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Abstract: In this paper, we used a newly developed fractional complex transform to convert the given
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1. INTRODUCTION

Fractional calculus of arbitrary order [1-2] has been used to model much physical and engineering process that are
found to be best described by fractional differential equations. Considerable attention has been given to the solution
of fractional differential equations, integral equations and system of fractional partial differential equations of
physical interest. Most fractional differential equations do not have exact analytic solutions, analytic and numerical
techniques, therefore, are used extensively for the solutions of such problems. The detailed study of literature
reflects the implementation of wide range of numerical and analytical techniques (including Finite Difference [3-5],
Adomian’s Decomposition [6-10], Exp function [11-12], Homotopy Perturbation [13], Reduce Differential
Transform [14], Homotopy Analysis [15], and Variational Iteration [16-17] for the solutions of linear and nonlinear
equations of fractional-order. Inspired and motivated by the ongoing research in this area, we use a fractional
complex transform (FCT) [18-19] in order to convert the given fractional partial differential equations (FPDEs) into
corresponding partial differential equations (PDEs); subsequently Variational Iteration Method (VIM) is applied on
the transformed PDEs and inverse transformation yields the results it in terms of original variables. Computational
work re-confirms that the proposed algorithm is highly efficient, fully compatible, and extremely appropriate for
factional PDEs arising in mathematical physics and hence can be extended to other problems of diversified
nonlinear nature. In particular, we focus our attention on three very important equations which are called Benjamin—
Bona-Mahoney (BM) Equation [20], Cahn-Hilliard equation [21] and Gardner equation [22]. Numerical results are
very encouraging.

2. FRACTIONAL COMPLEX TRANSFORM

The fractional complex transform was first proposed [23] and is defined as
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3. VARIATIONAL ITERATION METHOD

To illustrate the basic concept of variational iteration method, we consider the following general nonlinear
differential equation given in the form:

Lu(t)+N u(t)=g(2), 2

where L is a linear operator, N is a nonlinear operator and g(#) is a known analytical function. We can construct a
correction functional as

b, (0) =1, 0+ [ A(Lu, () + NG, (£) - g(£))dé G)

where A is a general Lagrange multiplier, which can be identified optimally via variational theory, the subscript 7
denotes the nth approximation, and i, is considered as a restricted variation, namely 5[{” =0. It is obvious that

the successive approximation U, 720 can be established by determining general Lagrange’s multiplier A, which
can be identified optimally via the variational theory. Therefore, we first determine Lagrange’s multiplier that will
be identified optimally via integration by parts. The successive approximation of the u, (x, t ), n >0 solution

u (x, t ) will be readily obtained upon using the Lagrange’s multiplier and by using any selective function,. The
initial values are usually used for selecting the zeroth approximationt,. With A determined, several

approximations % , J =0 follows immediately. Consequently, the exact solution may be obtained by using

u(x,t)= lim u, (x,2). (4)

4. SOLUTION PROCEDURE
4.1 Benjamin—Bona—Mahoney (BM) Equation
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with the initial condition u(x, 0) =sech’ (Z)

Applying the transformation [23], we get the following partial differential equation
ou o u ou ou
+ +u =0, (6)
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The correction functional can be written in the form:
T 3
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The stationary conditions yield

1+4=0, A'=0.

This in turn gives

A=-1. (8)

Hence (7) takes the form
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Consequently,
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The inverse transformation will yield
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Graphical representation of approximate and exact solutions of (5) for different values of @, using only three
iterations of the VIM solution

(a)a=0.4 (b)a=0.8

(c)a=1 (d) Exact solution
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4.2 Cahn-Hilliard (CH) Equation
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Applying the transformation [23], we get the following partial differential equation
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The correction functional can be written in the form

()= e [ 206) 20~ 0
u,, xt)=u, (xt +£ s E—ﬁ+u —ul|ds.
The stationary conditions yields

1+4=0, A’ =0.
This in turn gives

A=-1.
Hence (13) takes the form:
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Graphical representation of approximate and exact solutions of (11) for different values of &, using only three
iterations of the VIM solution

(a)a=04 (b)ax=0.8

(c)a=1 (d) Exact solution
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4.3 Gardner Equation
a 3
Ou _ Ou —6u2(6—”] — 6u=0, (16)

or*  ox° dx

with initial condition

u(x,0)=— % (1 - tanhgj}

Applying the transformation [23], we get the following partial differential equation
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The correction functional can be written in the form
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The stationary conditions yields

I1+4=0, A'=0.

This in turn gives

A=-1, (19)

Hence (18) takes the form
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The inverse transformation will yield
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Graphical representation of approximate and exact solutions of (16) for different values of ¢, using only
three iterations of the VIM solution
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(a)a=04 (b)a=0.8

(c)a=04 (d) Exact solution

5. CONCLUSIONS

In this paper, variational iteration method (VIM) has been successfully implemented to find approximate solutions
for nonlinear partial differential equations of fractional order by considering a change of variable to a new variable.
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Three different physical models were tested and the results were in excellent agreement with the exact solution by
considering third approximation terms of the variational iteration method. The method is extremely simple, easy to
use and is very accurate for solving nonlinear differential difference equation. Also, the method is a powerful tool to
search for solutions of various linear/nonlinear problems of fractional order in science and engineering.
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