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1. INTRODUCTION 

  Regular rings were introduced by Von 
Neumann in 1936, in order to clarify certain 
aspects of Operator Algebras. Since then regular 
rings have been very extensively studied for their 
own sake and for the sake of their links with the 
Operator Algebras. Semirings as generalized rings 
having no negative elements were initially defined 
by Vandiver in 1934 [1].  They have wide range 
applications in theoretical computer science.      
The algorithms for dynamic programming uses the 
theory of semirings. 

Steinfeld initially defined the quasi-ideals for 
semigroups and rings respectively in [2] and [3]. 
Iseki [4] introduced this concept for semirings 
without zero and proved some results. Shabir et al. 
[5] characterized semirings by the properties of 
their Quasi-ideals. 

 Lajos and Szasz [6] introduced the concept of 
bi-ideals for the associative rings. Quasi-ideals are 
the one-sided ideals and bi-ideals are their 
generalization. In this way, the study of the quasi-
ideals and bi-ideals become as important as other 
ideals. 

We present some basic concepts used in the 
context of semiring theory from the literature for 

our later pursuit in Section 2. Section 3 deals with 
the characterization of regular semirings by the 
properties of their quasi and bi-ideals. The intra-
regular and weakly regular semirings are 
characterized in Sections 4 and 5 respectively. For 
undefined terms, we refer to [7] and [8]. 

 

2. FUNDAMENTAL CONCEPTS 

Definition 2.1.  A semiring is a nonempty set 𝐴𝐴 
possessing two binary operations + (Addition) and 
∗ (Multiplication) such that (𝐴𝐴, +) is a 
commutative semigroup and  (𝐴𝐴,∗) is generally a 
non-commutative semigroup; connecting the two 
algebraic structures are the distributive laws; 
𝑎𝑎(𝑏𝑏 +  𝑐𝑐)  =  𝑎𝑎𝑎𝑎 +  𝑎𝑎𝑎𝑎 and (𝑎𝑎 +  𝑏𝑏)𝑐𝑐 =  𝑎𝑎𝑎𝑎 +
 𝑏𝑏𝑏𝑏, ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  𝐴𝐴. 

Definition 2.2.  A subsemiring of a semring 
 (𝐴𝐴, +,∗) is its nonempty subset 𝑆𝑆 provided it is 
itself a semiring under the operation of 𝐴𝐴. 

Definition 2.3.  A nonempty subset 𝐼𝐼 of a semiring 
(𝐴𝐴, +,∗), is called a right(left) ideal of 𝐴𝐴 if it 
satisfies the conditions that   𝑥𝑥 +  𝑦𝑦 ∈  𝐼𝐼, 𝑥𝑥 ∗ 𝑦𝑦 ∈
 𝐼𝐼  ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐴𝐴,  and  𝑥𝑥𝑥𝑥 ∈  𝐼𝐼(𝑎𝑎𝑎𝑎 ∈  𝐼𝐼),∀ 𝑥𝑥 ∈
 𝐼𝐼,𝑎𝑎 ∈ 𝐴𝐴.  𝐼𝐼 is called an ideal of 𝐴𝐴 if it is both left 
and right ideal. 

Definition 2.4. Let (𝐴𝐴, +,∗) be a semiring. A 
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quasi-ideal 𝑄𝑄 of 𝐴𝐴 is a subsemigroup (𝑄𝑄, +) of 𝐴𝐴 
such that  𝐴𝐴𝐴𝐴 ∩ 𝑄𝑄𝑄𝑄 ⊆ 𝑄𝑄 [4]. 

 Each quasi-ideal of a semiring 𝐴𝐴 is its 
subsemiring. Every one-sided ideal of 𝐴𝐴 is its  
quasi-ideal. Since intersection of any family of 
quasi-ideals of 𝐴𝐴 is its quasi-ideal [5], so 
intersection of a right ideal 𝑅𝑅 and a left-ideal 𝐿𝐿 of 
𝐴𝐴 is a quasi-ideal of 𝐴𝐴. Both the sum and the 
product of two or more quasi-ideals of 𝐴𝐴 need not 
be its quasi-ideal [5]. 

Definition 2.5. Let (𝐴𝐴, +,∗)  be a semiring. 𝐴𝐴 bi-
ideal 𝐵𝐵 is a subsemiring of 𝐴𝐴 if 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆ 𝐵𝐵. 

 Every quasi-ideal, product of two quasi-ideals 
e.g., the product 𝑅𝑅𝑅𝑅  of a semiring 𝐴𝐴 is its bi-ideal. 
However, every bi-ideal is not its quasi-ideal [5]. 
The product 𝑇𝑇𝑇𝑇 and 𝐵𝐵𝐵𝐵 of an arbitrary subset 𝑇𝑇 
and bi-ideal 𝐵𝐵 of a semiring 𝐴𝐴 are its bi-ideals. 
Since the product of two bi-ideals of a semiring is 
a bi-ideal, so is the intersection of their any finite 
or infinite family. 

 

3. CHARACTERIZING REGULAR 
SEMIRINGS 

Definition 3.1. An element 𝑎𝑎 of a semiring 𝐴𝐴 is 
called regular if 𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎 for some 𝑥𝑥 ∈ 𝐴𝐴. 
Semiring 𝐴𝐴 is called regular if each element of 𝐴𝐴 is 
regular [9]. If 𝑎𝑎 is regular element,  then  𝑎𝑎𝑎𝑎 and 
𝑥𝑥𝑥𝑥 are idempotent as 𝑎𝑎𝑎𝑎.𝑎𝑎𝑎𝑎 =  (𝑎𝑎𝑎𝑎𝑎𝑎)𝑥𝑥 =
𝑎𝑎𝑎𝑎 and  𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥 =  𝑥𝑥(𝑎𝑎𝑎𝑎𝑎𝑎)  =  𝑥𝑥𝑥𝑥. 

 We begin to characterize the regular semirings 
by the following theorem. 

Theorem 3.1. The results given below are 
equivalents [5]: 

(1) 𝐴𝐴 is regular, 
(2) 𝑅𝑅𝑅𝑅 =  𝑅𝑅 ∩  𝐿𝐿  for every  right-ideal 𝑅𝑅 and 

left-ideal 𝐿𝐿 of 𝐴𝐴, 
(3) (a). 𝑅𝑅2 = 𝑅𝑅, (b). 𝐿𝐿2 = 𝐿𝐿, and (c). 𝑅𝑅𝑅𝑅 is a 

quasi-ideal of 𝐴𝐴, 
(4)  The set of quasi-ideals of 𝐴𝐴 is a 

regular(multiplicative) semigroup, 
(5)  Each quasi-ideal 𝑄𝑄 is expressed as 

𝑄𝑄𝑄𝑄𝑄𝑄 =  𝑄𝑄. 

Proof. (1) ⇒ (2): If 𝑅𝑅 and 𝐿𝐿 are respectively the 
right and the left ideals of 𝐴𝐴, then clearly 𝑅𝑅𝑅𝑅 ⊆

𝑅𝑅 ∩ 𝐿𝐿. For the converse, let 𝑥𝑥 ∈  𝑅𝑅 ∩  𝐿𝐿, then 
𝑥𝑥 ∈  𝐴𝐴 and as 𝐴𝐴 is regular, so for some 𝑦𝑦 ∈  𝐴𝐴, we 
have  𝑥𝑥 =  𝑥𝑥𝑥𝑥𝑥𝑥 =  (𝑥𝑥𝑥𝑥)𝑥𝑥 ∈ 𝑅𝑅𝑅𝑅 because 𝑅𝑅 is 
right ideal . Thus 𝑅𝑅 ∩  𝐿𝐿 =  𝑅𝑅𝑅𝑅.  

(2) ⇒ (3): Let 𝑅𝑅𝑅𝑅 =  𝑅𝑅 ∩ 𝐿𝐿. Since   𝑅𝑅 ∩ 𝐿𝐿  is a 
quasi-ideal [5],  𝑅𝑅𝑅𝑅 is a quasi-ideal of 𝐴𝐴. Now if 𝐴𝐴 
is a semiring, then the ideal generated by the right 
ideal 𝑅𝑅 is 𝑅𝑅 +  𝐴𝐴𝐴𝐴, so by (2), we have 𝑅𝑅 =  𝑅𝑅 ∩
 (𝑅𝑅 +  𝐴𝐴𝐴𝐴)  =  𝑅𝑅(𝑅𝑅 +  𝐴𝐴𝐴𝐴)  =  𝑅𝑅2 + (𝑅𝑅𝑅𝑅)𝑅𝑅 ⊆
 𝑅𝑅2 +  𝑅𝑅2  ⊆ 𝑅𝑅2: 𝑖𝑖. 𝑒𝑒. ,𝑅𝑅 ⊆ 𝑅𝑅2, i.e., 𝑅𝑅2 =  𝑅𝑅. 
Similarly, we can prove that 𝐿𝐿2  =  𝐿𝐿. 

(3) ⇒ (4): Suppose (3) holds and let 𝐾𝐾 be the set 
of quasi-ideals of 𝐴𝐴, then 𝑄𝑄 +  𝐴𝐴𝐴𝐴 is its left-ideal 
generated by 𝑄𝑄. So by (3), we get 𝑄𝑄 ⊆  𝑄𝑄 +
 𝐴𝐴𝐴𝐴 =  (𝑄𝑄 +  𝐴𝐴𝐴𝐴)2 =  (𝑄𝑄 +  𝐴𝐴𝐴𝐴)(𝑄𝑄 +  𝐴𝐴𝐴𝐴) =
 𝑄𝑄 2 +  𝑄𝑄𝑄𝑄𝑄𝑄 +  𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ⊆ 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 +
𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 ⊆ 𝐴𝐴𝐴𝐴  i.e., Q ⊆ AQ.  Similarly, we can 
show that Q ⊆ QA. So 𝑄𝑄 ⊆ 𝐴𝐴𝐴𝐴 ∩ 𝑄𝑄𝑄𝑄. Since 𝑄𝑄 is 
Quasi-ideal,  𝐴𝐴𝐴𝐴 ∩ 𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄  i.e.,  

𝐴𝐴𝐴𝐴 ∩ 𝑄𝑄𝑄𝑄 =  𝑄𝑄  ….                                               (3.1) 

Now using 3(c) and (3.1), we get  

𝑅𝑅𝑅𝑅 =  𝐴𝐴𝐴𝐴𝐴𝐴 ∩ 𝐴𝐴𝐴𝐴𝐴𝐴 ….                                        (3.2) 

for right-ideal R and left-ideal 𝐿𝐿 of 𝐴𝐴. Now we 
shall prove that 𝑄𝑄1𝑄𝑄2 of two quasi-ideals 𝑄𝑄1 and 
𝑄𝑄2 is a quasi-ideal of A. By property 3(a) and 3(b), 
we have 𝐴𝐴𝑄𝑄1𝑄𝑄2  =  (𝐴𝐴𝑄𝑄1𝑄𝑄2)(𝐴𝐴𝑄𝑄1𝑄𝑄2)  =
 (𝐴𝐴𝑄𝑄1𝑄𝑄2)(𝐴𝐴.𝐴𝐴𝑄𝑄1𝑄𝑄2), and 𝑄𝑄1𝑄𝑄2𝐴𝐴 =
 (𝑄𝑄1𝑄𝑄2𝐴𝐴)(𝑄𝑄1𝑄𝑄2𝐴𝐴) =  (𝑄𝑄1𝑄𝑄2𝐴𝐴𝐴𝐴)(𝑄𝑄1𝑄𝑄2𝐴𝐴).  Thus 
using Equation (3.2), we get 

𝑄𝑄1𝑄𝑄2𝐴𝐴 ∩  𝐴𝐴𝑄𝑄1𝑄𝑄2  
=  (𝑄𝑄1𝑄𝑄2𝐴𝐴)(𝐴𝐴𝑄𝑄1𝑄𝑄2)𝐴𝐴 
∩  𝐴𝐴(𝑄𝑄1𝑄𝑄2𝐴𝐴)(𝐴𝐴𝑄𝑄1𝑄𝑄2) 

=  (𝑄𝑄1𝑄𝑄2𝐴𝐴)(𝐴𝐴𝑄𝑄1𝑄𝑄2)  ⊆  𝑄𝑄1(𝑄𝑄2𝐴𝐴𝑄𝑄2)  ⊆  𝑄𝑄1𝑄𝑄2 

i.e., (𝑄𝑄1𝑄𝑄2)𝐴𝐴 ∩  𝐴𝐴(𝑄𝑄1𝑄𝑄2)  ⊆  𝑄𝑄1𝑄𝑄2. So, 𝑄𝑄1𝑄𝑄2 is a 
quasi-ideal of 𝐴𝐴. Since the multiplication of quasi-
ideals of the semiring 𝐴𝐴 is associative in 𝐾𝐾, so 𝐾𝐾 is 
a semigroup. Finally, we shall show that 𝐾𝐾 is a 
regular semigroup. If Q is an arbitrary quasi-ideal 
of 𝐴𝐴, then the properties 3(a), 3(b) and the 
Relations (3.1) and (3.2) imply that 𝑄𝑄 =  𝑄𝑄𝑄𝑄 ∩
 𝐴𝐴𝐴𝐴 =  (𝑄𝑄𝑄𝑄.𝐴𝐴𝐴𝐴)𝐴𝐴 ∩  𝐴𝐴(𝑄𝑄𝑄𝑄.𝐴𝐴𝐴𝐴) =  𝑄𝑄𝑄𝑄.𝐴𝐴𝐴𝐴 =
𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄.   𝑆𝑆𝑆𝑆   𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄.  Thus 𝐾𝐾 is a regular 
semigroup. 
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(4) ⇒ (5): Let Q be a quasi-ideal of 𝐴𝐴. By 
assumption (4), we can find a Quasi-ideal 𝑋𝑋 of 𝐴𝐴 
so that  𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝐴𝐴𝐴𝐴 ∩  𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄; 
i.e., 𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄. 

(5) ⇒ (1): Let 𝑏𝑏 ∈  𝐴𝐴 and (𝑏𝑏)𝐿𝐿  and (𝑏𝑏)𝑅𝑅 be the 
principal left-ideal and the principal right-ideal of 
𝐴𝐴 generated by 𝑏𝑏, then since the intersection of a 
left and right ideal is a Quasi-ideal, so (𝑏𝑏)𝐿𝐿  ∩
 (𝑏𝑏)𝑅𝑅 is a quasi-ideal of 𝐴𝐴, so by (5), we have 
(𝑏𝑏)𝐿𝐿  ∩  (𝑏𝑏)𝑅𝑅   =  ((𝑏𝑏)𝐿𝐿  ∩  (𝑏𝑏)𝑅𝑅 )𝐴𝐴((𝑏𝑏)𝐿𝐿  ∩
 (𝑏𝑏)𝑅𝑅 ) ⊆ (𝑏𝑏)𝐿𝐿𝐴𝐴(𝑏𝑏)𝑅𝑅 .  Since 𝑏𝑏 ∈  (𝑏𝑏)𝐿𝐿  ∩  (𝑏𝑏)𝑅𝑅 , it 
follows that 𝑏𝑏 ∈  (𝑏𝑏)𝑅𝑅𝐴𝐴(𝑏𝑏)𝐿𝐿  . But (𝑏𝑏)𝑅𝑅𝐴𝐴 =  𝑏𝑏𝑏𝑏 
and (𝑏𝑏)𝐿𝐿  =  𝐴𝐴𝐴𝐴 ,  therefore 𝑏𝑏 ∈  𝑏𝑏𝑏𝑏(𝑏𝑏)𝐿𝐿  =  𝑏𝑏𝑏𝑏𝑏𝑏 
i.e., 𝑏𝑏 ∈  𝑏𝑏𝑏𝑏𝑏𝑏 i.e., 𝐴𝐴 is regular. 

 The following theorem signifies when a bi-
ideal of a semiring is a quasi-ideal. 

Theorem 3.2. Let 𝐴𝐴 be a semiring. Then the 
following assertions hold [5]: 

(1) Every quasi-ideal 𝑄𝑄 of 𝐴𝐴 can be written in the 
form as 𝑄𝑄 =  𝑅𝑅 ∩  𝐿𝐿 =  𝑅𝑅𝑅𝑅, where 𝑅𝑅 is the 
right and 𝐿𝐿 is the left-ideal,  

(2)  If 𝑄𝑄 is a quasi-ideal of 𝐴𝐴, then 𝑄𝑄2  =  𝑄𝑄3, 
(3) Every bi-ideal of 𝐴𝐴 is its  quasi-ideal, 
(4)  Every bi-ideal of any two-sided ideal of 𝐴𝐴 is a 

quasi-ideal of 𝐴𝐴. 

Proof: (1)  Let 𝐴𝐴 be a semiring and 𝑄𝑄 be a quasi-
ideal of 𝐴𝐴 then R=(𝑄𝑄)𝑟𝑟 = 𝑄𝑄 + 𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄, and 
𝐿𝐿 =  (𝑄𝑄)𝑙𝑙 =  𝑄𝑄 +  𝐴𝐴𝐴𝐴 =  𝐴𝐴𝐴𝐴. Clearly 𝑄𝑄 ⊆  𝑅𝑅 ∩
 𝐿𝐿 =  𝑄𝑄𝑄𝑄 ∩  𝐴𝐴𝐴𝐴 ⊆  𝑄𝑄 i.e., 𝑄𝑄 =  𝑅𝑅 ∩  𝐿𝐿.  But 𝐴𝐴 is 
a regular semiring, therefore 𝑄𝑄 =  𝑅𝑅 ∩  𝐿𝐿 =  𝑅𝑅𝑅𝑅 
by Theorem 3.2. 

(𝟐𝟐)  𝑄𝑄3 ⊆ 𝑄𝑄2  always holds. We have to show that 
𝑄𝑄2 ⊆ 𝑄𝑄3. By Theorem 3.1, 𝑄𝑄2is a quasi-ideal of 
𝐴𝐴. Furthermore 𝑄𝑄2 = 𝑄𝑄2A𝑄𝑄2 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄 
= 𝑄𝑄3i.e., 𝑄𝑄2 ⊆ 𝑄𝑄3. 

(3)  Let 𝐵𝐵 be a bi-ideal of 𝐴𝐴, then 𝐴𝐴𝐴𝐴 respectively 
𝐵𝐵𝐵𝐵 are left and right-ideal of 𝐴𝐴, therefore from 
Theorem 3.1, we have 𝐵𝐵𝐵𝐵 ∩  𝐴𝐴𝐴𝐴 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵 i.e., 𝐵𝐵𝐵𝐵 ∩  𝐴𝐴𝐴𝐴 ⊆  𝐵𝐵 i.e., 𝐵𝐵 is a quasi-
ideal of 𝐴𝐴. 

(4)  Finally let 𝐶𝐶 be an  ideal of 𝐴𝐴 and 𝐵𝐵 be a bi-
ideal of 𝐶𝐶. Then obviously 𝐶𝐶 is a regular 
subsemiring of 𝐴𝐴. By (3), 𝐵𝐵 is a quasi-ideal of 𝐶𝐶. 
Now 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆ 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐶𝐶𝐶𝐶𝐶𝐶 ⊆  𝐵𝐵𝐵𝐵 ∩  𝐶𝐶𝐶𝐶 ⊆  𝐵𝐵 

i.e., 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵 i.e., 𝐵𝐵 is a bi-ideal of 𝐴𝐴. Again by 
(3), 𝐵𝐵 is a bi-ideal of 𝐴𝐴. 

Theorem 3.3. Let A be a semiring with 1, then A is 
a division semiring if and only if it has no proper 
bi-ideals. 

Proof. Let 𝐴𝐴 be a semiring with 1 and 𝐵𝐵 ≠  0 be a 
bi-ideal of 𝐴𝐴. Let 0 ≠  𝑏𝑏 ∈ 𝐵𝐵. Since 𝐴𝐴 is a 
division ring, so 𝑏𝑏𝑏𝑏 =  𝐴𝐴𝐴𝐴 =  𝐴𝐴. But 𝑏𝑏𝑏𝑏 is a 
right-ideal and 𝐴𝐴 is regular, so 𝑏𝑏𝑏𝑏 ∩  𝐴𝐴𝐴𝐴 =
 (𝑏𝑏𝑏𝑏)(𝐴𝐴𝐴𝐴) [5]. Therefore, Theorem 3.1 gives, 
𝐴𝐴 =  𝑏𝑏𝑏𝑏𝑏𝑏 ⊆  𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵 i.e., 𝐴𝐴 ⊆  𝐵𝐵. But 
 𝐵𝐵 ⊆  𝐴𝐴, so 𝐴𝐴 =  𝐵𝐵. Hence 𝐴𝐴 has no proper bi-
ideal. 

 Conversely, if 𝐴𝐴 has no proper bi-ideal. Let 
0 ≠  𝑎𝑎 ∈  𝐴𝐴, then 𝑎𝑎𝑎𝑎 and 𝐴𝐴𝐴𝐴 are respectively the 
right and left-ideal of A and so are bi-ideals. Thus 
either 𝑎𝑎𝑎𝑎 =  𝐴𝐴(𝐴𝐴𝐴𝐴 =  𝐴𝐴) or 𝑎𝑎𝑎𝑎 =  0(𝐴𝐴𝐴𝐴 =  0). 
But  𝑎𝑎 ∈  𝑎𝑎𝑎𝑎(𝑎𝑎 ∈  𝐴𝐴𝐴𝐴), 𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 =  𝐴𝐴   and 
𝐴𝐴𝐴𝐴 =  𝐴𝐴. Thus 𝐴𝐴 is a division semiring.  

Theorem 3.4. For the semiring 𝐴𝐴, the following 
conditions are equivalents: 

(1) 𝐴𝐴 is regular, 

(2) For any bi-ideal 𝐵𝐵 of 𝐴𝐴, 𝐵𝐵 =  𝐵𝐵𝐵𝐵𝐵𝐵, 

(3) For any quasi-ideal 𝑄𝑄 of 𝐴𝐴, 𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄. 

Proof. (1) if and only if (3) proved in Theorem 
3.1. For a regular semiring, the concept of quasi-
ideal coincides with the concept of bi-ideal, so (1) 
if and only if (2).  

Theorem 3.5. The following results are 
equivalents for a semiring 𝐴𝐴 for all bi-ideals 𝐵𝐵, 
quais-ideals 𝑄𝑄 and any ideal 𝐴𝐴: 

(1) 𝐴𝐴 is regular, 

(2) 𝐼𝐼 ∩  𝐵𝐵 =  𝐵𝐵𝐵𝐵𝐵𝐵, 

(3) 𝐼𝐼 ∩  𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄. 

Proof: (1) ⇒ (2): Suppose 𝐴𝐴 is a semiring and I is 
any ideal of 𝐴𝐴 and 𝐵𝐵 is any bi-ideal of 𝐴𝐴 then 
𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐼𝐼 and 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵. Thus 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆
 𝐼𝐼 ∩  𝐵𝐵. Let 𝑥𝑥 ∈  𝐼𝐼 ∩  𝐵𝐵 then 𝑥𝑥 =  𝑥𝑥𝑥𝑥𝑥𝑥 for some 
𝑦𝑦 ∈  𝐴𝐴. Now 𝑥𝑥 =  𝑥𝑥𝑥𝑥𝑥𝑥 =  𝑥𝑥(𝑦𝑦𝑦𝑦𝑦𝑦)𝑥𝑥 ∈  𝐵𝐵𝐵𝐵𝐵𝐵. 
Thus 𝐼𝐼 ∩  𝐵𝐵 =  𝐵𝐵𝐵𝐵𝐵𝐵. 
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(2) ⇒ (3): Let I be any ideal of 𝐴𝐴 and 𝑄𝑄 any quasi-
ideal of 𝐴𝐴. As every quasi-ideal is bi-ideal, 
therefore by (2), 𝐼𝐼 ∩  𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄. 

(3) ⇒ (1): Since 𝐴𝐴 is an ideal of itself, therefore by 
(3),  𝐴𝐴 ∩  𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄, i.e., 𝑄𝑄 =  𝑄𝑄𝑄𝑄𝑄𝑄. Hence by 
Theorem 3.1, 𝐴𝐴 is a regular semiring.  

Theorem 3.6. The following conditions are 
equivalent for a semiring  𝐴𝐴 for all its right-
ideal 𝑅𝑅, left-ideal 𝐿𝐿, Quasi-ideal 𝑄𝑄 and bi-ideal 𝐵𝐵:  

(1) 𝐴𝐴 is regular, 

(2) 𝑅𝑅 ∩  𝐵𝐵 ⊆  𝑅𝑅𝑅𝑅, 

(3) 𝑅𝑅 ∩  𝑄𝑄 ⊆  𝑅𝑅𝑅𝑅, 

(4) 𝐿𝐿 ∩  𝐵𝐵 ⊆  𝐵𝐵𝐵𝐵, 

(5) 𝐿𝐿 ∩  𝑄𝑄 ⊆  𝑄𝑄𝑄𝑄, 

(6) 𝑅𝑅 ∩  𝐵𝐵 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅𝑅𝑅, 

(7) 𝑅𝑅 ∩  𝑄𝑄 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅𝑅𝑅. 

Proof. (1) ⇒ (2): Let 𝑥𝑥 ∈  𝑅𝑅 ∩  𝐵𝐵, so 𝑥𝑥 ∈  𝑅𝑅  &  
𝑥𝑥 ∈  𝐵𝐵. Since 𝐴𝐴 is regular,  there is 𝑦𝑦 ∈  𝐴𝐴  such 
that 𝑥𝑥 =  𝑥𝑥𝑥𝑥𝑥𝑥. Now 𝑥𝑥 =  (𝑥𝑥𝑥𝑥)𝑥𝑥 ∈  𝑅𝑅𝑅𝑅. Thus 
𝑅𝑅 ∩  𝐵𝐵 ⊆  𝑅𝑅𝑅𝑅. 

(2) ⇒( 3):  Since every quasi-ideal is a bi-ideals, 
therefore by (2), 𝑅𝑅 ∩  𝑄𝑄 ⊆  𝑅𝑅𝑅𝑅. 

(3) ⇒ (1): Since every one-sided ideal is a quasi-
ideal, therefore by (3), 𝑅𝑅 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅.  But 
𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩  𝐿𝐿.  Therefore,  𝑅𝑅 ∩ 𝐿𝐿 =  𝑅𝑅𝑅𝑅.  Hence 
by Theorem 3.2, 𝐴𝐴 is a regular semiring. Similarly,
we can show that (1) if and only if (4) if and only 

if (5) if and only if (1). 

(1) ⇒ (6): 𝑅𝑅 ∩  𝐵𝐵 ∩  𝐿𝐿 ⊆ (𝑅𝑅 ∩  𝐵𝐵)  ∩  𝐿𝐿 ⊆
 (𝑅𝑅𝑅𝑅)  ∩  𝐿𝐿   by (2). Now 𝑅𝑅𝑅𝑅 is a bi-ideal,  so by 
(4), 𝐿𝐿 ∩  (𝑅𝑅𝑅𝑅)  ⊆  (𝑅𝑅𝑅𝑅)𝐿𝐿. Thus 𝑅𝑅 ∩  𝐵𝐵 ∩  𝐿𝐿 ⊆
 𝑅𝑅𝑅𝑅𝑅𝑅. 

(1)⇒ (7): Since every quasi-ideal is a bi-ideal, 

therefore by (6), 𝑅𝑅 ∩  𝑄𝑄 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅𝑅𝑅 for 

right-ideal 𝑅𝑅, left-ideal 𝐿𝐿 and quasi-ideal 𝑄𝑄 of 

𝐴𝐴. 

(7) ⇒ (1): Then by (7), 𝑅𝑅 ∩  𝐴𝐴 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅𝑅𝑅 =
 (𝑅𝑅𝑅𝑅)𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅. Also 𝑅𝑅 ∩  𝐿𝐿 =  𝑅𝑅 ∩  𝐴𝐴 ∩
 𝐿𝐿.  𝑅𝑅 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅. But 𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩
 𝐿𝐿  always. Hence 𝑅𝑅 ∩  𝐿𝐿 =  𝑅𝑅𝑅𝑅. Thus by 

Theorem 3.1, 𝐴𝐴 is a semiring.  

Proposition 3.1. Let 𝐴𝐴 be a semiring with 
multiplicative identity 1, then the 

following are equivalent: 

(1).  𝑅𝑅 ∩  𝐿𝐿 ⊆  𝐿𝐿𝐿𝐿 for any right-ideal 𝑅𝑅 and 
left-ideal 𝐿𝐿 of 𝐴𝐴, 

(2).  Every 𝑎𝑎 ∈  𝐴𝐴 can be written as  𝑎𝑎 =
∑ 𝑥𝑥𝑖𝑖𝑎𝑎2𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1  where 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  ∈  𝐴𝐴. 

Proof. (1) ⇒ (2): let 𝑎𝑎 ∈  𝐴𝐴. Let 𝑅𝑅 =  𝑎𝑎𝑎𝑎 and 

𝐿𝐿 =  𝐴𝐴𝐴𝐴 be the right and the left-ideal 

generated by 𝑎𝑎 respectively. Then by 

𝑅𝑅 ∩ 𝐿𝐿 ⊆  𝐿𝐿𝐿𝐿, 𝑎𝑎 ∈  𝑅𝑅 ∩ 𝐿𝐿 ) 𝑎𝑎 ∈  𝐿𝐿𝐿𝐿. So 

𝑎𝑎 = ∑ 𝑥𝑥𝑖𝑖𝑎𝑎2𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  ∈  𝐴𝐴. 

(2) ⇒ (1): Let 𝑎𝑎 ∈  𝑅𝑅 ∩  𝐿𝐿. Then 𝑎𝑎 ∈  𝑅𝑅 and 

𝑎𝑎 ∈  𝐿𝐿.  By  (2), 𝑎𝑎 = ∑ 𝑥𝑥𝑖𝑖𝑎𝑎2𝑦𝑦𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
∑ (𝑥𝑥𝑖𝑖𝑎𝑎)(𝑎𝑎𝑦𝑦𝑖𝑖)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  ∈  𝑅𝑅𝑅𝑅. So   𝑅𝑅 ∩  𝐿𝐿 ⊆ 𝐿𝐿𝐿𝐿. 

 

4. CHARACTERIZING INTRA-REGULAR 
SEMIRINGS 

Intra-regular semiring is also an important class of 
semirings which can be studied by the properties 
of their quasi and bi-ideals. 

Definition 4.1. A semiring 𝐴𝐴 with multiplicative 
identity 1 is called intra-regular if every 𝑎𝑎 ∈  𝐴𝐴 
can be written as  𝑎𝑎 = ∑ 𝑥𝑥𝑖𝑖𝑎𝑎2𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1 ,  where 
𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖  ∈  𝐴𝐴.  

Thus a semiring 𝐴𝐴 with multiplicative identity 
1 is called intra- regular if it satisfies one of the 
conditions of Proposition (3.1). 

The next theorem states that the bi-ideals and 
quasi-ideal are idempotent for intra-regular  and 
regular semiring. 

Theorem 4.1. For a semiring with 1, the following 
are equivalents: 

(1) 𝐴𝐴 is both regular and intra-regular, 

(2) 𝐵𝐵2  =  𝐵𝐵 for every  bi-ideal 𝐵𝐵 of 𝐴𝐴, 

(3) 𝑄𝑄2  =  𝑄𝑄 for every quasi-ideal 𝑄𝑄 of 𝐴𝐴.  

Proof: (1) ⇒ (2): Let 𝐵𝐵 be any bi-ideal of 𝐴𝐴, then 
𝐵𝐵2  ⊆  𝐵𝐵𝐵𝐵𝐵𝐵, since 𝐴𝐴 contains multiplicative 
identity 1.  But 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵. Thus 𝐵𝐵2  ⊆  𝐵𝐵. Let 
𝑏𝑏 ∈  𝐵𝐵 then 𝑏𝑏 =  𝑏𝑏𝑏𝑏𝑏𝑏 for some 𝑥𝑥 ∈  𝐴𝐴, since 𝐴𝐴 is 
regular. Also since 𝐴𝐴 is intra-regular, 𝑏𝑏 =
∑ 𝑥𝑥𝑖𝑖𝑏𝑏2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖 , for some 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  ∈  𝐴𝐴. Thus 
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𝑏𝑏 =  𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑏𝑏𝑏𝑏(∑ 𝑥𝑥𝑖𝑖𝑏𝑏2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖)𝑥𝑥𝑥𝑥 
=∑ (𝑏𝑏𝑏𝑏𝑥𝑥𝑖𝑖𝑏𝑏)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (𝑏𝑏𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥).  Since 𝑏𝑏 ∈  𝐵𝐵, 
therefore 𝑏𝑏(𝑥𝑥𝑥𝑥𝑖𝑖)𝑏𝑏 ∈  𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵 and 𝑏𝑏(𝑦𝑦𝑖𝑖𝑥𝑥)𝑏𝑏 ∈
 𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵. Thus  = ∑ (𝑏𝑏𝑏𝑏𝑥𝑥𝑖𝑖𝑏𝑏)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (𝑏𝑏𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥)  ∈
 𝐵𝐵𝐵𝐵 =  𝐵𝐵2. Hence 𝐵𝐵 ⊆   𝐵𝐵2. Consequently 
𝐵𝐵 =   𝐵𝐵2. 

(2)⇒ (3): As every quasi-ideal is a bi-ideal, 
therefore by (2), 𝑄𝑄 =  𝑄𝑄2. 

 (3) ⇒ (1): Since  𝑅𝑅 ∩  𝐿𝐿 being the intersection of 
two quasi-ideals is a quasi-ideals, so from (3),  
𝑅𝑅 ∩ 𝐿𝐿 = (𝑅𝑅 ∩ 𝐿𝐿)(𝑅𝑅 ∩ 𝐿𝐿)  ⊆  𝑅𝑅𝑅𝑅.  But 𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩
𝐿𝐿. So  𝑅𝑅 ∩ 𝐿𝐿 =  𝑅𝑅𝑅𝑅.  Now from Theorem (3.1), 𝐴𝐴 
is regular. 𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅 ∩  𝐿𝐿 =  (𝑅𝑅 ∩ 𝐿𝐿)2  =
 (𝑅𝑅 ∩  𝐿𝐿)(𝑅𝑅 ∩  𝐿𝐿) ⊆  𝐿𝐿𝐿𝐿.   So by Proposition 
(3.1), 𝐴𝐴 is intra-regular.  

Theorem 4.2. The following conditions are 
equivalent for a semiring A with 

identity : 

(1) 𝐴𝐴 is both regular and intra-regular, 

(2) 𝐵𝐵1  ∩  𝐵𝐵2  ⊆  (𝐵𝐵1𝐵𝐵2)  ∩  (𝐵𝐵2𝐵𝐵1)  for any bi-
ideal 𝐵𝐵1 and 𝐵𝐵2 of 𝐴𝐴, 

(3) 𝐵𝐵 ∩  𝑄𝑄 ⊆  (𝐵𝐵𝐵𝐵)  ∩  (𝑄𝑄𝑄𝑄)  for any bi-ideal B 
and quasi-ideal Q of A, 

(4) 𝑄𝑄1  ∩  𝑄𝑄2  ⊆  (𝑄𝑄1𝑄𝑄2)  ∩  (𝑄𝑄2𝑄𝑄1)  for any 
quasi-ideals 𝑄𝑄1and 𝑄𝑄2of 𝐴𝐴, 

(5) 𝐵𝐵 ∩  𝑅𝑅 ⊆  (𝐵𝐵𝐵𝐵)  ∩  (𝑅𝑅𝑅𝑅)  for any bi-ideal B 
and right-ideal 𝑅𝑅 of 𝐴𝐴, 

(6) 𝑄𝑄 ∩  𝑅𝑅 ⊆  (𝑄𝑄𝑄𝑄)  ∩  (𝑅𝑅𝑅𝑅)  for any quasi-ideal 
𝑄𝑄 and right-ideal 𝑅𝑅 of 𝐴𝐴, 

(7) 𝐵𝐵 ∩  𝐿𝐿 ⊆  (𝐵𝐵𝐵𝐵)  ∩  (𝐿𝐿𝐿𝐿)  for any bi-ideal 𝐵𝐵 
left-ideal L of 𝐴𝐴, 

(8) 𝑄𝑄 ∩  𝐿𝐿 ⊆  (𝐵𝐵𝐵𝐵)  ∩  (𝑄𝑄𝑄𝑄)  for any quasi-ideal 
𝑄𝑄 and left-ideal 𝐿𝐿 of 𝐴𝐴, 

(9) 𝑅𝑅 ∩  𝐿𝐿 ⊆  (𝐿𝐿𝐿𝐿)  ∩  (𝑅𝑅𝑅𝑅)  for any right-ideal 
𝑅𝑅 and left-ideal 𝑅𝑅 of 𝐴𝐴, 

Proof. (1) ⇒ (2): Since 𝐵𝐵1∩𝐵𝐵2 is a bi-ideal of 𝐴𝐴, 
so by Theorem 4.2 , 𝐵𝐵1∩𝐵𝐵2  =  (𝐵𝐵1 ∩ 𝐵𝐵2)(𝐵𝐵1 ∩
𝐵𝐵2)  ⊆  𝐵𝐵1𝐵𝐵2.  Also  𝐵𝐵1 ∩ 𝐵𝐵2  ⊆  𝐵𝐵2𝐵𝐵1. Thus 
𝐵𝐵1 ∩ 𝐵𝐵2 ⊆  (𝐵𝐵1𝐵𝐵2) ∩  (𝐵𝐵2𝐵𝐵1). 

(1) ⇒ (3): As every quasi-ideal is bi-ideal, 
therefore by (2), 𝐵𝐵 ∩  𝑄𝑄 ⊆  (𝐵𝐵𝐵𝐵) ∩ (𝑄𝑄𝑄𝑄). 

(2) ⇒ (4): As every quasi-ideal is bi-ideal, 
therefore by (3), 𝑄𝑄1  ∩  𝑄𝑄2  ⊆  (𝑄𝑄1𝑄𝑄2) ∩
 (𝑄𝑄2𝑄𝑄1) 

(3) ⇒ (6): As every right-ideal is quasi-ideal, 
therefore by (4), 𝑄𝑄 ∩  𝑅𝑅 ⊆ (𝑄𝑄𝑄𝑄)  ∩  (𝑄𝑄𝑄𝑄). 

(6) ⇒ (9): As every left-ideal is quasi-ideal, 
therefore by (6), 𝐿𝐿 ∩  𝑅𝑅 ⊆  (𝐿𝐿𝐿𝐿)  ∩ (𝑅𝑅𝑅𝑅). 

(9) ⇒ (1): 𝐴𝐴𝐴𝐴 𝐿𝐿 ∩  𝑅𝑅 ⊆  (𝐿𝐿𝐿𝐿)  ∩  (𝑅𝑅𝑅𝑅), so 
𝑅𝑅 ∩ 𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅.   But  𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩ 𝐿𝐿, therefore 
𝑅𝑅 ∩ 𝐿𝐿 =  𝑅𝑅𝑅𝑅. Hence 𝐴𝐴 is regular. 𝑅𝑅 ∩ 𝐿𝐿 ⊆  𝐿𝐿𝐿𝐿 
implies that 𝐴𝐴 is intra-regular.  Thus we have 
shown that  

 (1) ⇒ (2) ⇒ (3)  ⇒(4) ⇒ (6) (9) ⇒ (1). Similarly 
we can show that (1) ⇒ (2) ⇒ (5) ⇒ (9) ⇒ (1) and  

 (1) ⇒ (2) ⇒ (7) ⇒ (8) ⇒ (9) ⇒ (1).  

Theorem 4.3. The following are equivalent for a 
semiring 𝐴𝐴 with 1 for its any right-ideal 𝑅𝑅, left-
ideal 𝐿𝐿, bi-ideal 𝐵𝐵 and quais-ideal 𝑄𝑄: 

(1) 𝐴𝐴 is both regular and intra-regular, 

(2)  𝐵𝐵 ∩  𝐿𝐿 ⊆  𝐵𝐵𝐵𝐵𝐵𝐵 , 

(3) 𝐵𝐵 ∩  𝑅𝑅 ⊆  𝐵𝐵𝐵𝐵𝐵𝐵, 

(4) 𝑄𝑄 ∩  𝐿𝐿 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄, 

(5) 𝑄𝑄 ∩  𝑅𝑅 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄. 

Proof. (1) ⇒ (2): Take 𝑎𝑎 ∈ 𝐵𝐵 ∩  𝐿𝐿,  then 𝑎𝑎 ∈  𝐵𝐵  
&  𝑎𝑎 ∈  𝐿𝐿. Since 𝐴𝐴 is regular and intra-regular,  
therefore 𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑎𝑎 = ∑ 𝑥𝑥𝑖𝑖𝑎𝑎2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖 ,  
where 𝑥𝑥, 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈  𝐴𝐴. Now 𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
 𝑎𝑎𝑎𝑎(∑ 𝑥𝑥𝑖𝑖𝑎𝑎2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖)𝑥𝑥𝑥𝑥 = 𝑎𝑎(∑ 𝑥𝑥𝑥𝑥𝑖𝑖𝑎𝑎2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥) = 
𝑎𝑎(∑ 𝑥𝑥𝑥𝑥𝑖𝑖𝑎𝑎)(𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥) ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, because 
𝑎𝑎𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥 ∈  𝐵𝐵𝐵𝐵𝐵𝐵 ⊆  𝐵𝐵. 

(𝟐𝟐) ⇒ (4): Since a quasi-ideal is a bi-ideal, 
therefore by (2), 𝑄𝑄 ∩ 𝐿𝐿 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄. 

(4) ⇒ (1): 𝑅𝑅  being right ideal is a quasi-ideal, so 
by (4), 𝑅𝑅 ∩  𝐿𝐿 ⊆  𝑅𝑅𝑅𝑅𝑅𝑅 ⊆  𝐿𝐿𝐿𝐿. Thus by 
Proposition (3.1), 𝐴𝐴 is intra-regular. Now let 𝐼𝐼 be 
any ideal of 𝐴𝐴, then 𝐼𝐼 is a left-ideal so by (4), 
𝑄𝑄 ∩  𝐼𝐼 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄: On the other hand, 𝑄𝑄𝑄𝑄𝑄𝑄 ⊆
 𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝐼𝐼, so 𝑄𝑄𝑄𝑄𝑄𝑄 ⊆  𝑄𝑄 ∩  𝐼𝐼. 
Thus 𝑄𝑄 ∩  𝐼𝐼 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄.  So by Theorem (3.5), 𝐴𝐴 is 
regular. Similarly, we can show that (1) ⇒ (3) ⇒ 
(5) ⇒ (1). 
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5. CHARACTERIZING WEAKLY-
REGUALR SEMIRINGS 

Analogous to von Neumann regular rings, a ring 𝑅𝑅 
is weakly-regular if x ∈ (𝑥𝑥𝑥𝑥)2 for each 𝑥𝑥 ∈ 𝑅𝑅. 
These rings were introduced by Brown and 
McCoy [10], later investigated by Rammamurthy 
[11]. Here we characterize weakly-regular 
semirings using their quasi-ideals and bi-ideals. 

Definition 5.1. A semiring A is called a right 
weakly-regular semiring if for each 𝑥𝑥 ∈  𝐴𝐴, 
𝑥𝑥 ∈  (𝑥𝑥𝑥𝑥)2. Thus, if 𝐴𝐴 is commutative then 𝐴𝐴 is 
weakly-regular if and only if 𝐴𝐴 is regular. In 
general, however, regular semirings form a proper 
subclass of weakly-regular semirings. 

 We start to give their characterization by 
following theorem. 

Theorem 5.1. The following are equivalent for a 
semiring 𝐴𝐴 with 1: 

(1) 𝐴𝐴 is weakly-regular, 

(2) 𝑅𝑅2 = 𝑅𝑅 for all right-ideal 𝑅𝑅 of 𝐴𝐴, 

(3) For every ideal 𝐼𝐼 of 𝐴𝐴, 𝑅𝑅 ∩  𝐼𝐼 =  𝑅𝑅𝑅𝑅. 

Proof: (1) ⇒ (2):  Clearly 𝑅𝑅 2 ⊆  𝑅𝑅. For the 
converse, let 𝑥𝑥 ∈  𝑅𝑅; so 𝑥𝑥 ∈  (𝑥𝑥𝑥𝑥)2. Hence x ∈ 
𝑅𝑅 2, so R = 𝑅𝑅 2. 

(2) ⇒ (3): let x ∈ I. Since 𝑥𝑥 ∈  (𝑥𝑥𝑥𝑥)  =  (𝑥𝑥𝑥𝑥)2, it 
follows that 𝑥𝑥 =  𝑥𝑥𝑥𝑥, for some 𝑦𝑦 ∈  𝐼𝐼. For a right-
ideal 𝑅𝑅 of 𝐴𝐴, clearly 𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩  𝐼𝐼. Let 𝑥𝑥 ∈  𝑅𝑅 ∩
 𝐼𝐼. Then there exists 𝑦𝑦 ∈  𝐼𝐼 such that 𝑥𝑥 =  𝑥𝑥𝑥𝑥. 
Thus 𝑥𝑥 ∈  𝑅𝑅𝑅𝑅 i.e., 𝑅𝑅 ∩  𝐼𝐼 ⊆  𝑅𝑅𝑅𝑅, so 𝑅𝑅 ∩  𝐼𝐼 =  𝑅𝑅𝑅𝑅. 

(𝟑𝟑) ⇒ (1): Let 𝑥𝑥 ∈  𝐴𝐴, Then 𝑥𝑥 ∈  (𝑥𝑥𝑥𝑥)  ∩
 (𝐴𝐴𝐴𝐴𝐴𝐴)  =  (𝑥𝑥𝑥𝑥)(𝐴𝐴𝐴𝐴𝐴𝐴)  ⊆  (𝑥𝑥𝐴𝐴2)(𝑥𝑥𝑥𝑥)  ⊆
(𝑥𝑥𝑥𝑥)(𝑥𝑥𝑥𝑥) i.e., x ∈ (𝑥𝑥𝑥𝑥)2. Hence 𝐴𝐴 is right 
weakly-regular.  

Theorem 5.2. For a semiring 𝐴𝐴 with identity 1, 
the following conditions are equivalent for all bi-
ideal B, quasi-idea Q, ideal I and right-ideal 𝑅𝑅 of 
A, 

(1) 𝐴𝐴 is right weakly-regular, 

(2) 𝐵𝐵 ∩  𝐼𝐼 ∩  𝑅𝑅 ⊆  𝐵𝐵𝐵𝐵 𝑅𝑅,  

(3) 𝑄𝑄 ∩  𝐼𝐼 ∩  𝑅𝑅 ⊆  𝑄𝑄𝑄𝑄 𝑅𝑅. 

Proof. (1) ⇒ (2): Let x ∈  ∩  𝐼𝐼 ∩  𝑅𝑅 ⇒ 𝑥𝑥 ∈  𝐵𝐵, x ∈ 
I and 𝑥𝑥 ∈  𝑅𝑅. Since 𝑥𝑥 ∈  𝐴𝐴 and A is right weakly-
regular, therefore x ∈  (𝑥𝑥𝑥𝑥)2. i.e., x = 
∑ 𝑥𝑥𝑟𝑟𝑖𝑖𝑥𝑥𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   for some, 𝑠𝑠𝑖𝑖 ∈ A. Now, 
x=∑ 𝑥𝑥𝑠𝑠𝑖𝑖𝑥𝑥𝑟𝑟𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   = ∑ 𝑥𝑥𝑠𝑠𝑖𝑖(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∑ 𝑥𝑥𝑠𝑠𝑖𝑖𝑥𝑥𝑟𝑟𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ) 𝑟𝑟𝑖𝑖  
=∑ 𝑥𝑥𝑎𝑎𝑖𝑖𝑥𝑥𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑐𝑐𝑖𝑖, where 𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑖𝑖, 𝑐𝑐𝑖𝑖∈ 𝐴𝐴. Thus x = 
∑ 𝑥𝑥(𝑎𝑎𝑖𝑖𝑥𝑥𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)𝑐𝑐𝑖𝑖 ∈  𝐵𝐵𝐵𝐵𝐵𝐵. Hence 𝐵𝐵 ∩  𝐼𝐼 ∩
 𝑅𝑅 ⊆  𝐵𝐵𝐵𝐵𝐵𝐵. 

(1) ⇒ (3): Every quasi-ideal is a bi-ideal, therefore 
by (2), 𝑄𝑄 ∩  𝐼𝐼 ∩  𝑅𝑅 ⊆  𝑄𝑄𝑄𝑄𝑄𝑄. 

(3) ⇒ (1): Taking 𝑄𝑄 =  𝑅𝑅, 𝐼𝐼 =  𝐼𝐼  and  𝑅𝑅 =  𝐴𝐴,  
we get from (3), 𝑅𝑅 ∩  𝐼𝐼 ∩  𝐴𝐴 ⊆  𝑅𝑅𝑅𝑅𝑅𝑅. As 𝑅𝑅 ∩
 𝐼𝐼 ∩  𝐴𝐴 =  𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑅𝑅𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅𝑅𝑅. Thus 𝑅𝑅 ∩  𝐼𝐼 ⊆
 𝑅𝑅𝑅𝑅. But 𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩  𝐼𝐼, so by Theorem (5.1), A is 
right weakly-regular.  

Theorem 5.3. For a semiring 𝐴𝐴 with identity, the 
following are equivalent for all bi-ideals 𝐵𝐵 and 
two-sided ideals 𝐼𝐼: 

(1) 𝐴𝐴 is right weakly-regular, 
(2) 𝐵𝐵 ∩  𝐼𝐼 ⊆  𝐵𝐵𝐵𝐵, 
(3) 𝑄𝑄 ∩  𝐼𝐼 ⊆  𝑄𝑄𝑄𝑄. 

Proof. (1) ⇒ (𝟐𝟐):  Let 𝑥𝑥 ∈  𝐵𝐵 ∩  𝐼𝐼, then 𝑥𝑥 ∈
 𝐵𝐵 and 𝑥𝑥 ∈  𝐼𝐼. Since 𝑥𝑥 ∈  𝐴𝐴 and 𝐴𝐴 is right weakly-
regular, therefore 𝑥𝑥 ∈  (𝑥𝑥𝑥𝑥)2  i.e., x = 
∑ 𝑥𝑥𝑟𝑟𝑖𝑖𝑥𝑥𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   for some 𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖 ∈ A. Now 𝑥𝑥 =
∑ 𝑥𝑥(𝑟𝑟𝑖𝑖𝑥𝑥𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 )  ∈  𝐵𝐵𝐵𝐵. Thus 𝐵𝐵 ∩  𝐼𝐼 ⊆ 𝐵𝐵𝐵𝐵. 

(2) ⇒ (3): Since a quasi-ideal is a bi-ideal, 
therefore by (2), 𝑄𝑄 ∩  𝐼𝐼 ⊆  𝑄𝑄𝑄𝑄. 

(3) ⇒ (1): Since a one-sided ideal is a quasi-ideal , 
therefore by (3), 𝑅𝑅 ∩  𝐼𝐼 ⊆  𝑅𝑅𝑅𝑅. But 𝑅𝑅𝑅𝑅 ⊆  𝑅𝑅 ∩  𝐼𝐼.  
Therefore 𝑅𝑅 ∩  𝐼𝐼 =  𝑅𝑅𝑅𝑅. Hence by Theorem (5.1), 
𝐴𝐴 is a right weakly-regular. 
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