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Abstract: The progress of numerical techniques for scalar and one dimensional Euler equation has been a 
great interest of researchers in the field of CFD for decades. In 1986, Harten developed a high resolution 
and efficient large time step (LTS) explicit scheme for scalar problems. Computation of nonlinear wave 
equation depicts that Harten’s LTS scheme is a high resolution and efficient scheme. However, 
computations of hyperbolic conservation laws show some spurious oscillations in the vicinities of 
discontinuities for larger values of CFL. Zhan Sen Qian investigated this issue and suggested to perform the 
inverse characteristic transformations by using the local right eigenvector matrix at each cell interface 
location to overcome these spurious oscillations. Harten and Qian both used Roe’s approximate Riemann 
solver which has less artificial viscosity than exact method at sonic points. The reduced artificial viscosity 
reduces the accuracy of Roe's method at sonic points. Roe's approximate Riemann solver cannot capture the 
finite spread of expansion fans due to the inadequate artificial viscosity at expansive sonic points. As a 
consequence of this expansion shocks that are nonphysical may occur. The existence of the expansion 
shock is said to violate the entropy condition. A variety of entropy fix formulae for Roe scheme have been 
addressed in the literature. In present work large time step total variation diminishing (LTS TVD) scheme 
developed by Harten and improved by Qian have been tested with different entropy fix and its effect has 
been investigated. Computed results are analyzed for merits and shortcomings of different entropy fix with 
large time step schemes. 
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1. INTRODUCTION 
The transient 1D Euler equation is hyperbolic, no matter whether the flow is locally subsonic or 
supersonic. The marching direction for 1D Euler equation is the time direction. Methods to solve 
hyperbolic system of equations are primarily derived for non-linear wave equation and then implemented 
on hyperbolic system of equations. Lax in 1954, modified Euler’s Forward Time Central Space (FTCS) 
method and presented first-order accurate method to solve nonlinear wave equation. Lax method is stable 
for Courant-Friedrichs-Lewy (CFL) condition less than 1 and predicts the location of moving 
discontinuity correctly [1-2]. This method is very dissipative and smears discontinuities over several 
mesh points and become worse as CFL decreases. Lax-Wendroff proposed a second-order accurate 
method for non-linear wave equation. His method sharply defined discontinuity and also stable for CFL 
less than 1 but produce undesirable oscillations when discontinuities are encountered. Similar to Lax 
method quality of results computed by Lax-Wendroff method degrade as CFL decrease. 
 Lax and Lax-Wendroff central finite difference schemes are stable and converge if flow field is 
sufficiently smooth but produce unwanted oscillations when discontinuities are met. It is due to the fact 
that series expansion for obtaining a difference approximation is only valid for continuous functions and  
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has continuous derivatives at least through the order of difference approximation [1] [3]. Godunov 
recognized this deficiency and proposed a finite volume scheme instead of a finite difference scheme to 
avoid the need of differentiability. He used exact Riemann problem solution for evaluating the flux term 
at the cell interface. Computation of nonlinear wave equation is easily accomplished by using Godunov 
method but this method is very inefficient and take long time when applied to system of equations [4-6]. 
To overcome this problem Roe suggested solving linear problem instead of actual nonlinear problem [7]. 
Roe’s approximate Riemann solver is efficient but cannot distinguish between expansion shock and 
compression shock. This is due to the violation of entropy condition and hence expansion shocks that are 
nonphysical may occur in computed results [8-9]. A number of entropy fix have been recommended in 
literature to overcome this problem. Roe’s  upwind approximate Riemann solver capture physics in more 
appropriate way than Lax and Lax-Wendroff central schemes but is only first order accurate. Like second 
order central methods, higher order upwind methods have the same deficiencies and produce undesirable 
oscillations when discontinuities are encountered [9-10]. 
 Harten introduced the concept of Total Variation Diminishing (TVD) scheme. TVD schemes are 
monotonicity preserving schemes and therefore it must not create local extrema and the value of an 
existing local minimum must be non-decreasing and that of a local maximum must be non-increasing [10-
12]. He worked on non-oscillatory first order accurate scheme and modified its flux function to obtain a 
second order accurate TVD explicit difference schemes for scalar and system of hyperbolic conservation 
laws. Numerical dissipation terms in TVD methods are nonlinear. The quantity varies from one grid point 
to another and usually consists of automatic feedback mechanisms to control the amount of numerical 
dissipation. After this break through a number of TVD scheme have been proposed and discussed in 
literature [13-17]. 
 Stability criteria for explicit formulation limits time stepping and thus increase computational cost. 
Similar to previously discussed schemes, explicit formulation of Harten and other TVD schemes are also 
stable only for CFL less than 1. It is a challenging task to develop an explicit scheme which is stable for 
higher values of CFL number. In literature this kind of schemes are known as large time step (LTS) 
schemes and an active field of research for last three decades. Leveque described a method for 
approximating nonlinear interactions linearly which allows Godunov’s method to be applied with 
arbitrarily large time steps [18-19]. Harten extended Leveque work and proposed second-order accurate 
LTS TVD explicit schemes for the computation of hyperbolic conservation laws. Computation of 
nonlinear wave equation depicts that Harten’s LTS scheme is a high resolution and efficient scheme [20]. 
However, computation of system of hyperbolic conservation laws show some spurious oscillations in the 
vicinities of discontinuities when CFL > 1. Zhan Sen Qian worked on Harten LTS TVD scheme and 
observed that these spurious oscillations are due to the numerical formulation of the characteristic 
transformation used by Harten for extending the method for hyperbolic conservation laws [21-23]. Zhan 
Sen Qian showed that if the inverse characteristic transformations are performed by using the local right 
eigenvector matrix at each cell interface location then these spurious oscillations are eliminated. His 
computations for shock tube problem confirm that the modified large time step total variation diminishing 
(MLTS TVD) scheme eliminate spurious oscillations for system of hyperbolic conservation laws without 
increasing the entropy fixing parameter.  
 Harten and Qian both used Roe’s approximate Riemann solver which has less artificial viscosity than 
exact method at sonic points. Roe's approximate Riemann solver differs from Godunov's exact Riemann 
solver only at sonic points. Roe's method has less artificial viscosity than Godunov's method at sonic 
points. The reduced artificial viscosity reduces the accuracy of Roe's method at sonic points. Roe's 
approximate Riemann solver cannot capture the finite spread of expansion fans due to the inadequate 
artificial viscosity at expansive sonic points. As a consequence of this is that expansion shocks that are 
nonphysical may occur [7-8]. This nonphysical behavior is due to the fact that the scheme cannot 
distinguish between an expansion shock and a compression shock. Each is a valid solution for this 
formulation. The existence of the expansion shock is said to violate the entropy condition. In order to 
make this scheme to satisfy the entropy condition it must be properly modified, such a correction is 
usually designated as entropy fix. A variety of entropy fix formulae for the Roe scheme have been 
addressed in the literature. Most famous are due to Harten-Hyman and Hoffmann-Chiang [9-11]. 
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 In present work large time step scheme [22] behavior with different entropy fix has been investigated. 
Computed results are analyzed for merits and shortcomings of different entropy fix with large time step 
schemes. Shock tube problem is used for validation purpose. Reasons of attraction in this test case are 
availability of analytical solution and at the same time presence of complex flow features namely, 
expansion, shock wave, and contact discontinuities.  

 
2. NUMERICAL METHOD 
1D Euler equation in conservation form is used in present study. Detail about governing equations and 
numerical method is given below:  
∂U
∂t

+ ∂F
∂x

= 0                                            (1) 
∂U
∂t

+ A ∂U
∂x

= 0                                                                 (2) 

where;  U = �
ρ
ρu
ρE
�      ;    F = �

ρu
ρu2 + p

(ρE + p)u
�                          (3) 

A = ∂F
∂U

=  �

0 1 0
(γ − 3) u

2

2
(3 − γ) (γ − 1)

(γ − 1)u3 − γuE −3
2

(γ − 1)u2 + γE γu
�             (4) 

equation (1) in numerical flux form can be written as: 
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 The numerical flux for Qian’s modified LTS TVD is given by: 
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 Mathematical expressions of coefficient of numerical viscosity proposed by Roe, Lax-Wendroff and 
Harten are given in equations 17 to 20 respectively.  
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Table 1 shows the expressions for coefficient functions Cl (x) which were obtained after putting different 
values of K in equation 11. 
 
Table 1. Cl (x) at different K. 

K            𝐂𝐂𝟏𝟏      𝐂𝐂𝟐𝟐 𝐂𝐂𝟑𝟑 
2      x2   

3      x2(3 − x) x3  

4     x2(6 − 4x + x2) 2x3(2 − x) x4 
 
 

3. TEST CASE DESCRIPTION 
Shock tube problem is used for validation purpose. SOD and Inverse Shock boundary conditions are used 
(Table 2). The size of computational domain is 0 ≤ 𝑥𝑥 ≤ 1 and number of grid points are 1000. Entropy 
fix parameter ε is taken 0.1 while minmod limiter is used for all computations. Initial discontinuity 
centered on 𝑥𝑥 = 𝑥𝑥𝑜𝑜 and 𝑡𝑡 = 0 has following conditions:  

𝑈𝑈(𝑥𝑥, 𝑡𝑡) = �𝑈𝑈𝐿𝐿 , 𝑥𝑥 < 𝑥𝑥𝑜𝑜
𝑈𝑈𝑅𝑅 , 𝑥𝑥 ≥ 𝑥𝑥𝑜𝑜

            where, xo=0.5 

 
Table 2. Boundary conditions for SOD and Inverse Shock cases. 

Boundary conditions 𝐩𝐩𝐑𝐑  𝛒𝛒𝐑𝐑 𝐯𝐯𝐑𝐑 𝐩𝐩𝐋𝐋  𝛒𝛒𝐋𝐋 𝐯𝐯𝐋𝐋 

SOD 0.1 0.125 0.0 1.0 1.0 0.0 

Inverse Shock 1.0 1.0 5.91608 29.0 5.0 1.183206 
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4. RESULTS AND DISCUSSION 
In present work, Qian MLTS TVD scheme presented in equation (6) is studied with different entropy fix 
functions. Shock tube problem for SOD and Inverse Shock boundary conditions are solved to investigate 
the performance and behavior of MLTS TVD scheme with different entropy fix in the regions of 
expansion fan, discontinuities and strong shock waves. 
 The physical time for the flow processes are 0.15 and 0.05sec for SOD and Inverse Shock cases 
respectively. Simulations are carried out on Intel(R) Core(TM) 2, CPU @ 2.13 GHz, 2 GB RAM.  
 Fig. 1 to Fig. 5 show the density profile for SOD boundary conditions. Fig. 1 shows whole domain 
while Fig. 2 to Fig. 5 focus on start of expansion, end of expansion, contact, and shock regions 
respectively. Fig. 2 depicts that for lower values of CFL (0.9 and 1.9) the result with different entropy fix 
at the start of expansion fan is similar while for larger values of CFL (2.9 and 3.9) the result with entropy 
fix presented in equation 20 produces less dissipation. At the end of expansion fan minor oscillation is 
observed for equation 18 and equation 20, these oscillations grow up as K value increase, see Fig. 3(d). 
Results with entropy fix presented in equation 17 and 19 are more accurate as compare to other at the end 
of expansion fan location.  
 Investigation of Fig. 4 and Fig. 5 shows that the resolution for the contact discontinuity is captured 
worse than the shock wave for different entropy fix. The shock wave is a compressive wave and the 
characteristic lines are convergent so the dissipation near to the shock wave is controlled in a small level 
in the time marching steps. Near the contact wave the discrepancy of analytical and numerical results are 
worse for all entropy fix. Reason behind this is the fact that the contact discontinuity is a kind of linear 
wave in the theory of the hyperbolic conservation laws and the characteristic lines are parallel to each 
other so the dissipation can not be restrained. During the time marching step the dissipation is 
accumulated and the contact wave may span more and more grid points. Fig. 4 depicts that for lower 
values of CFL (0.9 and 1.9) the result with different entropy fix at contact is similar. For larger values of 
CFL (2.9 and 3.9) the result with entropy fix presented in equation 17 and equation 19 produces less 
dissipation and is non oscillatory while other two entropy fix produce oscillations.  
 Fig. 5 shows that for lower values of CFL (0.9 and 1.9) the result with different entropy fix at shock 
is similar. For larger values of CFL (2.9 and 3.9) the result with entropy fix presented in equation 18 and 
equation 20 produces less dissipation. Results near shock are oscillation free for all entropy fix used in 
present study. Fig. 6 to Fig. 10 show the density profile for Inverse Shock boundary conditions. Fig. 6 
shows whole domain while Fig. 7 to Fig. 10 focus on start of expansion, end of expansion, contact, and 
shock regions, respectively. Fig. 6 depicts that for equations 17, 18 and 20 schemes does not have 
sufficient artificial viscosity for all CFL values and therefore nonphysical expansion shock is available in 
the result. This nonphysical behavior is due to the fact that the scheme with equations 17, 18 and 20 
entropy fix cannot distinguish between an expansion shock and a compression shock. Both are valid 
result for this formulation.  
 Although scheme with entropy fix presented in equation 20 provide good result for smaller values of 
CFL however for larger CFL values (CFL = 3.9) this scheme become unstable and after some iteration 
it’s blown up. Same is happened with scheme using entropy fix presented in equation 18. Schemes with 
entropy fix presented in equation 17 and equation 19 are found to be stable for all CFL values 
investigated in present studies.  
 It has been explored from Fig. 6 to Fig. 10 that scheme with entropy fix presented in equation 17 does 
not have sufficient artificial viscosity and produce nonphysical expansion shock for all CFL values 
investigated in present studies. Therefore scheme with entropy fix presented in equation 19 only produces 
real results without nonphysical expansion shock and stability issues.   
 It is summarized that for simple cases all entropy fix provide physical results with minor oscillation 
and dissipation issues for all CFL values investigated in present studies. However for complex test cases, 
like inverse shock boundary condition, only Harten’s derived entropy fix (equation 19) is stable and 
depict physical behavior precisely for LTS TVD.  
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     Fig. 1. Overall density profile, SOD case.                                    Fig. 2. Start of expansion, SOD case. 
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         Fig. 3. End of expansion, SOD case.                                   Fig. 4. Contact region, SOD case. 
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    Fig. 5. Shock region, SOD case.                                                 Fig. 6. Overall profiles, inverse shock. Case. 
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Fig. 7. Start of expansion, inverse shock case.                  Fig 8: End of expansion, inverse shock case. 
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Fig. 9: Contact region, inverse shock case.                                Fig. 10. Shock region, inverse shock case. 
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5. CONCLUSIONS 
In present work LTS TVD scheme developed by Harten and improved by Qian have been investigated for 
different entropy fix conditions. Computed results are analyzed for merits and shortcomings of different 
entropy fix with large time step schemes. Shock tube problem is used for validation purpose. It is 
concluded that for simple cases all entropy fix provide physical results with minor oscillation and 
dissipation issues for all CFL values investigated in present studies. However for complex test cases, like 
inverse shock boundary condition, only Harten’s derived entropy fix is stable and depicts physical 
behavior precisely for LTS TVD.  

In the present work the numerical results were computed for 1D shock tube problem only. Similar 
studies must be pursued for more complex 2D and 3D flows in future. Large time step scheme behavior 
with different entropy fix for various Eigen vector matrix and flux limiter should also be investigated. 

NOMENCLATURE 

A inviscid flux jacobion matrix 
Cl (x) coefficient functions 
Ck (v) entropy fixing function 
E total energy 
F physical flux 
K CFL restriction parameter 
R eigen vector matrix 
R-1 inverse eigen vector matrix 
U conservative variable vector 
a characteristic speed 
c speed of sound 
f numerical flux 
g flux correction 
ğ limiter function 
i grid points 
k characteristic  direction 
m number of eigen values 
 
 

n number of time steps taken   
p pressure 
t time 
∆t time step 
u velocity in x-direction 
v local CFL number 
x axial distance  
∆x grid spacing 
α characteristic variable 
β numerical characteristic speed  
ε  entropy fix parameter  
Φ numerical dissipation term  
γ ratio of specific heat 
λ mesh ratio  
µ CFL parameter 
ρ density 
σ  limiter function parameter 
ψ entropy correction function 
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