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Abstract: We investigate the existence and stability of matter wave travelling coupled dark solitons in two
effectively one-dimensional parallel coupled Bose-Einstein condensates. The system can be described by
linearly coupled Gross-Pitaevskii equations. In particular, we have examined the effects of changing the
value of coupling strength between the condensates over the stability of travelling coupled dark solitons. It
is found that the travelling coupled dark solitons are unstable but the instability of the solutions can be
defeated by having a control on the coupling strength.
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1. INTRODUCTION

In the last decade of the 20th century, one of the magnificent and successful achievements in the field of
quantum physics was the realization of Bose-Einstein condensates (BEC) of alkali atoms [1, 2]. The first
prediction about BEC was made in early 1920s by Bose and Einstein. The atoms of BEC follow Bose
statistics and are linked with the essential physical phenomenon such as superconductivity in metals and

superfluidity in helium [3, 4].

Dilute atomic BEC is substantially a nonlinear system that possesses the solitary wave solutions. A
soliton is a localized wave which strength itself and keeps its original form unchanged when moving with
fixed velocity. Solitons originate due to the balance of dispersive and nonlinear effects in the medium.
They can be either bright as localized height or dark as localized depth on a continuous background. The
velocity of a soliton is directly associated with its height or depth as if it is either a bright or a dark soliton
respectively. Individual solitons can collide and remain unchanged in velocity, amplitude and shape but

possibly not for phase shift [5].

The study of matter wave dark solitons has been a delightful area of research. The criterion for the
one dimensional dynamical stability of matter wave dark soliton was presented in [6]. The snake
instability was suppressed by tightly encompassing the motion in the radial direction and keeping the
mean field interaction of atoms smaller than the frequency. The investigation of vortices in BEC were
exhibited both theoretically and experimentally in [7].

The notion of tunneling of electrons between two superconductors linked by a very thin insulator [8]

was extended to the tunneling of atoms in BEC by Smerzi et al. [9, 10, 14] and is known as the Josephson
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tunneling. The experimental realization of such tunneling for a single and a collection of small Bose-
Josephson junction was presented in [12]. The concept of Bose-Josephson junction was extended to long
Bose-Josephson junction [13, 14]. This idea was similar to long superconducting Josephson junction. It
was suggested in [13] that atomic vortices can be viewed in weakly coupled BEC and that these atomic
vortices are identical to Josephson fluxon in superconducting long Josephson junction [15]. Furthermore,
it was depicted that these atomic vortices can be reversibly transformed to dark soliton and the

transformation can be controlled through coupling strength.

In this study, we investigate the existence and stability of travelling dark solitons in two cigar-shaped
coupled BEC. Specifically, we study the effects of variation in the value of coupling parameter on the

stability of matter wave travelling dark solitons moving with a particular velocity in BEC.

The paper is formatted as follows. In section 2, we consider the coupled system of nonlinear
Schrodinger equations describing BEC and find the matter wave travelling coupled dark soliton solution
numerically. In section 3, we discuss the stability of the travelling soliton solution while changing the

coupling strength. We conclude our results in section 4.

2. MATHEMATICAL MODEL AND DESCRIPTION

We consider a system of two parallel cigar-shaped coupled BEC with the repulsive intra atomic
interactions. The system can be described by two one-dimensional coupled nonlinear Schrodinger

equations which can be written as

621 16221
L T T29x2 +ulZi1?Zy — wZy —yZ,, (1)
azz 16222
Y O +ulZy1°Z, — wZ, —vZy, (2)

where Z; and Z, denote the wave functions of atoms of two BEC. The variables X and ¢t represent
respectively the space and time variables. u is the nonlinearity coefficient and y is the coupling strength
between the condensates. w is the chemical potential which is the rate of change of energy with respect to
the number of atoms. Both y and w can be controlled experimentally using different techniques.

Typically, they can be controlled by using a combination of lasers of different intensities.

Since the soliton solutions of equations (1) and (2) are translationally invariant, this property of
translational invariance motivated us to study the existence and stability of matter wave dark soliton in a

moving coordinate frame of reference. So, we substitute x = X — vt in equations (1) and (2) to obtain

621 10%Z, 5 07,
I = T3 .2 +ulZ|1°Zy —wZy —yZ, + v 3)
azz 1027, 5 07,
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where v represents the velocity of the soliton solutions.
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For the steady state solutions, we substitute aZt =0= aaitz in equations (3) and (4) and acquire
10%Z, 5 07,
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1027, 5 07,
~ 5 +ulZ,1°Z, — —yZl+w§=O. (6)

Since Z; and Z, are complex, we substitute Z; = a; + ib; and Z, = a, + ib, in equations (5) and (6) and

after equating real and imaginary parts on both sides, we get the following equations
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We discretize equations (7), (8), (9) and (10) to obtain
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where j = 1,2, ..., N. The equations (11), (12), (13) and (14) represent a nonlinear system of algebraic
equations. We employ Newton’s method with the Neumann boundary conditions Z,, = Z,; and

ZnyN = Zpn+1, 1 = 1,2, to get the travelling coupled dark soliton solutions as depicted in Fig. (1).
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Fig. 1. Travelling Coupled dark soliton solution obtained numerically for the parameter values p=1, w =1,
y=0.2and v =0.3.

3. STABILITY OF TRAVELLING COUPLED DARK SOLITONS

For investigating the stability of travelling coupled dark solitons, we first assume that Zfo) (x) and
Zéo) (x) are the steady state solutions of system of equations (3) and (4). We add very small perturbations

p1(x,t) and p, (%, t) in these solutions Zio) and Z éo) respectively, i.e.

Zy (%, t) = 2,9 (x) + py (2, 1), (15)

Zy(x,t) = Z,0 () + po(x, 0). (16)

We substitute the values of Z; (x, t) and Z,(x, t) in equations (3) and (4) and after doing linearization, we

obtain

apl L0°p, opy

Yot T 2 0x? +1(22) P+ 20|20 pr— omy —vp + W (17)
0P, 102 b2 0 o  Op,
i3 = 7o THE )Pz + 2|2, — wpy — ypy + W (18)

Here bar denotes the complex conjugate. Taking complex conjugate of equations (17) and (18), we get

P 10— 0i_  _ _ opp

—i ==t @ ©)p + 2u|7, | Py — wpr — Pz — lvg (19)
10 op;
=== 2 4 1z ®)2p, + 2|2, 57 — w; — v - wﬁ (20)

For the sake of simplicity, we substitute p; = §;, P; = 01, Py = 8,, D, = 0, in equations (17), (18),
(19), (20) and obtain
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i% - —%%1521 +u(2,9) 0y + 202, O 8, — w8, — 8, + iv% =26, 1)
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where the scalar A represents the eigenvalues. We discretize the above four equations to get
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02,j+1 — 02,j-1\
) = oy, 28)

where j = 1,2,...,N. Applying the Neumann boundary conditions 6,9 = 8,1 and oy y = Opn41, N =

1, 2, the above system of equations (25), (26), (27) and (28) can be written as an eigenvalue problem
CY = 1Y,

where
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The solution will be stable if all the eigenvalues are real. But, if, atleast one of the eigenvalues is

imaginary, the solution will be unstable.

The eigenvalues of the stability matrix C are evaluated and are depicted in Fig. 2. It is easy to see that
a few of the eigenvalues are lying vertically while all the remaining eigenvalues are lying horizontally.
The eigenvalues lying vertically shows that the travelling coupled dark soliton is unstable. For the
verification of the results obtained, we perform the numerical integration of the system of equations (3)
and (4) by perturbing the solution shown in Fig. 1. In particular, the numerical integration is done by
applying the fourth order Runge-Kutta method. The contour plot of the time evolution of travelling
coupled dark soliton is shown in Fig.3. The radiation are emerging at nearly t = 35 and reveals that the
solution is unstable which justifies the results already obtained. The instability causes the solution to
move away from the centre. Moreover, the density of the atoms in one of the panels go on increasing with

time.
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Fig. 2. The layout of eigenvalues for the solution presented in Fig. 1. Some of the eigenvalues are not on the
horizontal axis and indicate the instability of the solution.
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We then investigate the stability of the travelling coupled dark soliton for different values of velocity
v. It is observed that the critical value y, of the coupling parameter y at which the solution becomes stable
varies with v. When v = 0, the critical value of the coupling strength is 1/3. This agrees with the result in
[13] and is shown in Fig. (4) by brown dotted curve. For different nonzero values of v, we find the critical
values y, by plotting the stability curves as displayed in Fig. (4). One can see that y,. decreases with v and
tends to zero as v goes to 1. The graph of y, versus v is shown in Fig. (5). The travelling coupled dark
soliton exists and is unstable below the curve while it is stable above the curve in its domain of existence.
This means that the instability of travelling coupled dark soliton can be managed by having a control over

the coupling strength.
i -
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Fig. 3. The contour plot for the time evolution of the solution shown in Fig. (1). Radiation are emerging and the
solution shifts away from the centre due to instability.
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Fig. 4. The graph of coupling strength versus the maximum value of the imaginary parts of the eigenvalues
corresponding to different values of velocity. The dotted curve is for zero velocity and shows that the value of
critical coupling is 1/3. The other curves correspond to the non zero velocity and depict that the value of critical
coupling decreases with velocity.




Matter Wave Travelling Dark Solitons 467

0.4

-2 02t ]

01f .

0 I I 1 I
0 0.2 0.4 0.6 0.8 1

Vv

Fig. 5. The graph of velocity versus the corresponding values of critical coupling y,.. Below the curve, the coupled
dark soliton solutions exist and are unstable, while they are stable above the curve in their domain of existence.

4. CONCLUSIONS

In this paper, we have examined the existence and stability of matter wave travelling coupled dark
solitons in two quasi one-dimensional parallel coupled BEC. It has been found that the travelling coupled
dark solitons moving with velocity v exist for v < 1. The stability of travelling coupled dark soliton
solutions has been investigated while varying the value of coupling strength. The region in the vy, -plane
was determined in which the travelling coupled dark solitons were found to be unstable. However, the
instability of travelling dark soliton can be controlled through the coupling strength.
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