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1. INTRODUCTION 

Substantial attention has been given in recent years to the theory of dynamic equations on time scales, 
which was introduced by Hilger's landmark [1].For instance see [2] and the references cited therein. 
Therefore, several researchers have discussed numerous aspects of dynamic equations on time scales. 
Dynamic inequalities play a significant role in the qualitative study of dynamic equations [3-7]. Various 
researchers have been studied integral inequalities of different types on the time scales [8]. 

 The primary objective of our work is to analyze some non-linear dynamic integral inequalities on 
time scales which not only generalized few existing well known results. But this work also came handy to 
determine the explicit bounds of the solutions of particular dynamical equations on time scales. Along 
with we provide some continuous and discrete inequalities for different time scales. As a whole in this 
work, we have deeply studied time scales and time scales essentials.  is considered to be a time scales 
and        denotes the set of all rd-continuous functions defined on  . For convenience throughout the 
whole discussion we assume that     . The work is structured as follows: Non-linear dynamic 
inequalities on time scales are given in section 2. In section 3 some applications to illustrate our main 
results are given. 

 

2. MAIN RESULTS 

In this paper, the following non-linear dynamic integral inequalities would be under consideration. 
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provided that                     [     are rd-continuous functions, and                     

    [    ) is a continuous function. 
 
Lemma 1. [2,p.255] Let n, y         and        , then  

                             
implies 

                   ∫  (      )           
 

  

 

Lemma 2. [4] Let us consider                     and if we take     then 
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Lemma 3. [2,p.46] Suppose            is continuous at      ,then for any        neighbourhood 

of       , which does not depend on   [       ], s.t 

|                   
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       (the derivative of K  w.r.t the first variable) is rd-continuous on [       ]   

   then  
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Before stating main results, some symbolic representation for the sake of brevity and compact 

understanding are given as: 
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The main result of this paper is as follow. 

Theorem 1. Let                  be non-negative rd-continuous functions and              are 
constant with              and      such that (1) holds, then 

                                   √         ∫        
 

  

        
 

                                                                      

where   and   are defined above in equation (6) and (8), respectively. 

Proof. Define a function 

     ∫{    [    ] 
 

  

     [    ]      [    ] }    

so that         and   is non decreasing 

           [    ]      [    ]      [    ]                                                                                           

      √                                                                                                                                               

Direct application of Lemma 2 and inequality (20) in (19) yield:  
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     [   
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 ]                                                                                        

Application of Lemma 1 yields: 

     ∫  (      )       
 

  

 

Hence, the result. 
 

Theorem 2. Let                  be non-negative rd-continuous functions and (0 )         are 

constants with              and       If        ̃         s.t (2) satisfied,then 

                                    √         ∫( ̃    )   
 

  

  
 

                                                                          

provided that   is defined in the proof.Functions  ̃  and   are defined by equation (6) and (15), 

respectively. 

Proof. Define a function 

      ∫{    [     ] 
 

  

     [     ]      [     ] }    

so that   (      and   is non decreasing 

          [     ]      [     ]      [     ]                                                                                
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Direct application of Lemma 2 and inequality (24) in (23) yield: 
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It is observed that: 

 ̃              
           

 

 (25) becomes  

       ̃         
           

(   ̃        ) 

Hence, the result. 

  The following two theorems are the weighted variants of the last theorems respectively. 
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Theorem 3. Let                  be non-negative rd-continuous functions and             are 

constants with              and     .Let        be a weight function as defined in lemma 3 s.t 

  
         for      such that (3) holds, then 

                               √         ∫  ̃̃      
 

  

   ̃̃     
 

  

where  ̃̃ and  ̃̃ are defined above in equation (10) and (17), respectively. 

Proof. Define a function 

     ∫        
 

  

  

provided that 
 ( , ) = K     {    [    ]      [    ]      [    ] } 

so that          and      is non decreasing. 

         √                                                                                                                                        

Direct application of lemma 2 and inequality (19), (21) and (27) yield:  
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application of lemma 1 yields the required result. 

Theorem 4. Under the assumptions of theorem 3 for          ̂    such that (4) holds, then 

     √         ∫( ̃   ̃)   
 

  

  
 

                                                                                                             

where  ̂  ̃ and   ̃ are defined by equation (13), (14) and (16), respectively. 
 

Proof. Consider  

      ∫      {    [     ] 
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where,              {    [     ]      [     ]      [     ] } 
so that         and      is non-decreasing. 

            √                                                                                                                                       

Direct application of lemma 2 and (7),(9),(13),(19) yield: 
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               [ ̃          ̃   ]  ∫        [ ̃          ̃   ]  
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For (14), the above inequality (31) has the form 

       ̃     ̃   
       ̃    ( ̃   ̃)     

Hence, the result. 
 

3. APPLICATIONS 

Now we discuss here the few utilizations of the main results for the special cases      . 
 

Corollary 1.(Continuous case) 

Let     and              [         be continuous functions; Let              are constants 
such that              and     , then (18) implies 

                √         ∫    (∫      
 

 
)       

 

  

 
                                                                             

provided that    and   are defined as in theorem 1. 
 
Corollary 2.(Discrete case) 

Let     and                    {         }  let             are constants s.t   
          and     , then (18) implies 

                                          √         ∑ ∏ (      )    
   

     

   

    

 
                                                     

 
provided that    and   are defined just like in Theorem 1. 
 
Corollary 3. (Continuous case) 

Let     and             [         be continuous functions; let             are constants s.t 
          r and     . Let        be a weight function (defined in Lemma 3) s.t        

     for     
then (29) implies 
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                                                 √         ∫( ̃   ̃)   
 

  

  
 

                                                                  

where  ̃ and  ̃ are as defined in Theorem 4. 
 
Corollary 4. (Discrete case) 
Assume     and                   let             are constants s.t           and     . 
Let        be a weight function as defined in lemma 3 s.t                   for     and 1  ̂   , 
then (29)  

                                   √         ∑( ̃   ̃)   
   

    

 
                                                                                 

provided 

 ̂             ̃    ∑[               ] ̃    
   

    

 

And  ̃  ̃ and  ̃ are as defined in Theorem 4. 
Note 1.Let            be non-negative rd-continuous functions and       s.t            
 .Then, (18) implies 

                                 ∫         
 

  

                                                                                             

which is nothing except that [2, Theorem 6.4]. 
 
Corollary 5. Assume that         are non-negative rd-continuous functions and             are 
constant with          and    . If     is a real constant, then (5) implies 

                             √  ∫   ̃(      ) ̃     
 

  

 
                                                                                        

 
Proof. By using Theorem 1, (37) follows from (5).  
Finally, to illustrate our main results we give an application to initial value dynamical equation. Let us 

examine the following IVP on time scales 

[     ]   (    (    )   (    )   (    ))                                                                            

where,       | |       and                   is a continuous functions.t 

|                      |       |    |       |    |       |    |   
provided that       are non-negative rd-continuous functions on    , then  
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In fact,           , then Corollary 5 yields: 

|    |  √       ∫  ̃(      ) ̃     
 

  

 
  

provided that      is a solution of (38). 
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