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Abstract: We introduce some new subsemigroups of the finite full transformation semigroups 7, . We
consider various irregular boards of different shapes and sizes to generate subsemigroups of 7, using the

four idempotent operators L, R, U, D. These operators shift tiles on a board in four different directions
(left, right, up and down) in their respective rows and columns. In this way each operator

Oe G = {L, R, U, D} defines a member of L. og the base setX={1, 2, ..., n} and the

semigroups of various properties are given as .S T, .
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1. INTRODUCTION AND PRELIMINARIES

We will consider different shaped boards consisting of tiles. We assume that the tiles of the board can
be dragged in four different directions (left, right, up and down) by introducing the four idempotent
operators L, R, U, D on the board. We denote the operator L(7 ) = L, as that which moves the tile T

from co-ordinates (i, j) to (i' , j) that can be reached by sliding 7 to the left until it encounters a

barrier. (It is assumed that each row and column has barriers at the edges of the boards and
perhaps elsewhere as well.) In a similar way we define the right operator R, while the up operator U
and the down operator D acts on the second co-ordinate in an entirely analogous fashion.

In this way each operator Oe G = {L, R, U, D} defines a member of the full trangformgation
T, .
We wish to study this finite semigroup, which is generatedby a pair of disjoint two-elemen -Z€ero
subsemigroups R, = {L, R} and R, ={U, D}. (The subscript %, v stands respectively for horizontal

Semigroup “Ganyushkin and Mazorchuk[5]” on the base set X = {1, 2, ..., n} and putS

and vertical.) A similar finite subsemigroup of 7, on rectangular m X n bi-coloured board B with

2< m < n withm rows and n columns has been discussed recently in “Ahmad [1, 6]”. We will
apply the operators from right to left so the operator UD = UD(B) will mean, first operate D followed
by U.Before going into details of the semigroups, we will define some basic notions. For
undefined semigroup terminology we will refer to “Peter [2], Howie [3], Ganyushkin and Mazorchuk

[5]’7‘

An element a of a semigroup S will be called idempotent ifa* = a. A non-emptysubset 4 of S is
called a left ideal if S4 4, a right ideal if 4S € 4 and an (two-sided) ideal if it is both a left and right
ideal. If @ is an element of a semigroup S, the smallest left ideal of S containing a is aSau{a},

denoted by S'a and will be called the principal left ideal generated by a. For any set X, the full
transformation Semigroup (7, o) is the semigroup of all mappings from X into X under the operation of

composition of mappings. An elementaof a semigroup S is called regular if there exists an element x
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in S such that a = axa; S is called regular if all its elements are regular. The set of all regular
elements of § is denoted by Reg(S). A semigroup S is calleda rectangular band if aba =a for
all @, b in S.The term band is used in general for a semigroup consisting of idempotents. A
commutative band is called a semilattice. Any band is a semilattice of rectangular bands
“Howie[3,Theorem 4.4.1]”. For ae S, we say that a is an inverse of aifaaa =aand aaa =a. The

set of all inverses of an element ain S is denoted by V' (a). Obviously every idempotent e is regular

(e = eee) and every regular element a has an inverse.

The equivalence Z on S is defined by the rule thata.Zb if and only if @ and b generate the same
principal left ideal, that is, if and only if S'a = S'b. Similarly the equivalenceX is defined by the rule

that a Rb if and only if aS'= bS'. The # relation is defined to be the intersection of the Z and
Rrelations.The join Zv R_of L and Rwill be called the D-relation. Similarly, since the principal two-

sided ideal of S generated by a is S'aS', we can definethe equivalence J by the rule that a gb if and only
ifS'aS' = §'pS". 1t is immediate that .Z J and RcJ . Hence, since D is the smallest equivalence
containing Z and X, we must have .2 ¢ J . For finite semigroups and for any 7', , we have the equality
D= as appears in “Howie [3, Proposition 2.1.4].

2. MATERIALS AND METHODS

We will use different types of boards, like L-shape, T and Y- shape boards consisting of » tiles to
introduce various finite subsemigroups of the finite semigroups T,.

3. RESULTS AND DISCUSSION

One-Tile Semigroup thatis Regular but not a Band

Here, we will consider an L-shaped one-tile board of four cells that will be labelled {1, 2, 3, 4}. We
will assume that this board has one moving cell that will be called its tile.

Definition 1. A board B will be called convex if we can travel between any two cells by a
horizontal and then a vertical movement (in some order).

Let B be the L-shaped board as in the following Fig. 1.

The board B in the Fig. 1 has four cells with base set {1, 2, 3,4}. The L, R, U, D operators, as defined in
the previous section act on the moveabletile T e {1, 2, 3, 4} as follows:

3.1. Calculations of Presentation for the L-semigroup.

For this type of calculations, we follow the method as outlined by “Pin [4, Section 3.1]” whichguarantees
to produce a presentation of a semigroup S (but the presentation maycontain redundant relations).

The Actions of Operators of Length 1

The actions of operators L, R, U, and D on the L-shaped board are given as follows:

Fig. 1. L-shaped board with a single movable tile.
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Tiles
Operators 1 ) 3 4
L 1 1 1 4
R 3 3 3 4
U 1 2 3 3
D 1 2 4 4

Note that the operator L moves the tiles 1, 2, 3, 4 of the board B respectivelytowards 1, 1, 1, 4.

The Actions of Operators of Length 2
We calculate successively (1). LL to (16).DD and list the relatedrelations as in the following table.

Operatros Tiles Relations
1 2 3 4
L 1 1 1 4 (1) LL=L (15) DU=D
R 3 3 3 4 (2) LR=1L (16) DD =D
U 1 2 3 3 (5) RL=R (21) LUL =LU
D 1 2 4 4 (6) RR=R (22) LDR = DR
(3) LU 1 1 1 1 (10) UR = RU (28) RDR = DR
(4) LD 1 1 4 4 (1) UU=U (29) ULU = LU
(7) RU 3 3 3 3 (12) UD =U (38) DRD = DR
(8) RD 3 3 4 4 (13) DL =L
(9) UL 1 1 1 3
(14) DR 4 4 4 4
(30)ULD 1 1 3 3

The Actions of Operators of Length 3

We calculate successively the actions of operators of length 3from (17) to (40) as (17) LLU, (18)
LLD, (19) LRU, ... (39) DUL, (40) DDR.

The relations already known enable us to avoid the calculation of (17), ..., (20),(22),...,(28),(32),...
, (37), (39), (40), (42), (43), (44) since LLU = LU,LLD = LD, LRU = LU and so on.

We now have the following representation for the semigroup generated by the idempotents L, R, U, D.
S=(L,URD: ’=LR=R U*=U,D*=D,LR =L, RL =R, UR = RU,DL = L,
DU =D, UD =U,ULU =LU,LUL = LU, LDR = DR, DRD = DR, RDR :DR>
Removing the redundancies we have,

S;= (L,U,R D :LR =L, RL =R, UR = RU,DL = L, DU = D,
UD=U,ULU =LU,LUL = LU, LDR = DR, DRD = DR, RDR = DR).

As in the case of previous boards, we can show that|S1 |:| S| = 11 and soS, = S. Now we have
Table 1.
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Table 1.
L R U D UL RU DR LU LD RD ULD
L L L LU LD LU LU DR LU LD LD LU
R R R RU RD RU RU DR RU RD RD RU
U UL RU U U UL RU RU LU ULD RU ULD
D L DR D D L DR DR LU LD DR LD
UL UL UL LU ULD LU LU RU LU ULD ULD LU

RU RU RU RU RU RU RU RU RU RU RU RU
DR DR DR DR DR DR DR DR DR DR DR DR
LU LU LU LU LU LU LU LU LU LU LU LU
LD L DR LD LD L DR DR LU LD DR LD
RD R DR RD RD R DR DR RU RD DR DR
ULD UL RU ULD ULD UL RU RU LU ULD RU ULD

Note that each element is idempotent except UL&RD, where (U L)2= LU and (RD)2= DR, hence S is
not an orthodox. However, it can be checked that UL and RD are still regular, since (U L)D(U
L) = UL and (RD) L (RD) =RD.

3.2. D-classes for the L-semigroup

The D-classes are given as follows:

LD RU
U
R RD DR
ﬁl :ﬁz . fﬁ 3
D UL ULD LU

4. OPERATIONS ON A T-SHAPED BOARD

Now we consider a T-shaped 4-cell board with one moveable cell with the base set {1, 2, 3, 4} as in the
following Fig. 2.

Fig. 2. T-shaped board with a single movable tile.
The L, R, U, D operators then act as follows and generate an idempotent-generated semigroup that is not a
band but still is regular and furthermore it is conventional. The operators are given as follows:
4.1. Calculations of Presentation for the T-semigroup

The Actions of Operators of Length 1: The actions of the operators L, R, U, and D are given as
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The Actions of Operators of Length 2: We calculate successively (1). LL, (2). LR, up to (16).DD

as follows.

Relations

Operator 1 5 3 4

L 1 1 1 4 () LL=L

R 3 3 3 4 (2) LR=L

U 1 2 3 2 () RL=R

D 1 4 3 4 (© RR=R
3) LU 1 1 1 1 ZZ gg:g
(4) LD 1 4 1 4 (13)DL=1L
(7) RU 3 3 3 3 (14) DR=R
(8) RD 3 4 3 4 (15) DU =D
@) UL 1 1 1 2 (16) DD = D
(10) UR 3 3 3 2

The Actions of Operators of Length 3: We continue to calculate successively from (17) to (40) as (17)
LLU, (18) LLD, (19) LRU, ..., (39) DU L, (40) DU R.

The known relations enable us to avoid the calculations of (17), . .., (20),(23),...(26), (33), ...,

(40)since ULL = UL, DLL = DL, URL = U R andso on. The continuation of the calculations, then gives

Calculaitons of Length 3

OPERATORS TILES RELATIONS
1 2 3 4
L 1 1 1 4 ()LL=L (15) DU =D
R 3 3 3 4 (2)LR=L (16) DD = D
U 1 2 3 2 (5)RL =R (21) LUL = LU
D 1 4 3 4 (6) RR =R (22) LUR = LU
3) LU ] . . ! (1) UU=U (27) RUL = RU
4 LD . 4 | 4 (12)UD =U (28) RUR = RU
7) RU 3 ; ; ; (13) DL =L (29) ULU = LU
@ RD 5 A 5 A (14) DR = R (31) URU = RU
9) UL 1 1 1 2
(10) UR 3 3 3 2
(30) ULD 1 2 1 2
(32) URD 3 2 3 2
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The Actions of Operators of Length 4: No more new calculations for length 4 are possible as LU L =
LU =LURand RU L = RU = RUR, etc.is avoiding the new entries.

We now have the following representation for the semigroup of the T-shaped board.
S=(L,URD:I’=LRP=R U*=U,D*=D,LR =L, RL = R, DR = R, DU = D,
DL =L, UD=U,RUL =RU,ULU =LU,LUL =LU,LUR =LU,RUR =RU,URU = RU>

Again, on removing the redundancies we have
S;={(L,U,R,D:LR=LRL=RDR=RDU=D,UD=U,DL =1L,
RUL =RU,ULU =LU,LUL =LU,LUR = LU, RUR = RU, URU = RU>

Using these relations and generators we have Table 2 for the semigroup S of the T-shaped board having
one moveable tile under the shift operators

Table 2.
L R U D UL UR LU RU LD RD ULD  URD
L L L LU LD LU LU LU LU LD LD LU LU
R R R RU RD RU RU RU RU RD RD RU RU
U UL UR U U UL UR LU RU ULD URD ULD URD
D L R D D L R LU RU LD RD LD RD

UL UL UL LU ULD LU LU LU LU ULD ULD LU LU
UR UR UR RU URD RU RU RU RU URD  URD RU RU
LU LU LU LU LU LU LU LU LU LU LU LU LU
RU RU RU RU RU RU RU RU RU RU RU RU RU
LD L L LD LD L L LU LU LD LD LD LD
RD R R RD RD R R RU RU RD RD RD RD
uLb UL UL ULD ULD UL UL LU LU ULD ULD ULD ULD
URD UR UR URD URD UR UR RU UR URD URD URD URD

Clearly the table shows that the elements UL and UR are not idempotents but are regular as
UL = ULLD)UL
UR = UR(LD)UR

4.2. D-classes for the T-semigroup.

The D-classes for the T-shaped board semigroup are given as follows:

LD
U LU
R RD
D, D: D,
UL ULD
D RU
UR URD

The L and T-shaped boards semigroups are not orthodox. However, the T-semigroup is an example
of a finite conventional semigroup that is notorthodox as follows by the following result.
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Proposition 2. The T-semigroup associated with the T-shaped board is conventional.

Proof. To show the single tile semigroup T is conventional, we need to show that aea is always
idempotent (as we know that T is regular but not orthodox). However, there are only two non-

idempotent elements, U L and U R, and since the tile has left-right symmetry, we only need to check that
there is no factorization of UL of the form aea .

Suppose that UL = aea . The Table 2 shows this is possible only if a is a member of the set
X = {U, UL, U LD} and a is a member of the set Y= {L, R, U L, U R}. On the other hand, since
V(U)=U V(UL)={LD, RD} and V (U LD) = U LD. Clearly the inverses of each element of the set X
has an empty intersection with Y. This shows that no factorization of the from, UL = ata (for anyze S, )
is possible. Hence T is conventional Semigroup that is not orthodox.

Fig. 3. Y-shaped board with a single movable tile.

Definition 3. A semigroup is called E-solid if the idempotents e, f, g satisfy, eR{ and f Zg, then there is
an idempotent / such that eZh and hRg.

T. E. Hall, recently asked (personal communication) if conventional semigroups are E-solid. The
answer is indeed ‘no’ as T is not E-solid: R, RD, ULDe E(S)but ULg¢ E(S).

5. IRREGULAR ONE-TILE SEMIGROUP

We will include here another special kind of one-tile board of the shape Y consisting of six cells on the
base set {1, 2, 3,4, 5, 6}. We will assume again that the board has a single movable tile.

The L, R, U, D operators on the Y-shaped board are defined as follows:

L(B) = 1 R(B) = 1 2 3 4 56
12 225 6 1 4 4 4 5 6
u®) = 123456 DB) = (12 3 4 5 6
353656 12142 4
LUB = (1 2 3 4 56
252656
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Proposition 4. The semigroup S generated by the operators on the Y- shaped board is irregular.
Proof. LU (1) = L(2) = 2.LetWe S'. ThenW (2)e{2, 4, 5, 6}. Hence

(LUYW(LU)(1) = LUW (2)c LU {2, 4, 5, 6} = L{5, 6} = {5, 6}.Since 2¢{5, 6} it follows that
(LU)W(LU)=LUNWeS'. Hence LUg Reg(S).

Remark 5. We observe that the semigroups associated with the convex boards, for example, any T,

L-shaped boards are all regular while the semigroup of Y-shaped board is irregular. Hence we
conjecture that if the board is convex then the associated semigroup is regular.

Definition 6. A semigroup S is called aperiodic semigroup if all subgroups of S are trivial.

Conjecture. The one-tile semigroup on a board with no internal barrier is aperiodic.

We include an example of a non-aperiodic semigroup when internal barriers are allowed. In the Fig. 4
hard lines represent the barriers.

I
I
2 1 3
I
—emem-—--
| [ 1
6 1 I (I
I | I
=== -q----T----
| I
- I____JI_...__
! |
5 I \ 4
| L

Fig. 4. A board with an internal barrier.

Since an internal barrier to the left of square 1 exists. We have
DRUL(0) =DRU (1)=DR2)=D3)= 4
DRU L(4) =DRU (5)=DR(6)=D(7)= 0.

Hence, DRU L(0) =4, DRU L(4) =0 and so, S = DRU L contains a nontrivial subgroup. Whence, the
semigroup of this board is not aperiodic.

6. ONE-TILE SEMIGROUPS CORRESPONDING TO RECTANGLE OF ANY SIZE ARE
ISOMORPHIC

Theorem 7. One-tile semigroups corresponding to any m X n, (2 < m, n)rectangle are isomorphic
Proof. Let 2 < m, n. Consider a one-tile m X n rectangular board B as follows;
B={@ij):1<i<m1<j<n}

We list the action of the four operators L, R, U, D on the board B as under;
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L(i,j) = (i,1) = LL(i,j), i <m; R(i,j) = (i,n) = RR(i,j), i < m;
U(i,j) =(Lj)=UU/(ij)j<n D(i,j) = (mj) =DD(ij),j<n,
Similarly,

LU (i,j) = (L1) = UL(i,j); RU(i,j) = (L n) = UR(i,j);

LD(i,j) = (m, 1) = DL(i,j); RD(i,j) = (m, n) = DR(i, j).

Since L, R commute with U, D we can write any word in the formw = uv whereue{L, R} and

ve{U, D}. Further, since {L, R} and {U, D} are left-zero semigroups w equals one of the 8 listed
elements in the one-tile semigroup S. Hence the semigroup S on a one-tile rectangular board has at

most 8 elements L, R, U, D, LU, RU, LD and RD. Hence one-tile semigroups corresponding to any
m X n, (2 < m, n)rectangle are isomorphic.

7. CONCLUSIONS

Finite semigroups are very rare in the literature of Semigroup theory. This work provides a variety of
subsemigroups of the finite transformation semigorups in an amazing way while playing with tiles of
irregular boards. We provide various several finite subsemigroups of different types.
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