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Abstract: We study the dynamics of the atoms of Bose-Einstein condensate in a double well potential by 
deriving the two mode model for the well known Gross-Pitaevskii equation. The symmetric and anti-
symmetric basis functions have been used for the development of the two mode model. The stability of 
these basis functions has been investigated. It is found that both solutions are stable. The time dependent 
Gross-Pitaevskii equation and the two mode approximations are solved numerically and then compare the 
results. It is shown that the solution obtained from two mode model demonstrates good agreement with the 
solution of the Gross-Pitaevskii equation. 
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1. INTRODUCTION 
Multi-component Hamiltonian systems have 
gained a lot of attention in the past few years due 
to the development of theoretical and experimental 
results in coupled Bose-Einstein condensates 
(BECs) [1] and coupled nonlinear optical systems 
[2]. In BECs, mixtures of distinct spin states of 
rubidium [3,4] and sodium [5] were created 
experimentally. The two components BECs with 
different atomic species were also formed in 
laboratories, e.g. potassium-rubidium [6] and 
lithium-cesium [7]. Due to these experiments, 
many theoretical studies have been done to 
investigate the ground state solutions [8, 9] and the 
small amplitude excitations [8, 10, 11]. Several 
other nonlinear structures were also formed such 
as domain walls [12, 13, 14], dark-dark and dark-
bright solitons [15, 16], vortex rings [17] and so 
on. 

In 1962, Josephson presented the idea of 
electron tunneling between two superconductors 
which were separated by a thin insulator [18]. The 
effect of tunneling was named as Josephson 
tunneling. Since weak coupling is the only 
requirement for the effect of Josephson tunneling, 

it was thought that the weakly linked macroscopic 
quantum samples may admit such tunneling. In 
BECs, such tunneling was predicted by Smerzi 
and coresearchers [19, 20, 21]. The experimental 
realization of Josephson tunneling for a single [22, 
23] and array of short Bose-Josephson junction 
[24] were made. Kaurov and Kuklov [25, 26] 
extended the idea of Bose-Josephson junction to 
long Bose-Josephson junction. This junction was 
analogues to long superconducting Josephson 
junction. They proposed that atomic vortices could 
be seen in weakly coupled BECs and that these 
vortices are similar to Josephson fluxons in 
superconducting long Josephson junction [27]. 
Further it was shown that due to the presence of a 
critical coupling, atomic Josephson vortices can be 
transformed to a dark soliton and vice versa. 
Josephson tunneling of dark solitons in a double-
well potential was studied in [28]. 

The dynamics of Josephson tunneling in BECs 
was explained using a two-mode approximation in 
[29, 30, 31, 32, 33]. The coupled-mode equations 
were modified and improved in [34]. In this paper, 
we study the validity of the coupled-mode 
equations. The stability of the basis functions 
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(which are used for the approximations) is also 
studied by investigating the eigenvalues structures. 

 

2. MATHEMATICAL MODEL AND 

DESCRIPTION 
Let us consider the atoms of BECs at very low 
temperature that is nearly at zero Kelvin. If U(x, t) 
is the wave function of the atoms of BECs which 
are interacting with each other, then the equation 
that describes the dynamics of atoms of BECs is 
the famous Gross-Pitaevskii (GP) equation. The 
GP equation in the dimensionless form is given as  

        
 
   
                                          

where   and   are the space and time variables,   
is the nonlinearity coefficient and   √  .   is 
the external potential which in our case is a 
combination of a harmonic potential with 
Gaussian barrier and is given as 

       
                                                  

with   representing the frequency of oscillation 
and   and   are respectively the height and width 
of the Gaussian barrier. 

To obtain the two mode approximations, we use a 
pair of real symmetric and real antisymmetric 
functions which are denoted by    and    
respectively. It is easy to see that if we substitute 
       √                 into eq.(1), (where 
  and   are constants which represent the 
chemical potential in each well) the basis 
functions    and   will satisfy the following 
steady state equations 

       
 
    
                                    

 

       
 
    
                                   

 
where       .   

To seek the solution    numerically, we discretize 
eq. (3) and approximate the second order 
derivative by the central difference approximation 
so that a system of nonlinear algebraic equations is 
obtained. The system can be solved using 
Newton’s method with the Neumann boundary 
conditions to obtain the solution    which is 
shown in Fig. 1. Similarly, from eq. (4) we get the 
solution    and is depicted in   Fig. 2. The 
stability of these basis functions will be discussed 
later. 
 

One can now express the wave function        as 

[30] 
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Kronecker delta function.   represents the number 
of boson atoms such that ∫           
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Fig. 1. Numerically obtained solution    for the parameter values    = 1,    = 1. 

 

 

 
Fig. 2. Numerically obtained solution    for the parameter values    = 1,    = 1. 
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where bar represents the complex conjugate, primes are used for the second order derivative with respect 
to   and dot for derivative with respect to time. 
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Using eq.(3) and eq.(4), we get 

 [ ̇          ̇        ]
                                        

    [    
                               ̅                      
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                                                            ]            

 

Multiplying both sides by         and integrating with respect to   from -∞ to ∞ and  using 

∫       
 
                we obtain 

   ̇         [      ]         [      ]

   [        
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where       ∫                        , and the integrals with odd powers of     and    will be 
zero. Since ∫           

                    Using this equation, the above equation can be written 
as   
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Similarly, multiplying both sides of eq.(6) by         and integrating with respect to   from -∞ to ∞ 
and following the same procedure as before, we obtain 

  ̇  (         
  
    ̅ )   (

  
             ̅   )                                                                   

where 

       
       

               
   

              
   

            
          

Thus, eq. (7) and eq. (8) represent a system of two ordinary differential equations of first order. These 
equations describe the dynamics of atoms of BEC in each well of the external potential. We solve this 
system of differential equations using Runge-Kutta method of order 4 to get    and   . Substituting these 
solutions     and    into eq. (5), we obtain the solution   which is shown in Fig. 3 by dotted line. We 
then solve eq. (1) numerically and the solution obtained is shown in Fig. 3 by solid line. Figure shows that 
the solution obtained through two mode model is very close to the numerical solution of the GP equation 
and hence justifies the validity of the two mode model. 
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Fig. 3. Comparison of the two solutions. The solid curve represents the 
solution of eq. (1) while dotted curve is the solution obtained through two 
mode approximation. The graph shows very good agreement between the 
two solutions. 

 
3. STABILITY OF BASIS FUNCTIONS  
Let us discuss the stability of the solutions     and   . To do so, we first substitute  

               ̃      
into eq. (1) to obtain 

   ̃     
 
   ̃
       ̃   ̃    ̃     ̃                                                                      

We now perturb the solution    by adding a small perturbation        in it, i.e. 

 ̃                                                                                                                  
 where we assume that the perturbation   is so small that its squares and higher power terms can be 

neglected. Substituting the value of  ̃      from eq. (10) into eq. (9) and using eq. (3), we get  

         
 
   
                         ̅                                                     

Taking complex conjugate of eq. (11) to obtain 

    ̅     
 
   ̅
                  ̅                                                            

For simplicity, we denote   by   and  ̅ by   so that eq. (11) and eq. (12) can be written as 

        
 
   
                                                                              

      
 
 
   
                                                                                 

Eq. (13) and eq. (14) can also be written as  
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Discretizing eq. (15) and eq. (16) with step size   and using the Neumann boundary conditions yield an 
eigenvalue problem       with eigenvalues λ and  
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. 

 
The solution will be stable if all eigenvalues are 
real. We find the eigenvalues of above matrix   
for the solution     shown in Fig. (1). It is found 
that the imaginary parts of all eigenvalues are 
zero, i.e. all eigenvalues are real as they all are 
lying on the horizontal axis as shown in Fig. (4). 
This shows that solution     is stable.     

Following the same procedure as above, we 
found the eigen values structure for the solution 
    depicting that the solution    is also stable.  

 
Fig. 4 . The eigenvalues structure for the solution   . 
All eigenvalues are lying on the horizontal axis 
showing the stability of the solution. 

 

4. CONCLUSIONS 
In this paper, we have presented the derivation of a 
two mode model using a symmetric and an anti-
symmetric basis functions. It was found that the 
solutions obtained through two mode model and 
that from the time-dependent GP equation are very 
close to each other and validated the two mode 
model. The two mode model can be used to 
describe the dynamics of bosons in each well of 
the external potential. We also studied the stability 
of the basis functions by perturbing the solutions. 
Both solutions were found to be stable.    
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