
having a connection to one infected computer, one susceptible computer can become exposed but has not 
broken-out; 𝛽𝛽2 shows the rate of which, when having connection to one exposed computer, one 
susceptible computer can become exposed, 𝛼𝛼 represents the rate of the exposed computers cannot be 
cured by anti-virus software and broken-out,  𝑟𝑟 is the recovery rate of infected computers that are cured 
and 𝜇𝜇 represents the rate at which one computer is removed from the network.  

The basic reproductive ratio of the SEIR model is: 

𝑅𝑅0 =
(1 −  𝑝𝑝)𝑁𝑁(𝛽𝛽1𝛼𝛼 + 𝛽𝛽2(𝑟𝑟 +  𝜇𝜇))

(𝑝𝑝 +  𝜇𝜇)(𝐾𝐾 +  𝛼𝛼 +  𝜇𝜇)(𝑟𝑟 +  𝜇𝜇)
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2.2 Sensitivity and Generalized Sensitivity Functions 

A multiple-output system with the measurable outputs is given by:  
𝑓𝑓(𝑡𝑡,𝜃𝜃) =  𝑐𝑐𝑐𝑐𝑐𝑐�𝑓𝑓1(𝑡𝑡,𝜃𝜃 ),⋯ , 𝑓𝑓𝑀𝑀(𝑡𝑡,𝜃𝜃)�,       0 ≤ 𝑡𝑡 ≤ 𝑇𝑇,   𝜃𝜃 ∈ 𝑈𝑈                                                          (4) 

where 𝑇𝑇 >  0 and the open subset 𝑈𝑈 ∈ 𝑅𝑅𝑝𝑝 of admissible parameters are fixed. It is assumed that the 
output model (4) is a valid description of the system for all 𝑡𝑡 ∈  [0,𝑇𝑇] and the open set  𝑈𝑈 ∈ 𝑅𝑅𝑝𝑝 and the 
component outputs  𝑓𝑓𝑖𝑖, 𝑖𝑖 =  1, … ,𝑀𝑀, are sufficiently smooth functions. The vector 𝜃𝜃 is the vector of 
parameters which is to be estimated.  
 

The following two concepts are vital for our work in the sequel. 
 
2.1.3. Sensitivity Functions 

The sensitivity or sensitivity functions of any model output  𝑓𝑓𝑖𝑖(𝑡𝑡;𝜃𝜃 )  with respect to parameter 
component  𝜃𝜃𝜋𝜋 is defined by:  

𝑠𝑠𝑓𝑓𝑖𝑖
𝜃𝜃𝜋𝜋

(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙
∆𝜃𝜃𝜋𝜋→0

∆𝑓𝑓𝑖𝑖(𝑡𝑡,𝜃𝜃 )/𝑓𝑓𝑖𝑖(𝑡𝑡, 𝜃𝜃 )  
∆𝜃𝜃𝜋𝜋/𝜃𝜃𝜋𝜋

,      𝜋𝜋 = 1,⋯ ,𝑝𝑝,     𝑖𝑖 =   1, … ,𝑀𝑀. 

 
This can be written as 

 𝑠𝑠𝑓𝑓𝑖𝑖
𝜃𝜃𝜋𝜋

(𝑡𝑡) =  
𝜕𝜕𝑓𝑓𝑖𝑖(𝑡𝑡,𝜃𝜃 ) 
𝜕𝜕𝜃𝜃𝜋𝜋

 ∙
𝜃𝜃𝜋𝜋

𝑓𝑓𝑖𝑖(𝑡𝑡,𝜃𝜃 )
,      𝜋𝜋 =  1 ,⋯ , 𝑝𝑝, 𝑖𝑖 =   1,⋯ ,𝑀𝑀                                                  (5) 

 
Here  both  𝜃𝜃𝜋𝜋 ,  𝜋𝜋 = 1 , ⋯,  p  and 𝑓𝑓𝑖𝑖(𝑡𝑡,𝜃𝜃 ),  𝑖𝑖 =  1,⋯ ,𝑀𝑀  are assumed to be non-zero. The sensitivity 
functions quantify the effects of the changes in the parameters on the outputs of the model. They describe 
to which parameters the model output is the most or least sensitive. 

The sensitivity of the system with respect to a component of the parameter vector at any time instant 
  𝑡𝑡 in [0, 𝑇𝑇] which combines the sensitivities of all model outputs  𝑓𝑓𝑖𝑖, 𝑖𝑖 =  1, … ,𝑀𝑀, is defined by  

 𝑆𝑆𝜃𝜃𝜋𝜋 = ���𝑠𝑠𝑓𝑓𝑖𝑖
𝜃𝜃𝜋𝜋

(𝑡𝑡)�
2𝑀𝑀

𝑖𝑖=1

�

1
2

 ,      𝜋𝜋 =  1 , … ,𝑝𝑝                                                                                     (6) 

 
2.1.4. Generalized Sensitivity Functions 

In order to define the generalized sensitivity function for the multiple-output system, it is assumed that for 
each component 𝑓𝑓𝑖𝑖, of the output vector 𝑓𝑓, the measurements are taken at the sample times 

 0 ≤  𝑡𝑡1
(𝑖𝑖)  <  … <  𝑡𝑡1

(𝑁𝑁𝑖𝑖) ≤  𝑇𝑇, 𝑖𝑖 =  1, . . . ,𝑀𝑀. 
The measurements are assumed to be of the form  

𝑦𝑦𝑖𝑖 �𝑡𝑡𝑗𝑗
(𝑖𝑖)� = 𝑓𝑓𝑖𝑖 �𝑡𝑡𝑗𝑗

(𝑖𝑖),𝜃𝜃0� + 𝜀𝜀𝑖𝑖 �𝑡𝑡𝑗𝑗
(𝑖𝑖)� ,    𝑗𝑗 =  1, . . . ,𝑁𝑁𝑖𝑖 .                                                                      (7) 

where 𝜃𝜃0 is the `true' or nominal parameter vector and  𝜀𝜀𝑖𝑖(𝑡𝑡𝑗𝑗
(𝑖𝑖)) is the measurement error which is 

assumed to be a representation at 𝑡𝑡𝑗𝑗
(𝑖𝑖) of some noise process ℇ𝑖𝑖(t). The measurement (7) for the whole 

interval [0, T] is extended by 
      𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝑡𝑡,𝜃𝜃0) + +𝜀𝜀𝑖𝑖(𝑡𝑡),       0 ≤  𝑡𝑡 ≤  𝑇𝑇,   𝑖𝑖 =  1, . . . ,𝑀𝑀 

 ℇ𝑖𝑖(𝑡𝑡)  are presumed to be independent and identically distributed having zero mean and constant variance 
𝜎𝜎𝑖𝑖(𝑡𝑡)2. In order to estimate the parameter vector  𝜃𝜃 i.e., to get 𝜃𝜃�(𝜃𝜃0), the least-squares error functional  
𝐽𝐽(𝜃𝜃) for the multiple-output problem is formulated as: 



	  SIR and SEIR Model of Dynamics of Computer Virus	 171

𝐽𝐽(𝜃𝜃) = �𝐽𝐽𝑖𝑖

𝑀𝑀

𝐼𝐼=1

(𝜃𝜃),     𝜃𝜃 ∈ 𝑈𝑈,                                                                                                                   (8) 

   where   

𝐽𝐽𝑖𝑖(𝜃𝜃) = �
1

𝜎𝜎𝑖𝑖 �𝑡𝑡𝑗𝑗
(𝑖𝑖)�

2

𝑁𝑁𝑖𝑖

𝑗𝑗=1

�𝑦𝑦𝑖𝑖 �𝑡𝑡𝑗𝑗
(𝑖𝑖)� − 𝑓𝑓𝑖𝑖 �𝑡𝑡𝑗𝑗

(𝑖𝑖),𝜃𝜃��
2

,      𝑖𝑖 =  1, . . . ,𝑀𝑀,    𝜃𝜃 ∈ 𝑈𝑈                            (9)  

so that  
𝜃𝜃�  = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

   𝜃𝜃∈𝑈𝑈
𝐽𝐽(𝜃𝜃) 

Let 0 ≤ 𝑡𝑡1 < ⋯ <  𝑡𝑡𝑁𝑁  ≤  𝑇𝑇    be the sequence of all measurement times, i.e.,        
 

{𝑡𝑡1,⋯ , 𝑡𝑡𝑁𝑁} = ��𝑡𝑡1
(𝑖𝑖),⋯ , 𝑡𝑡𝑁𝑁𝑖𝑖

(𝑖𝑖)�
𝑀𝑀

𝑖𝑖=1

 

Each 𝑡𝑡𝑗𝑗
(𝑖𝑖) is contained in  {𝑡𝑡1,⋯ , 𝑡𝑡𝑁𝑁},    𝑡𝑡𝑗𝑗

(𝑖𝑖) = 𝑡𝑡𝑘𝑘(𝑖𝑖,𝑗𝑗) ,   𝑗𝑗 =  1, . . . ,𝑁𝑁𝑖𝑖 ,  𝑖𝑖 =  1, . . . ,𝑀𝑀,  where 1 ≤
𝑘𝑘(𝑖𝑖, 1) <  ⋯ <  𝑘𝑘(𝑖𝑖,𝑁𝑁𝑖𝑖) ≤  𝑁𝑁,   𝑖𝑖 =  1,⋯ ,𝑀𝑀.  Each 𝑡𝑡𝑘𝑘  is contained in at least one 

sequence  �𝑡𝑡1
(𝑖𝑖),⋯ , 𝑡𝑡𝑁𝑁𝑖𝑖

(𝑖𝑖)�. We define the 𝑁𝑁 ×  𝑁𝑁 diagonal matrices 𝐴𝐴(𝑖𝑖) = (𝛼𝛼𝜇𝜇,𝜈𝜈
(𝑖𝑖) )𝜇𝜇,𝜈𝜈=1,…,𝑁𝑁  by         

 

𝛼𝛼𝜇𝜇,𝜈𝜈
(𝑖𝑖)   = �1 𝑓𝑓𝑓𝑓𝑓𝑓 𝜇𝜇 =  𝜈𝜈 =  𝑘𝑘(𝑖𝑖, 𝑗𝑗), 𝑗𝑗 =  1, . . . ,𝑁𝑁𝑖𝑖

0      otherwise
 

 Let the 𝑁𝑁 ×  𝑁𝑁-matrices 𝐷𝐷(𝑖𝑖)be defined by 𝐷𝐷(𝑖𝑖)=� 1
𝜎𝜎𝑖𝑖(𝑡𝑡1)2

,⋯ , 1
𝜎𝜎𝑖𝑖(𝑡𝑡𝑁𝑁)2

�, 𝑖𝑖 =  1, . . . ,𝑀𝑀. From [9], the 

generalized sensitivity matrix 𝐺𝐺  for the parameter estimation problem is found as 
 

𝐺𝐺(𝑡𝑡𝑘𝑘 ,𝜃𝜃0) = �𝐹𝐹(𝜃𝜃0)�−1𝐹𝐹𝑘𝑘(𝜃𝜃0),           𝑘𝑘 =  1, . . . ,𝑁𝑁,                                                                    (10) 
Where  

𝐹𝐹(𝜃𝜃0) = ��𝛻𝛻𝐹𝐹𝑖𝑖(𝜃𝜃0)�𝑇𝑇
𝑀𝑀

𝑖𝑖=1

𝐷𝐷(𝑖𝑖)𝐴𝐴(𝑖𝑖)𝛻𝛻𝐹𝐹𝑖𝑖(𝜃𝜃0),        𝜃𝜃 ∈ 𝑈𝑈                                                                   (11) 

 
The matrix 𝐹𝐹(𝜃𝜃0) is called the Fisher information matrix for our parameter estimation problem. If this 
matrix is singular then the parameter estimation problem for the linearized problem does not have a 
unique solution [10], and 

𝐹𝐹𝑘𝑘(𝜃𝜃0) = �   𝐹𝐹𝑘𝑘𝑖𝑖
𝑀𝑀

𝑖𝑖=1

(𝜃𝜃0), 𝑘𝑘 =  1,⋯ ,𝑁𝑁,                                                                            (12)  

with 

𝐹𝐹𝑘𝑘𝑖𝑖(𝜃𝜃0) = ��𝛻𝛻𝛻𝛻𝑘𝑘𝑖𝑖(𝜃𝜃0)�
𝑇𝑇

𝑀𝑀

𝑖𝑖=1

𝐷𝐷𝑘𝑘
(𝑖𝑖)𝐴𝐴𝑘𝑘

(𝑖𝑖)𝛻𝛻𝛻𝛻𝑘𝑘𝑖𝑖(𝜃𝜃0),      𝑖𝑖 =  1,⋯ ,𝑀𝑀. 

 
The main diagonal elements, 𝑔𝑔𝜋𝜋(𝑡𝑡𝑘𝑘 ,𝜃𝜃0) of the matrix 𝐺𝐺(𝑡𝑡𝑘𝑘  ,𝜃𝜃0) as a function of 𝑡𝑡𝑘𝑘 are called the 
generalized sensitivity function for the parameter components    𝜃𝜃𝜋𝜋,   𝜋𝜋 = 1,⋯ ,𝑝𝑝.   
 

𝑔𝑔𝜋𝜋(𝑡𝑡𝑘𝑘 ,𝜃𝜃0) = (𝐺𝐺(𝑡𝑡𝑘𝑘  ,𝜃𝜃0))𝜋𝜋,𝜋𝜋     ,𝜋𝜋 = 1,⋯ ,𝑝𝑝,        𝜃𝜃 ∈ 𝑈𝑈                                                    (13) 
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The GSFs give the following information concerning the dependence of the parameter estimates on 
the measurement of an output variable [10].  
i. Information on the correlation between parameters with respect to measurements for a specific 

output variable of the system. Oscillatory and monotonic behavior of the GSFs indicates a strong 
correlation between the parameters. A more or less monotonic increase of the GSFs from 0 to 
1 indicates little correlation amongst the parameters. 

ii. Information on the relative content of information carried by the measurements at different times 
for the parameters. If the GSF is monotonically increasing for a parameter, then the measurements 
taken in that time interval possess all information about the parameter in that interval, whereas the 
measurements taken outside that time interval are more or less irrelevant for the parameter. 

The GSFs i.e.,  𝑔𝑔𝜋𝜋(𝑡𝑡𝑘𝑘 ,𝜃𝜃0), 𝜋𝜋 = 1, . . . ,𝑝𝑝, are defined at each time interval and  𝑔𝑔𝜋𝜋(𝑡𝑡𝑘𝑘 ,𝜃𝜃0) = 0  for 
𝑡𝑡 < 𝑡𝑡1   and  𝑔𝑔𝜋𝜋(𝑡𝑡𝑘𝑘 ,𝜃𝜃0) = 1 for 𝑡𝑡 ≥ 𝑡𝑡𝑀𝑀. There is a transition of the GSFs from 0 to 1 for a single 
parameter, the GSFs are monotonic increasing [10]. For a detailed study of the GSFs, one may consult 
Kappel et al. [9] and Munir [10]. 
 
 
3. NUMERICAL IMPLEMENTATION 

The matlab function, ode45 is used to find the solutions of the Models (1) and (3) respectively with the 
true value of the parameters 𝜃𝜃0 = (0.1, 10) as  𝜌𝜌 = 0.1  and β =10  and true value of 𝜃𝜃0 as 
 

𝑁𝑁 𝑝𝑝 𝐾𝐾 𝛽𝛽1 𝛽𝛽2 𝛼𝛼 𝑟𝑟 𝜇𝜇 

0.7 0.001 0.02 0.09 0.04 10 0.002 0.003 
 
The initial conditions are respectively (𝑆𝑆0, 𝐼𝐼0,𝑅𝑅0) =  (95, 2, 3) and (𝑆𝑆0,𝐸𝐸0, 𝐼𝐼0) =  (95, 4, 1) over the time 
interval [0,𝑇𝑇], 𝑇𝑇 =  20 days, for a network consisting of 100 computers each. The number of model 
outputs is taken as two, 𝑀𝑀 =  2 i.e., 𝑓𝑓1(𝑡𝑡,𝜃𝜃)  =  𝑆𝑆(𝑡𝑡,𝜃𝜃)   and 𝑓𝑓2(𝑡𝑡, 𝜃𝜃)   =  𝑅𝑅(𝑡𝑡,𝜃𝜃) in the Model (1). The 
measurements of 𝑆𝑆(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) are taken respectively as 𝑦𝑦1(𝑡𝑡)  =  𝑆𝑆(𝑡𝑡,𝜃𝜃0)  + 𝜀𝜀1(𝑡𝑡) and  𝑦𝑦2(𝑡𝑡)  =
 𝑅𝑅(𝑡𝑡,𝜃𝜃0)  + 𝜀𝜀2(𝑡𝑡) . Similarly, for the model (3), only the measurements of 𝑆𝑆(𝑡𝑡) and 𝐼𝐼(𝑡𝑡) are considered as 
a test case because practically taking measurements for all 𝑆𝑆(𝑡𝑡), 𝐸𝐸(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑅𝑅(𝑡𝑡) together is costly and 
makes the problem more complex. The measurement processes are assumed to have zero mean and unit 
variance in both the cases.  The cost functional given by Equation (8) for the both the models is formed as 
per the theoretical framework described in sub-sub-section 2.2.2 above. 
 
 
4. RESULTS  

The results on the sensitivity and generalized sensitivity studies of the SIR and SEIR models are given in 
the paragraphs 
 
4.1. Sensitivities of the SIR Model  

The sensitivity functions and system sensitivity functions defined respectively by the Equations (5) and 
(6) are plotted for the SIR model. The sensitivities of the model output S and R with respect to the 
parameter 𝜌𝜌 and 𝛽𝛽 are drawn in the Fig. 1. It is evident that the output 𝑆𝑆 and 𝑅𝑅 changes with respect to 
these parameters up to 5 days. After this, the changes in these parameters bring no changes in the 
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Fig. 1. Sensitivity functions of S with respect to 𝜌𝜌 and 𝛽𝛽(upper-panel), and R with respect to 𝜌𝜌 and 𝛽𝛽 (lower-panel) 
for the SIR model. 

 

 
 

 

Fig. 2. GSFs of 𝜌𝜌 respectively  𝛽𝛽 when only measurements of S are taken on upper-left and upper-right   panels,  
when only measurements of R are taken on the lower-left and lower-right panels for the SEIR model.      
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    Fig. 3. System Sensitivity SIR model (left-panel) and combined GSFs (right-panel) of  SIR model. 
 
 
 
 

 
 

 
 
    Fig. 4. Sensitivity functions of individual outputs S, E and I for selected parameters of the SEIR model. 
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individual outputs. This implies that changes in the infected rate 𝜌𝜌 and the recovery rate 𝛽𝛽 will change the 
output in the beginning and not afterwards. 

System sensitivities of the parameters combine the effects of the sensitivities of both 𝑆𝑆 and 𝑅𝑅. System 
sensitivities for the model are given in Fig. 3 (left panel). The information given by the time courses of 
the system sensitivities are more or less similar to the information given by their individual sensitivities. 
The system sensitivities indicate that the parameter 𝜌𝜌 is a little bit more sensitive than the parameter 𝛽𝛽 up 
to the 5 days. After 5 days, both the parameters become insensitive. 
 
4.2. Generalized Sensitivities of the SIR Model 

The individual generalized sensitivities of the model output S and R with respect to the parameter 𝜌𝜌 and 𝛽𝛽 
are drawn in Fig. 2 according to Equation (13).  In this case, all the GSFs are monotonic increasing 
reaching to 1. The parameters  𝜌𝜌 and 𝛽𝛽 give the similar results for both the outputs. These GSFs show that 
the changes in the values of the parameters 𝜌𝜌 and 𝛽𝛽 will have effects over their estimates. In other words, 
we can say that the measurements of the outputs 𝑆𝑆 and 𝑅𝑅 up to 5 days are enough to estimates 𝜌𝜌 and 𝛽𝛽. 
Afterwords, these measurements possess no information for estimation of these two parameters.  

The generalized sensitivity functions (GSFs) have the additional advantage of showing the correlation 
between parameters in addition to their sensitivities. By taking the number of the mesh points as the 
number of the measurements using  as per our numerical scheme  and taking only the measurements of 𝑆𝑆 
and 𝑅𝑅, we find the GSFs of 𝜌𝜌 and 𝛽𝛽 together as shown in Fig. 3 (right panel) which signify that the 
measurement of 𝑆𝑆 and 𝑅𝑅 possess information for the parameter estimates up to 5 days. The oscillations 
between GSFs show that there is a high degree of oscillations between the estimates of 𝜌𝜌 and 𝛽𝛽. 
 
4.3. Sensitivities of SEIR Model 

First the sensitivity functions for the individual outputs and the system sensitivity defined respectively by 
the Equations (5) and (6) for the SEIR model are plotted. The sensitivities of the model outputs 𝑆𝑆, 𝐸𝐸 and 𝐼𝐼 
with respect to the parameter  𝑁𝑁, 𝑝𝑝, 𝐾𝐾, 𝛽𝛽1, 𝛽𝛽2, 𝛼𝛼, 𝜇𝜇 are drawn in Fig. 4. The model output S is least 
sensitive to all the parameters except 𝑝𝑝 and 𝑁𝑁. 𝐸𝐸 is insensitive to the parameter 𝜇𝜇. The compartment 𝐼𝐼 is 
insensitive to 𝜇𝜇 and  𝛽𝛽1. From these results one can see that the susceptible computers in the network are 
affected majorly by the rate at which external computers are connected to the network (𝑁𝑁) and the 
recovery rate 𝑝𝑝 of susceptible computer due to the anti-virus ability of network. System sensitivities for 
the model are given in Fig. 5. The information given by the system sensitivities are more or less similar to 
the information given by their sensitivities. From the system sensitivities, one can quantify the parameters 
in descending order of their sensitivities as 𝑝𝑝, 𝑁𝑁, 𝛼𝛼, 𝛽𝛽2, 𝐾𝐾, 𝛽𝛽1, 𝜇𝜇. The parameter 𝑟𝑟 is least sensitive. 
 
4.4. Generalized Sensitivities of the SEIR Model 

The GSFs are primarily drawn in two ways; one by taking a single parameter at a time and other by taking 
more than one parameter at a time. However, in the second case when the number of the parameters is 
very large, the Fisher Information Matrix becomes ill-condition. That is why one will avoid computing 
the GSFs for a large number of parameters.  Fig. 6 describes the GSFs of different parameters. The 
measurements of 𝑆𝑆 taken from 0 to 12 possess all information to estimate   𝜇𝜇. The parameter 𝑟𝑟 is 
insensitive with respect to the measurements of 𝑆𝑆,𝐸𝐸 and 𝐼𝐼 up to the 18 days as is evident from the first, 
fourth and fifth panels of Fig. 6. That means the changes in the true value of the parameters 𝑟𝑟 do not bring 
any changes in its estimates. In other words, 𝑟𝑟 cannot be identified when we take measurements up to 18 
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Fig. 5. System sensitivity for SEIR model. 

 
 

   
 

    
 

    

Fig. 6. Generalized sensitivity functions of individual outputs S, E and I for selected 
parameters of the SEIR model. 
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days [5] and [6]. However, it becomes sensitive at the end of the time interval [0, 20]. If one restricts the 
measurements of 𝐼𝐼 to the interval [0, 5], one cannot identify the parameter 𝑁𝑁. However, measurements 
taken beyond [0, 5] results in the identification of  𝑁𝑁. Similarly, the measurement of  E do not possess any 
information about estimating the parameter  𝑝𝑝 or the parameter estimate of 𝑝𝑝 does not change with 
changes in its true value if the measurements are restricted to the beginning of  [0, 20]. 

The GSFs have been drawn for selected parameters together by taking measurements of the outputs 𝑆𝑆 
and 𝐼𝐼 only. This situation also shows the correlation between them. 

The upper-left panel of Fig. 7 shows the GSFs of the parameters 𝑝𝑝 and 𝐾𝐾. This shows that the 
parameter 𝑝𝑝 is highly sensitive from the beginning of the interval [0, 20] whereas the parameter 𝐾𝐾 is 
totally insensitive in the interval [0, 5]. This implies that the measurements of the 𝑆𝑆 and 𝐼𝐼 taken in [0, 5] 
possess no information about the estimate of 𝐾𝐾, whereas these do have information about the estimate of 
𝑝𝑝. The oscillations between the GSFs of 𝑝𝑝 and 𝐾𝐾 show high degree of correlation between the estimates 
of these two parameters. The upper-right panel of Fig. (7) shows the GSFs of 𝑝𝑝 and 𝑟𝑟. The combined 
measurements of 𝑆𝑆 and 𝐼𝐼 do possess information about the parameter   𝑝𝑝. The case of 𝑟𝑟 is again different. 
The measurements do not identify 𝑟𝑟. Moreover, 𝑟𝑟 is not correlated with 𝑝𝑝 and with other parameters as 
was evident before. The center-down panel shows the GSFs of the parameters 𝛼𝛼, 𝑁𝑁, 𝛽𝛽1and 𝛽𝛽2. This shows 

     
 

 
Fig. 7. Combined generalized sensitivity functions for selected parameters of the SEIR model. 
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that 𝛼𝛼 and 𝛽𝛽2 are more generalized sensitive and highly correlated whereas the parameters 𝛽𝛽1 and 𝑁𝑁 are 
correlated, but are not so highly generalized sensitive. 
 
 
5. CONCLUSIONS 

The sensitivity and generalized sensitivity analyses of the SIR and SEIR models describing the dynamics 
of the computer virus have been performed. The main points are as under: 
i. The sensitivity functions describe the effects of changes in measurements on the model outputs 

whereas the generalized sensitivity functions describe the effects of changes in measurements over 
the parameter estimates. 

ii. One can jointly use the sensitivity and generalized sensitivity studies to quantify the highly sensitive 
parameters. 

iii. The sensitivities of  𝜌𝜌 and 𝛽𝛽 in the SIR model show that these two parameters are more or less 
equally sensitive for any outputs 𝑆𝑆 or 𝑅𝑅 or both. Their GSFs show that they are also highly correlated. 
So, one can suggest on this basis that this model can better describe the virus dynamics if other 
parameters or even a single parameter can be included in it. 

iv. The sensitivity studies of the SEIR model describes that the parameter 𝑟𝑟 is least sensitive for all 
measurements taken from the 𝑆𝑆, 𝐸𝐸 or 𝐼𝐼 or together. Its GSF is also negligible throughout the interval. 
This suggests that this parameter cannot be identified correctly through a parameter estimation 
process; however, it can be identified a priori.  

v. The parameters p, N and α are highly sensitive whereas the parameters  𝛽𝛽1, μ and r are the least 
sensitive in the SEIR model. 
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