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Abstract: Deformable registration methods are widely used for the accurate registration of objects with large-
scale deformation. In this paper, we present a detail review on performance analysis of deformable registration 
methods. We comprehensively review each registration method and describe its features, advantages, issues 
and challenges.   Deformable registration methods are further quantitatively compared and evaluated based 
on a set of criteria, which estimate the performance of each method.  The performance of registration methods 
is estimated using root mean square error (RMS), mutual information (MI), computational time complexity 
and memory requirement.  It is found in our analysis that every registration method has its own strength 
to register deformable objects. However, due to large-scale variations in deformable objects most of the 
registration methods are not still a perfect choice in clinical applications. Therefore, advanced and powerful 
registration methods are needed to develop  in  future, which can precisely, efficiently, and automatically 
register medical images with large-scale deformations.
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1.	 INTRODUCTION

In the last two to three decades, tremendous 
growth has been observed in the area of medical 
image analysis due to the development of 
automated, efficient, accurate, and non-invasive 
devices. Medical imaging [1-4] is used in several 
applications in the clinical setting such as 
diagnostic setting, planning and procedures. The 
role of medical imaging is now not only limited 
to simple visualization and inspection of anatomic 
structures but it is also used as a tool for surgical 
and radiotherapy planning, inter and intra-operative 
navigation and for tracking the progress of disease 
[5]. 

	 The rapid advancement in this challenging area 
has driven the need for sophisticated pre-processing 
techniques. Image registration [6-18] is the most 
important step in medical image processing in which 
one to one geometric correspondence between 
source and target images is established. The source 
image is fixed image, which remain unchanged 

during registration process while the target image 
is the moveable image super-imposed on the source 
image. In image registration, both images represent 
the same organ/tissue obtained from either a same 
modality but with different time frames/ angles or 
by different imaging modalities. The basic purpose 
of establishing geometric correspondence between 
source and target image is to obtained useful and 
complementary information. This is done by 
quantitatively comparing their features using sets 
of parameters which includes feature detection, 
feature matching, transform model estimation and 
image re-sampling and transformation [19-21]. 

	 Recent developments and wide spread use in 
imaging modalities [9, 10, 22-24] provides an easy 
to use platform for the radiologists and surgeons 
to obtain useful information from human anatomy. 
However, each modality show different types 
of information i.e. either anatomical (showing 
mainly morphology) or functional (showing 
mainly information on the metabolism of the 



fundamental anatomy). Modalities such as X-rays, 
magnetic resonance imaging (MRI) , computed 
tomography (CT) and ultrasound (US) [25] are 
used to obtain anatomical information while single-
photon emission computed tomography (SPECT) 
and positron emission tomography (PET) are 
used to extract functional information. However, 
both MRI (DWI, DCE-MRI, and MRSI) and US 
(Elastography, contrast enhanced US) can also be 
used to obtain functional information. The proper 
integration of useful information from two separate 
images taken with different types of modalities is 
often required in the clinical tracks of events. This 
is done by the registration process which brings the 
separate images obtained from different modalities 
into special alignment and integrates useful 
information from them.

	 Deformable registration is widely used in 
computer assisted surgery and radiotherapy for the 
accurate voxel by voxel mapping of medical images 
with large-scale local and global deformations. 
Deformable registration also enhances the 
planning, execution and evaluation of surgical 
procedures [26]. In deformable registration, a 
special association between source and target 
image is established during transformation. The 
correspondence between transformations signals 
are usually performed locally in a non-linear and 
dense fashion [27].

	 Deformable registration is one of the best 
choices for the analysis of medical images 
obtained either by the same or by different imaging 
modalities having high degree of functional and 
anatomical variability. Deformable registration 
algorithms either operate on images features such 
as lines, counters and points/ landmarks or on their 
gray levels i.e. directly on pixel or voxel data [28]. 
Algorithms belong to deformable registration can 
successfully determine the local differences in the 
anatomy and accordingly resolve them.

	 One of the main challenges today for deformable 
registration methods are how to properly validate 
them on clinical data. The lack of adaptation in 
clinical workflow is due to their limited availability 
and high computational requirements [29]. Several 
other challenges includes recovering a local 
transformation that align two signals that have a 
non-linear relationship, proper alignment of tissue 
having sudden change in volume,  registering poor 
and non-diagnostic quality images, and designing 
image similarity for multi-model scans. 

	 The importance and popularity of deformable 
registration have led to several survey papers, 
which are listed in Table 1, together with the 
publication years and topics. In general, each paper 
covers only a subset of the topics in deformable 
registration. For Example,  the work of Sotiras 
et al. [27] is one of the comprehensive review on 

Year Reference Topic

1996 [5] Deformable Models in Medical Image Analysis: A Survey

2008 [97] Objective assessment of deformable image registration in radiotherapy: A multi-
institution study

2010 [90] Implementation and evaluation of various demons deformable image registration 
algorithms on a GPU

2011 [98] Deformable Medical Image Registration: Setting the State of the Art with Discrete 
Methods

2013 [99] Evaluation of various deformable image registration algorithms for thoracic images

[27] Deformable Medical Image Registration: A Survey

[10] Survey of Medical Image Registration

2015 [30] Evaluation of various Deformable Image Registrations for Point and Volume 
Variations

Table 1. Surveys on deformable registration.
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deformable medical  image registration in which 
they attempt to give an overview on the recent 
advances in the field and evaluate each component 
of deformable registration. Although the work of 
Sotiras et al provide in-depth systematic review 
but they not cover the quantitative evaluation of 
deformable registration methods. Similarly the 
review of Mani et al. gives a short overview and the 
pros and cons of several types registration methods 
including deformable registration [10]. The study 
of Han et al. [30] evaluated accuracy of various 
DIR algorithms using variations of the deformation 
point and volume. Mclnerney and Terzopoulos [5] 
present a detail review on the development and 
application of deformable models to problems of 
fundamental importance in medical image analysis, 
such as segmentation and registration.

	 We have performed the experiments on the 
datasets of two 2D rat lung images, the one after 
inspiration of air into lungs (source image) and the 
second after exhalation (target image).  The size of 
each image is 128 * 126 and the physical spaces 
are one millimeter along x axis and one millimeter 
along y axis.   The datasets and parameters are 
obtained from [31].

	 The main scope of this paper is focused on the 
quantitative evaluation on deformable registration 
methods. Furthermore, recent developments and 
challenges are also analyzed. The evaluation 
parameters are outlined in Fig  1 which includes 
mutual information (MI), root mean square error 
(RMS), computation time and memory space 
occupied during execution. We have found the 
accuracy and efficiency of each deformable 
registration method with the help of these 
parameters.  

The main contribution of this review are as follows.

•	 Deformable registration methods which includes 
finite element model (FEM) based, BSplines, 
level set motion, BSplines multi-grid, warping 
with kernel Splines, warping with BSplines, 
asymmetric demon and symmetric demon 
deformable registration methods are discussed 
in a clearly organized manner, and their 
performance are shown.

•	 To examine the state of the art, each registration 

method involved in medical image processing are 
discussed in detail. The merits and limitations of 
each method is summarized. Our main focus is on 
the detail estimation of accuracy and efficiency 
because the performance of deformable 
registration is not been surveyed previously using 
these parameters. 

•	 We discuss the future work  on deformable image 
registration methods

•	 This work attempts to provide a theoretical 
foundation and compact platform for researchers 
by evaluating the important aspects of deformable 
image registration methods. 

•	 It will also help clinicians by providing relevant 
and quantitative information on diagnostic, 
surgical and treatment planning which will 
eventually improve their knowledge on this 
challenging area of research.

•	 The above mentioned contributions clearly 
distinguish our survey from the existing surveys 
on deformable registration methods. To our 
knowledge, our survey is the broadest.

	 The remainder of this paper is organized as 
follows: Section 2 briefly reviews the work related 
to image registration. Section 3 categorize and 
presents the methods for deformable registration in 
detail. Section 4 analyzes the performance of each 
method. Section 5 summarizes this paper.

2.	   MEDICAL IMAGE REGISTRATION 

Image segmentation and registration are the two 
main areas of medical image processing. Image 
segmentation divides an image into different 
segments of interest while image registration 
establishes a one to one correspondence between 
two different images of the same organ. Literature 
study dictates that image segmentation and 
registration are the most challenging areas of 
medical image processing and a lot of research 
work is available on it [5, 8-10, 19, 20, 22, 32-
39]. Fig  2 show the process of registration of 
human head 3D images acquired using CT and 
MRI scanners. In the registration process, source 
CT image which is the most suitable to represent 
anatomical information i.e. bones is mapped on MR 
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Fig. 1. Evaluation parameters for deformable registration methods.

Fig. 2. CT and MR registration of brain images.
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image which shows functional information such as 
soft tissues and tumor [40, 41]. It is shown in Fig  
2 that the registered image provide more useful 
information not only about the tumor but also about 
the soft tissues and bony structures.

	 It is also shown in Fig.  2 that the process 
of registration is based on three important steps 
i.e. transformation, similarity measures and 
optimization techniques. The steps involved in 
registration processes are interrelated and iterative. 
In the transformation step the points or landmarks in 
source image space is mapped to the corresponding 
target image space [42]. A transformation function 
maps source image to target image considering 
image dimensionality, accuracy, and computational 
speed [43, 44]. Similarity measure,  is another 
important step in image registration because it can 
precisely estimate the correspondence between 
source and target images. Similarity measure 
estimate the degree of matching between source and 
target images and it is based on pixel intensities and 
patterns, cross-correlation, anatomical structures 
and mutual information [20, 43, 45-47]. Angle of 
view, time interval and sensor used are the essential 
parameters for estimating the similarity measure 
of input images. It is important to choose best 
similarity measures while dealing medical images 
taken from human organs with constant variation 
and movements during the course of time. 

	 As mentioned earlier that registration is an 
iterative process, at every iteration similarity is 
checked between source and target image. If the 
similarity is not according to the requirement of 
successful registration then the process is optimized 
[42, 43, 48-50] to further find the best alignment 
between source and target image as shown in Fig  
2. In this procedure, similarity parameters obtained 
from the earlier steps are updated (either increased 
or decreased) tell the optimum values.  Several 
types of optimization methods with pros and cons 
are available for the registration of medical images. 
The popular among them includes quasi-Newton 
optimization, evolutionary strategy, genetic 
algorithm, stochastic approximation, iterative 
closest point, powell’s method, downhill simplex 
method, steepest gradient descent and the conjugate 
gradient method [43, 44, 51-55].

3.	 DEFORMABLE REGISTRATION
	 METHODS

Deformable registration is a fundamental technique 
for the analysis of mono and multi-modal images 
of deformable organs such as heart, lungs, 
breast and kidney. Deformable organs naturally 
show consistent deviations due to breathing and 
movement. Therefore, the precise identification and 
localization of potential tumor tissue is difficult and 
challenging. Furthermore, several other issues such 
as the proper identification of both anatomical and 
functional contents and automatic voxel-by-voxel 
transformation are also successfully done using the 
advance methods of deformable registration. Fig  3 
[26] shows the registration of multi-modal CT and 
PET images of unresectable pancreatic cancer. In 
the Fig , the anatomical contents e.g. bones and 
hard tissues are apparent in the CT image (A) while 
functional contents such as metabolism are clear in 
the PET image (B). However, the pancreatic tumor 
is not clearly visible in both A and B. The registered 
image (C) at the bottom contains the properties of 
both CT and PET and thus the tumor is more visible 
as indicated by the arrow.

	 Beside multi-modality images, the analysis of 
pre and post interventional images obtained from 
mono modality is also important for treatment 
success. Such types of mono modal images obtained 
at different time are also precisely analyzed with 
deformable registration methods. However, all the 
methods use different types of operations to perform 
registration on the set of 2D and 3D images, which 
might be good for some situation but not necessarily 
suitable for others [56]. 

	 Deformable registration methods use several 
types of complicated models to estimate the internal 
behavior of deformable tissues. Among them, some 
of the popular models are finite element model 
(FEM), elastic model, viscous fluid model and 
radial basis function [57, 58]. FEM decomposes 
images into several desirable regions containing 
soft tissues, create volume meshes for particular 
tissue and allocate a precise tissue property for 
volume meshes. FEM is a powerful computational 
tool applicable to several types of deformable 
registration algorithms. Elastic model is also a 
useful physical model for the proper transformation 
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of detailed local deformations during registration 
process [27, 59]. This model considers images 
as deforming elastic objects and estimates the 
small differences between them using external 
body forces. Deformable registration using elastic 
model can give robust and fast results and can 
also efficiently describe multimodal deformation. 
Contrast to elastic model which is best suited for 
small deformation in the tissues, viscous fluid model 
is the right choice for image transformation when 
the number of deformation is more in the tissues 
[60]. However, high computational time complexity 
of viscous fluid model is the main reason behind 

its less widespread use and popularity. Radial 
basis function is another model for the estimation 
of local differences and point correspondence in 
deformable registration. Radial basis function is 
mostly used for the interpolation of images with 
local distortion and differences [61]. This function 
minimizes dissimilarity between source and target 
image and provide a smooth resultant image with 
more clear information.

	 Registration methods belong to deformable 
models are more complex as compared to registration 
methods based on rigid models. Therefore, to 
further improve the performance and reduce 
computational complexity, researchers are trying 
to develop more effective deformable registration 
methods from time to time. Therefore, there is a 
need to further investigate deformable registration 
methods with high performance and that might be 
suitable in almost every type of scenario. Recently 
several types of deformable registration methods 
have been developed as shown in Fig  4. These 
registration methods are further discussed in the 
subsections below and their quantitative evaluation 
and comparison is described in section 4.

3.1	 FEM-Based Image Registration

Several types of physical and biomechanical 
models are available for the analysis of deformable 
registration. Finite element method (FEM) is the 
most popular model among them which successfully 
compute the biomechanical properties of human 
tissues and special positions of anatomy [62]. FEM 
effectively estimates large local deformations in 
the various tissues during registration process. This 
model treats human organs images as elastic bodies 
and applies non-uniform meshes to the important 
features in them which improve the accuracy of 
registration [62-64]. In order to generate registered 
image and solve linear system of equations, FEM 
uses linear elasticity and static analysis assumptions. 
Efficient modeling of material properties in object 
and providing better global solution to the entire 
image domain are also the main features of FEM. 
However, the accuracy of registration should be 
considered while estimating material properties 
of object because using FEM in deformable 
registration the accuracy rely on material properties.

Fig. 3. Deformable registration of multi-modal CT and 
PET images of the abdomen.
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	 The basic idea behind finite element method 
is to discretize image domain in groups and apply 
mechanical or physical forces on them. It is due 
to these forces that the relations between different 
types of tissues are formed which help to estimate 
deformations and obtained tissue properties 
from the estimated deformations. The important 
applications of FEM are in brain modeling and 
simulation during image guided surgery, physical 
integration of deformable registration methods, 
analyzing mechanical deformations during biopsy 
examinations and testing, reconstruction and 
improvement of elastic properties in deformable 
tissues such MR breast, lung and prostate images. 
Configuration of boundary conditions is another 
important feature of FEM in deformable registration 
[65]. However, due to complexity in the geometries 
of human anatomical structures FEM faces several 
difficulties while estimating boundary conditions 
during image-guided radiation therapy. Therefore, 
the computational complexity is more that affect 

the speed and efficiency of registration method. 
FEM based deformable registration methods are 
mostly used in a situation where the high accuracy is 
desired. Registration results are also better in case of 
low contrast tissues because FEM provides several 
mechanisms based on elasticity and biomechanics 
to align low contrast tissues with high one.

3.2	  B-Splines Image Registration

Sampling frequency changes, proper estimation of 
un-known pixel values from known pixel values, 
transformation of a digital image to analog image 
and increase in the resolution are the necessary 
steps in image processing. These important steps in 
image processing are performed by the techniques 
of interpolation. Basis Splines (B-Splines) are 
widely used piecewise continuous interpolation 
functions for the analysis of digital images. 
B-Splines functions are based on polynomials and 
are spread over an interval of unit width in which 
the number of pieces is preoperational to the order 

Fig. 4. Deformable registration methods.

	 Deformable Registration Methods for Medical Images	 117



of splines [66-68]. These functions efficiently 
detect and compute image shapes, curves and 
contours having large variations and transform 
them into continuous images. Registration using 
B-Splines model also generate several types of 
non-linear elastic deformations. B-Splines execute 
images locally and with multi-scale processing due 
to their excellent localizations and multi-resolution 
properties.

	 Deformable image registration provides 
flexible mapping of local key points between 
source and target images due to high degree of 
freedom in transformation. The transformation 
become more smoother when used with B-Splines 
functions because of their fast interpolation 
schemes , generation of a vector field on interested 
volume and provision of compact support [69, 
70]. In deformable transformation using B-Splines 
interpolation, several coefficient values are defined 
and distributed on a grid at continuous interval 
due to which wide variety of deformation become 
possible. However, the use of more coefficient 
values increases the running time of transformation 
and effect the efficiency of registration. 

3.3	 Level Set Motion for Deformable 
	 Registration

Level set motion is another important and widely 
used framework to represent deformable objects. 
Level set uses global regularization of its shapes 
while dealing with 3D interfaces and automatically 
detect  the boundaries of interested regions during 
image segmentation and registration [71]. Level set 
methods give promising results while dealing with 
deformable models because it represents the models 
as 3D images. In the 3D images, the intensity at each 
voxel is considered as distance measurements to 
object surface. In the distance measurements, object 
internal values are negative and the outer values are 
positive [72-74]. In deformable registration using 
level set motion algorithm, the histogram of source 
and target images are matched with user specified 
number of quantile values. In other words, during 
registration, intensity values are same at both 
images while representing the same homologous 
points on an object with pixels.

	 Medical image registration and segmentation 

with level set motion give successful results and are 
more popular than other types of techniques such as 
mesh. Robustness in noisy conditions, changing and 
extracting curved objects with complex topology 
and multidimensional implementation/ computation 
of motion of the interface with simple and compact 
mathematical notation [73, 74]. However, level set 
motion framework has several limitations and need 
more improvements. Mesh framework such as FEM 
has built-in ability to track vertices but level set 
motion framework is no capability to do so. More 
features are lost in level set motion framework 
because resembling is performed at each time step 
with low pass filter. Moreover, high computation 
time, less stability to multi-resolution images and 
organs anatomy with high variations are some other 
limitations of deformable registration using level 
set motion which requires further improvement.

3.4	  B-Splines Multi-grid Image Registration

Modifying grid of control points and increasing 
similarity measures are the main steps in 
registration using B-Splines approach to deform 
an image. In order to obtain more intensity values 
and improve the robustness of registration, a multi-
resolution approach is followed. In this approach, 
a grid containing multiple resolution levels i.e. 
low and high are placed on the images [75-77]. 
Registration process based on B-Splines multi-
grid interpolation is performed in two steps. In the 
first step, images with low resolution levels are 
estimated and transformed. In the second step, the 
transformation is again performed on the images 
with high resolution values propagating estimated 
parameters to them which are obtained in the first 
step.

	 Registration methods based on B-Splines multi-
grid/ multi-resolution approache perform better 
then single-grid/ resolution approach. The speed 
and efficiency of registration method is enhanced 
by mapping the spatial resolution of the underlying 
image model to the step size of the registration 
method. Performing maximum iterations on 
coarsest resolution is also the unique property 
of B-Splines multi-grid registration.   Avoiding 
local minima due to smoothing effect of pyramid 
and well handling of local and global errors and 
invert-ability in deformable objects are some other 
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features of B-Splines multi-grid registration. On the 
other side, B-Splines multi-grid registration gives 
weak results while operating on images with high 
distortion and rotational deformations [78-80]. 
Moreover, this method is also unsuitable in mesh 
refinement procedures with large scale adaptive 
procedures due to its high setup cost.

3.5	  Image Warping with Kernel Splines

In image warping, a mapping function is applied on 
digital image which make distortion in it and as a 
result a new position is created for each landmark 
point in the image. The basic purpose is to create a 
possible similarity between set of images. Several 
types of filtering operations such as smoothing, 
edge detection, elimination of noise/blur and 
intensity enhancement is performed on digital 
images through the processes of convolution [81]. 
Convolution is performed through several types 
(i.e. size 2*2, 3*3 and 4*4) of matrices also called 
kernel. Kernel consists of mathematical values 
which are applied to pixel values resulting modified 
image with different properties is formed. The 
resultant image greatly depends on the values used 
and on the size of kernel. Kernel spline is popular 
and widely used method for image warping and it 
uses a 3D mapping function to find out information 
about landmark points or pixel intensities in both 
source and target objects [82, 83]. This is done by 
localizing a mapping area of pixel intensities in 
which the size of area under consideration is find 
out by increasing the distance into twice between 
the source and target point.

	 Kernel spline interpolation functions can 
effectively model deformation field in landmark based 
image registration. A smooth global transformation 
is performed with kernel spline by computing local 
controlled deformation of landmark points [84, 85]. 
Image deformation model is created by joining spline 
kernel over the area of image under consideration in 
the form of rectangular grid.

3.6	   Image Warping with BSplines

Beside computer vision and multimedia application, 
image warping has also got importance in the 
fields of medical image processing such as image 
morphing and deformation. Several powerful 

warping methods are developed in the recent years 
for the precise analysis and matching of medical 
images. BSplines warping is the popular and widely 
used among them because it precisely deforms 
medical images with its significant property 
of local control and global mapping. BSplines 
mapping functions perform free form deformation 
on the control points and establish a one to one 
correspondence between them to generate a warp 
image. Images having local distortion, irregularly 
spaced samples in them and have nonlinear 
distortions are successfully warped with BSplines 
interpolation [86-88]. Medical images with large 
local deformation such as coronary arteries/ cardiac 
images are also successfully warped with BSplines 
interpolation functions. However, accurate image 
warping with BSplines needs more computational 
time which makes it less desirable in a situation 
when the time constraints are important.

	 Image warping with BSplines is performed by 
defining local domain which contains many control 
points [88]. Subsequently, the local domain which 
is divided into several blocks is shifted to a new 
region. The warping is performed again and again 
on the shifted domain till the recovery of all pixels 
in the image. Images with inconsistent contrast 
between them are therefore precisely warp with 
BSplines. Furthermore, BSplines also provide one-
to-one mapping property due to which there is no 
chance of distorted image to fold back upon itself.

3.7	 Asymmetrical Demons Deformable 
	 Registration

Demons methods also called gray-scale automatic 
deformable algorithms are efficient and robust 
registration methods for medical images [28, 
77, 89-91]. These algorithms are mostly used for 
intensity based image registration and perform 
operation on prominent and distinctive features of 
images. Demons algorithms greatly depend on the 
intensity or color change (image gradients) in the 
source and/or target images. Therefore, changing 
the gradients of input images strongly affects the 
accuracy of registration. Several types of demons 
algorithms are available with high capability 
to describe critical structure and trace potential 
differences/ similarities in source and target images 
during radiotherapy and image guided surgery.
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	 Uniform one-to-one mapping of corresponding 
point landmarks in both directions is very important 
for the consistent and smooth registration of 
medical images [27].  However, majority of the 
available registration methods are asymmetrical 
and unidirectional because registering source image 
to target image does not show the same associations 
as registering target to source. Furthermore, most 
of the transformation functions such as linear and 
non-linear elastic functions, thin plate functions, 
cubic kernel and quadratic regularization functions 
are also perform asymmetrically during registration 
[92]. The difference in coordinate frames between 
source and target images due to the difference in 
the deformation field also gives better registration 
result when the transformation is asymmetric.  
To represent a valid probabilistic model on the 
basis of atlas based registration, the asymmetric 
approach provides more simplicity than symmetric 
registration. In image-guided surgery, image to atlas 
based registration using asymmetric transformation 
is mostly used for the precise analysis of tumor in 
human organs.

	 In asymmetric approach, registration relay on 
the choice of target domain because the estimation 
and mapping of point lands-marks is unidirectional. 
Therefore, unidirectional transformation of 
deformable images provides more efficiency 
than bi-directional transformation, particularly 
in the case of mono-modal image registration. 
However, the performance of bi-directional 
(symmetric)  registration is much high on the basis 
of running time and estimation of total errors in the 
registration of multi-modal deformable images due 
to the availability of regional symmetric similarity 
measures [93].   

3.8	 Symmetrical Demons Deformable 
	 Registration

Pair-wise and bi-directional mapping of 
homologous point land-marks between source 
and target image are widely used methods for the 
accurate and consistent image registration. The 
pair-wise and bi-directional mapping of point 
landmarks in one coordinate to another coordinate 
is also called symmetric registration [94]. In 
symmetric registration both images are treated in 
the same manner and the mapping of similarity 

measures is performed from source image direction 
to target image direction and vice versa. Such type 
of two ways mapping provides more consistency 
and accuracy during image registration because 
the possibility of detecting different transformation 
components will be more. Furthermore, symmetrical 
registration also show robustness against local 
minima because in the optimization process it uses 
the gradients of both images

	 Contrast to symmetric image registration, 
asymmetric image registration maps point land 
marks between two images in a non-uniform and 
unidirectional way due to which the choice of target 
image usually influences the results of deformable 
image registration. Symmetric registration also 
eliminates the chance of inverse consistent errors 
which usually occurs due to the inconsistent voxel-
by-voxel wise association between source and 
target images in both directions [95]. The inverse 
consistent function computes transformation 
information from source and target images and 
converts them into a common intermediate image. 
This function also ensures that the transformation 
from source image side is the inverse of the 
transformation from the target image side. On the 
down side, the two way transformation require more 
computational time and is difficult to implement 
especially in case of image registration with 
iterative optimization. Furthermore, symmetrical 
registration cannot perform well in the registration 
of image to template (atlas) based registration [96] 
because in this type of registration the mapping 
is mostly performed in a single direction for the 
template to exhibit a suitable probabilistic model.

4.	  PERFORMANCE EVALUATION

The performance evaluation of different deformable 
registration methods is always a difficult task 
faced by the researchers. The main reason is the 
unavailability of related pixel information between 
source and target images.  We have evaluated the 
performance of deformable  registration methods 
by implementing them in C++ based on the Insight 
Segmentation and Registration Toolkit (ITK) 
[72]. The computer system used for testing the 
performance of registration methods is Core i5 
with 4GB RAM. The performance i.e. accuracy 

120	 Fakhre Alam et al



and efficiency was evaluated by testing the eight 
variants of deformable registration methods. We 
have implemented the registration methods on the 
datasets of two 2D lung images of living rat obtained 
from ITK software package [72].  For experimental 
analysis, images were taken at different times, the 
one after inspiration of air into lungs (source image) 
and the second after exhalation (target image). In 
the quantitative analysis, mutual information, root 
mean square error (RMS), computation time and 
occupied memory were used as evaluation metrics. 
Since deformable images hold high local variation, 
therefore, for each method we have performed 
three types of registration for rat lungs images: 
registering normal images, registering the same 
images by inducting 0.001% and 0.002% Gaussian 
noise. Table 2 shows the overall quantitative 
analysis of each method on different levels. The 
basic aim was to estimate the effect of change 
or noise on the accuracy and efficiency of each 
registration method.
	 Accuracy evaluation in deformable registration 
is a challenging task due to variations in every 
voxel points. In our experiment, this is performed 
by estimating mutual information and root mean 
square errors between source and target images. 
On the other hand, efficiency of each method is 
calculated based on computation time and memory 
space occupied by each method.
	 To find out the accuracy of each registration 
method, the values of mutual information and RMS 
errors estimated in Table 2 at noise levels (0%, 
0.001% and 0.002%) were further listed in Table 3 
and Table 4. On the bases of data obtained in Table 
3 and Table 4, accuracy of deformable registration 
methods are  graphically shown in Fig  5 and 
Fig  6 respectively. Mutual information (MI) and 
RMS are the two essential parameters to estimate 
the accuracy of registration method. These two 
parameters are widely adopted by a large number 
of researchers in the medical image processing 
community. MI estimates the similarity measures 
between source and target images through pixel-
by-pixel correspondence while RMS error is a 
standard statistical metric for error prediction. The 
registration method is more accurate if the values of 
MI are maximum and RMS values are minimum. 
	 It is shown in Fig  5 that in most registration 

methods, the introduction of noise has little effect 
on the values of mutual information. However, 
in the experiments, we obtained high mutual 
information values for FEM based registration 
method. Similarly, we estimate good results while 
testing level set method for mutual information. 
Therefore, FEM based and level set registration 
methods provide more accuracy as compare to 
others deformable registration methods. On the 
other hand, the accuracy of warping with kernel 
splines is much low in our experiment due to 
small mutual information values obtained from the 
registration of source and target images at different 
noise levels.

	 We have also tested the accuracy of each 
registration method based on RMS error at different 
noise levels. Accuracy based on RMS error is 
shown in the Table 4 which is further plotted in Fig  
6. In this experiment, we obtained minimum RMS 
error values for FEM based registration and high 
values for warping with kernel splines. Therefore, 
the accuracy of FEM based registration based on  
MI and RMS error is much high than other types 
of deformable registration methods. However, the 
accuracy of warping with kernel splines is  low 
compared to other methods  due to low MI and high 
RMS error values obtained in our experiments. 

	 In order to determine the efficiency of 
deformable  registration methods, they are tested on 
the basis of computation time and occupied memory 
space. Registration method is more efficient if it 
takes minimum time and less memory space during 
execution. The computation time estimated for all  
registration methods in our case at different levels of 
Gaussian noise are listed in Table 5 and graphically 
shown in Fig.  7. It is shown in the Fig  that the 
warping with kernel splines is the most efficient 
method at 0% and 0.001% Gaussian noise because 
it takes less time than others methods. Similarly, 
asymmetric demon registration also provides 
consistent efficiency at different noise levels. On 
the other hand, the efficiency of FEM based method 
is much low due to excessive time it takes during 
registration of source and target images. We have 
also estimated the efficiency of each registration 
method on the bases of occupied memory space. 
Values obtained for memory space occupied by 
each method at different noise levels are listed in 
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Fig. 5. Graphical representation of MI at different levels of Gaussian noise.

Fig. 6. Graphical representation of RMS errors at different levels of Gaussian noise.

Table 6 and their graphical representation is shown 
in Fig  8. In this case, the efficient methods are 
BSplines multi-grid and FEM based registration 
due to the minimum memory space occupied at 
different noise levels. However, the memory spaces 
occupied by BSlines registration, warping with 
kernel and BSplines methods are much high due to 
which they are less efficient.

	 After the detail evaluation and testing of 
deformable registration methods we came up 

with certain conclusions. In our experiments, the 
performance of FEM based registration is high than 
other types of registration methods. This is due to the 
sharing of excessive amount of mutual information, 
less number of RMS errors in registration and 
taking less memory space during execution. We also 
estimate high computational time during execution 
for FEM registration, which negatively affect image 
registration. Minimizing the computational time 
for FEM based registration will make it a perfect 
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choice for the successful registration of deformable 
images. It is also observed that the performance of 
warping with kernel splines in terms of accuracy  is  
low due to high number of RMS errors arises during 
registration and sharing of low mutual information. 
However, the efficiency in terms of computational 
time is high for warping with kernel splines 
method. Likewise, BSplines multi-grid registration 
provides more efficiency in terms of computational 
time and occupied memory space. Therefore, the 
improvement in terms of accuracy can also make 
this method a perfect choice in clinical applications. 

	 Deformable registration methods are widely 
used for the accurate registration of objects with 
large deformation. Therefore, several registration 
methods are available which automatically 
register medical images. After a thorough analysis 
of each method, we find out that every method 
provide their own strength and flexibility for 
the precise and efficient registration of medical 
images. However, due to complex and difficult to 
calculate deformation field, most of the registration 
methods cannot perform perfectly in clinical 
applications. Therefore, generic and powerful 
registration methods are required to be developed 
in the future, which can precisely, efficiently and 
automatically register medical images with large-
scale deformations.  

5.	 CONCLUSIONS

Deformable image registration is a challenging task 
in medical image analysis due to different imaging 
conditions, variability in anatomical structures and 
elasticity of the body and organs. In this article, 
we have experimentally evaluated the existing 
deformable registration methods on the images of 
rat lungs to estimate their performance. Although 
several automatic deformable registration methods 
are available applicable for single modality, linear 
and small local deformation, universal and generic 
methods are still a problem in clinical applications. 
To perfectly register medical images obtained 
through multimodality with uncertain and complex 
features of deformable objects further research 
is needed. However, in our analysis, we came up 
with a conclusion that FEM based registration 
method obtained excellent performance in terms of 
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FEM based 
registration

BSplines 
registration

Level set   
registration

BSplines 
multi-grid 

registration

Warping 
with kernel 

splines

Warping 
with 

BSplines

Asymmetric 
demons 

registration

Symmetric 
demons 

registration

Noise (0%) 9.276 2.328 4.212 2.221 1.142 4.170 3.219 3.332

Noise 
(0.001%) 10.305 2.0211 4.7103 2.028 1.105 4.189 2.694 2.855

Noise 
(0.002%) 11.785 1.872 4.7043 1.886 1.109 4.189 2.473 2.640

Table 3. MI of deformable registration methods at different noise levels.

Fig. 7. Graphical representation of computation time at different levels of Gaussian noise.

Fig. 8. Graphical representation of memory space occupied by deformable registration methods at different levels of 
Gaussian noise.
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Table 4. RMS error of deformable registration methods at different noise levels.

Table 5. Computation time for deformable registration methods at different noise levels.

Table 5. Computation time for deformable registration methods at different noise levels.

FEM based 
registration

BSplines 
registration

Level set   
registration

BSplines 
multi-grid 

registration

Warping 
with kernel 

splines

Warping 
with 

BSplines

Asymmetric 
demons 

registration

Symmetric 
demons 

registration

Noise (0%) 2.590 3.087 9.602 13.46 47.23 29.124 8.442 8.785

Noise 
(0.001%) 2.270 14.320 7.221 14.289 47.678 29.337 8.321 8.081

Noise 
(0.002%) 2.125 9.602 7.044 15.235 47.074 29.337 9.674 8.911

FEM based 
registration

BSplines 
registration

Level set   
registration

BSplines 
multi-grid 

registration

Warping 
with kernel 

splines

Warping 
with 

BSplines

Asymmetric 
demons 

registration

Symmetric 
demons 

registration

Noise (0%) 2.590 3.087 9.602 13.46 47.23 29.124 8.442 8.785

Noise 
(0.001%) 2.270 14.320 7.221 14.289 47.678 29.337 8.321 8.081

Noise 
(0.002%) 2.125 9.602 7.044 15.235 47.074 29.337 9.674 8.911

FEM based 
registration

BSplines 
registration

Level set   
registration

BSplines 
multi-grid 

registration

Warping 
with kernel 

splines

Warping 
with 

BSplines

Asymmetric 
demons 

registration

Symmetric 
demons 

registration

Noise (0%) 1.0245 0.453 0.397 0.532 0.315 0.643 0.386 0.642

Noise 
(0.001%) 1.065 0.532 0.435 0. 453 0. 463 0.745 0.547 0.703

Noise 
(0.002%) 1.0186 0.535 0.596 0.543 0.478 0.764 0.452 0.796

Table 6. Memory Space Occupied by Deformable Registration Methods at Different Noise Levels.

FEM based 
registration

BSplines 
registration

Level set   
registration

BSplines 
multi-grid 

registration

Warping 
with kernel 

splines

Warping 
with 

BSplines

Asymmetric 
demons 

registration

Symmetric 
demons 

registration

Noise (0%) 788 5656 3320 136 3922 3912 3206 3160

Noise 
(0.001%) 1048 4360 2065 136 4037 3991 1960 1760

Noise 
(0.002%) 1096 4432 1896 136 4054 4193 1960 1920

accuracy and memory space.  Our experiments also 
confirm that in terms of efficiency, the performance 
of BSplines multi-grid and warping with kernel 
splines is excellent compared to other methods.

	 The future work is to further improve the 
performance of deformable registration methods 
we obtained in our experiment and to develop 
an advance registration method applicable for 

the registration of several types of deformable 
objects. In the next work, we will also evaluate the 
performance of deformable registration methods on 
larger datasets containing 3D and 4D deformable 
image and for a broad range of medical image 
registration methods according to the criteria we 
adopted in this work.
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