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Abstract: In this work, based on the generalized derivative operator , 1 11 2

K ( ,..., ; ,..., ) ( )m
r s f z       

and by making use of the notion of subordination,  two new subclasses of functions are derived. With 
regards to these two subclasses, some properties are discussed briefly. 
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1. INTRODUCTION 

Historically, we were informed that John Wallis 
was the first ever mathematician who used 
hypergeometric functions and this can be found in 
his book entitled "Arithmetica Infinitorum" [1]. 
Euler also found to be in the lists of those who 
used hypergeometric functions as mentioned in the 
book entitled “Theory of hypergeometric 
functions” [2]. However, the first full systematic 
treatment was given by Carl Friedrich Gauss, and 
thereafter by Ernst Kummer [3]. The fundamental 
characterization  was addressed by Bernhard 
Riemann for solving hypergeometric function by 
means of differential equation where it satisfied 
[4]. The importance of the hypergeometric theory 
is stemmed from its applications in many subjects 
such as, numerical analysis, dynamical system and 
mathematical physics. 

Definition 1.1 [11]: Denote by A  the class of 
analytic functions of the form  

=
( ) = ; ( = { :| |< 1})

=2

n nf z z a z z U z C zn
n



    (1) 

and   the subclass of A consisting of univalent 
functions, and ( )S  , 1)<(0   denotes the 
subclasse of A  consisting of functions that are 

starlike of order   in U . 

Definition 1.2 [10]: For two analytic functions 
=

=2
( ) = n n

nn
f z z a z

  and n
n

n

n
zbzzg  


=

2=
=)(  

in the open unit disk ={ :| |<1}U z C z . The 
Hadamard product (or convolution) gf   of f  
and g  is defined by  

=
( ) ( ) = ( * )( ) = .

=2

n nf z g z f g z z a b zn n
n


     (2) 

Definition 1.3 [11]: Let )(zp  and )(zq  be 
analytic in U . Then the function )(zp  is said to 
be subordinate to )(zq  in U , written by  

( ) ( ); ( ),p z q z z U  (3)  

 if there exists a function )(zw  which is analytic 
in U  with 0=(0)w  and 1|<)(| zw  with z U  , 
and such that ))((=)( zwqzp  for z U . From the 
definition of the subordinations, it is easy to show 
that the subordination (3) implies that  

(0) = (0) ( ) ( )p q and p U q U   (4) 

For complex parameters r ,...1  and s ,...1

)1...=2,...;1,0,( sjj  , Dziok and 
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Srivastava [5] defined the generalized 
hypergeometric function );,...,;,...,( 11 zF srsr   
by  

( ) ...( )1( ,..., ; ,..., ; ) = ;1 1 ( ) ...( ) !1=0

nzn r nF zr s r s nn s nn

 
   

 



( 1; , ; ),0r s r s N z U      (5) 

 where nx)(  is the Pochhammer symbol defined, 
in terms of Gamma function  , by  

 

1 if = 0,
( )( ) = = ( 1)...( 1) if .

( )

n
x nx x x x n n Nn x







     


  

(6) 

Dziok and Srivastava [5] defined also the linear 
operator  

( ,..., ; ,..., ) ( ) = ,1 1
=2

nH f z z a zr s n n
n

    


   (7) 

 where  

( ) ...( )1 1 1= .
( ) ...( ) ( 1)!1 1 1

n r n
n nn s n

 
 

 
   

(8) 

Abbadi and Darus [6] defined the analytic function  

1(1 ( 1))1= ,,1 2 =2 (1 ( 1))2

mnm nz z
mn n


  


  

 
 

  (9) 

where .}{0,1,2,...=0m  and 012   . 

Using the Hadamard product (2), Alhindi and 
Darus [8, 9] has derived the generalized derivative 
operator ( ,..., ; ,..., )1 1,1 2

mK r s      as follows  

( ,..., ; ,..., ) ( ) =1 1,1 2
1(1 ( 1))1 ,

=2 (1 ( 1))2

m f zr s

mn nz a zn nmn n

     






  
 

 
 (10)

 

where n  is as given in (8). 

Now, after some calculations we obtain the 
following equation: 

( ( ,..., ; ,..., ) ( )) =1 1,1 2

( 1,..., ; ,..., ) ( )1 1 1,1 2

( ,..., ; ,..., ) ( ).1 1 1,1 2

m 'z K f zr s

mK f zr s

mK f zr s

    

     

     



  (11)
 

 The linear operator ),...,;,...,( 112,1 sr
m   

includes many other operators which were 
mentioned earlier in [8, 9]. 

If we recall the generalized Bernardi-Libera-
Livingston integral operator :j A Ac   (see [13, 
14, 15]), defined by  

1 1( ) = ( ) ; ( > 1; ).
0

zc cj f z t f t dt v f Ac cz


     

 One can easily observe that  

0( ) = K (1 ,1; 2)0, 2
j f z c cc     

2),1;(1K= 1
,01

 cc  

2
0,0= K (1 ,1; 2).c c   

Owa [16] introduced the fractional derivative 
operator by these definitions (see also [17]).  

Definition 1.4 [12]: The fractional integral 
operator of order   is defined, for a function f , 
by  

1 ( )( ) = ; ( < 0),
1( ) ( )0

z fD f z dz
z

  
 




    
(12) 

where f(z) is an analytic function in a simply 
connected region of the z-plane containing the 
origin, and the multiplicity of 1)(  z  is 
removed by requiring )(log z  to be real when 

0>z .  

Definition 1.5 [16]: The fractional derivative 
operator of order   is defined, for a function f , 
by  

1 ( )( ) = ; (0 < 1),
(1 ) ( )0

zd fD f z dz dz z

  
 

 
  

 (13) 

where f(z) is an analytic function in a simply 
connected region of the z-plane containing the 
origin, and the multiplicity of   )(z  is 
removed same as the previous definition.  

Definition 1.6 [16]: Using the assumption of 
Definition 1.5, the fractional derivative of order 

n  is defined, for a function f , by  

( ) = ( ); (0 < 1; ),0
ndnD f z D f z nz zndz

    
 

(14) 

Srivastava and Owa [18] (see also [19-22] ) used 
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these definitions of fractional calculus to define 
the linear operator : A A   as follows  

( ) = (2 ) ( );
( 2,3,4,...; ).

f z z D f zz
f A

 

  

   (15) 

 By some calculations, we can find that  

0( ) = K (2,1;2 )0, 2
f z    

1= K (2,1;2 ),01
   

2= K (2,1;2 )0,0  . 

Kim and Srivastava [23] investigated the class of 
functions f A  such that )()(),( * Szfca  ,  

( 1, ) ( ) 1 (1 2 )1
( , ) ( ) 1

a c f z za a
a c f z z

  
 


.  (16) 

After that, Dziok and Srivastava [5] introduced the 
class ),;,( BAsrV  of function f  with some 
conditions, and studied its properties. 

 

2. THE NEW CLASS ),;,(
2,1

BAsrW m
  

Let us denote by ),;,(
2,1

BAsrW m
  the class of 

functions f  of the form  

( ) = ; ( 0; \1).
=2

nf z z a z a nn n
n



  
 

(17) 

 with the normalization  

(0) = (0) 1= 0,f f     (18) 

 which also satisfy the following condition:  

1

( 1, ,..., ; ,..., ) ( )1 2 1,1 2
1

( ,..., ; ,..., ) ( )1 1,1 2
11 .
1

mK f zr s
mK f zr s

Az
Bz

     


    






 


  (19)

 

in terms of subordination, where 10  B  and 
BAB < . 

In this section, the coefficient estimate for the new 
class ,1 2

( , ; , )mW r s A B   is investigated. For this 

purpose, two lemmas are listed. Going back 
to(11), for a function of the form (17) and by 

considering 1=A , 1= B , one can notice that 
the condition (19) is equivalent to  

( , ,..., ; ,..., ) ( ) (0).1 2 1,1 2
mK f z Sr s       

  
(20) 

Thus we can get the following Lemma.  

Lemma 2.1 If )1,...,=(= sjji   then 

( ;1, 1) (0).,1 2
mW s S     

By the definition of the class ),;,(
2,1

BAsrW m
 , 

we can get the following lemma.  

Lemma 2.2 If 21 AA   and 21 BB  , then  

( , ; , )1 1, ,1 2 1 2

( , ; , ) ( , ;1, 1).2 2 ,1 2

m mW r s A B W

mr s A B W r s

   

 



   (21)
 

Theorem 2.3  Let f  of the form ), then 

),;,(
2,1

BAsrWf m
  if and only if  

1(1 ( 1))1(( 1) ( 1)) ( ),
=2 (1 ( 1))2

mn
B n A a B An nmn n






  
     

      
(22) 

where n  is is defined by (8).  

Proof. Firstly, Let a function f  be of the form 

(17) belongs to the class ),;,(
2,1

BAsrW m
 . Using 

the definition of subordination and by equation 
(19), we can write  

( 1, ,..., ; ,..., ) ( )1 2 1, 1 ( )1 2 1 = .1 1 1 ( )( ,..., ; ,..., ) ( )1 1,1 2

mK f zr s Aw z
m Bw zK f zr s

     
 

    

 
 



After some calculation, and by consider that 
0=(0)w  and 1|<)(| zw  we can write  

, , , ,{ ( 1) ( ) ( ) ( )}1 1 1, ,1 2 1 2 < 1,
, , , ,( 1) ( ) ( ( 1) ) ( ) ( )1 1 1 1, ,1 2 1 2

m r s m r sK f z K f z

m r s m r sBK f z A B K f z

     

      

 

   
  

(23) 

 where, for convenience, we write  
, , ( ) ( ) = ( , ,..., ; ,..., ) ( ),1 1 2 1, ,1 2 1 2

m r s mK f z K f zr s        
 

 and  
, , ( 1) ( ) = ( 1, ,..., ; ,..., ) ( ).1 1 2 1, ,1 2 1 2

m r s mK f z K f zr s         
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 Thus, by equation  (13), one can write  

1(1 ( 1)) 11( 1)
=2 (1 ( 1))2 < 1; ( ),

1(1 ( 1)) 11( ) ( )
=2 (1 ( 1))2

mn nn a zn nmn n
z U

mn nB A Bn A a zn nmn n













    
 


      

 

  
where n  is is defined by (8). If we put rz =  for 

1<0 r , we conclude that  

1(1 ( 1)) 11( 1)
=2 (1 ( 1))2

1(1 ( 1)) 11< ( ) ( )
=2 (1 ( 1))2

mn nn a rn nmn n
mn nB A Bn A a rn nmn n













    
 

      
 

 

which yields the assertion (22) by letting 1r . 

Secondly, if the function f  is of the form (17) 
and satisfying the condition (22). Then, we are 
supposed to prove that ),;,(

2,1
BAsrWf m

 . 

Using the relation (23), then it is sufficient to 
prove that  

 , , , ,( 1) ( ) ( ) ( )1 1 1, ,1 2 1 2
m r s m r sK f z K f z  
   

 

 
, , , ,( 1) ( ) ( ( 1) ) ( ) ( )1 1 1 1, ,1 2 1 2

.m r s m r sBK f z A B K f z   
   

      (24) 

 If we put rz |=|  for 1<0 r , then we can write  

, , , ,{ ( 1) ( ) ( ) ( )}1 1 1, ,1 2 1 2
, , , ,( 1) ( ) ( ( 1) ) ( ) ( )1 1 1 1, ,1 2 1 2

m r s m r sK f z K f z

m r s m r sBK f z A B K f z

     

      

  

   

 

1(1 ( 1))1= ( 1)
=2 (1 ( 1))2

1(1 ( 1))1( ) ( )
=2 (1 ( 1))2

mn nn a zn nmn n

mn nA B Bn A a zn nmn n













  
  

 

  
   

 

 

1(1 ( 1))1( 1)
=2 (1 ( 1))2

1(1 ( 1))1( ) ( )
=2 (1 ( 1))2

mn nn a rn nmn n
mn nA B Bn A a rn nmn n













  
  

 

        
   

 

1(1 ( 1)) 11= ( (( 1) ( 1)) ( ))
=2 (1 ( 1))2

mn nr B n A r B Anmn n






        
 

 

1(1 ( 1))1< (( 1) ( 1)) ( ) 0.
=2 (1 ( 1))2

mn
B n A B Anmn n






  
      

   
(25) 

Thus, ),;,(
2,1

BAsrWf m
 and the proof is 

complete. 

Based on Theorem 2.3, the following corollary can 
be derived. 

Corollary 2.4If a function f  is of the form 

(17)and ),;,(
2,1

BAsrWf m
 , then we can write  

( ) ; ( = 2,3,4,...),B Aa nn Cn


  

 where  
1(1 ( 1))1= (( 1) ( 1)) ; ( = 2,3,4,...).

(1 ( 1))2

mn
C B n A nn nmn





 
   

 

The result is sharp, the functions nf  of the form:  

( ) = ; ( = 2,3,4,...),A B nf z z z nn Cn


  

 are the extremal functions.  

 

3.  THE NEW CLASS ),(* BAS  

In this section,a new subclass ),(* BAS  of 
analytic functionssatisfying the following 
condition is defined. 

Let ,f A  then *( , )f S A B  if and only if  

( ,..., ; ,..., ) ( )1 1, 11 2 ;
1( ,..., ; ,..., ) ( )1 1,1 2

'mz K f zr s Az
m BzK f zr s

    

    

 
   


 

(26) 

 where 10  A  and 10  B  . 

In the proceeding theorem we will study the 
sufficient condition for functions fto be in the class 

),(* BAS , by applying the following lemma. 

Lemma 3.1 [24]  Let )(zw  be analytic in U  with 
0=(0)w . If |)(| zw  attains its maximum value on 

the circle 1<|=| rz  at a point 0z , then  

( ) = ( ),0 0 0z w' z kw z  

 where k  is a real number and 1.k   
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Theorem 3.2 Suppose f A  which satisfying  

( ,..., ; ,..., ) ( )1 1,1 21

( ,..., ; ,..., ) ( )1 1,1 2
2(1 ) ( )< ; ( ),

(1 )(1 )

''mz K f zr s

'mK f zr s

A A B z U
A B

    

    

        
  

    

  


 

  (27)

 

 for some 10  A  and 10  B , then 
),(* BASf  . 

Proof. Let )(zw  is defined by  

( ,..., ; ,..., ) ( )1 1,1 2
( ,..., ; ,..., ) ( )1 1,1 2

1 ( )= ; ( ( ) 1).
1 ( )

'mz K f zr s

mK f zr s

Aw z Bw z
Bw z

    

    

 
  






 

 It follows that 0=(0)w . Moreover, )(zw  is 
analytic and after some calculations we can write  

( ,..., ; ,..., ) ( )1 1,1 21

( ,..., ; ,..., ) ( )1 1,1 2
2(1 ( )) ( )( )= .

(1 ( ))(1 ( ))

''mz K f zr s

'mK f zr s

'Aw z zw z A B
Bw z Aw z

    

    

 
  
 
  

  
 

 

 Thus  

( ,..., ; ,..., ) ( )1 1,1 21

( ,..., ; ,..., ) ( )1 1,1 2
2(1 ( )) ( )( )=

(1 ( ))(1 ( ))

''mz K f zr s

'mK f zr s

'Aw z zw z A B
Bw z Aw z

    

    

        
  

    
    
   

 

2(1 ) ( )< .
(1 )(1 )

A A B
A B

  
 

 

Next, we prove that 1|<)(| zw . Suppose that there 
exists a point 0z U  such that  

| ( ) |=| ( ) |= 1.max 0
| | | |0

w z w z
z z

 

 Suppose iezw =)( 0  and 1;=)( 00 kkezwz i'  , 
then by applying Lemma 3.1 we can get  

( ,..., ; ,..., ) ( )1 1,1 21

( ,..., ; ,..., ) ( )1 1,1 2
2(1 ( )) ( )( )0 0 0=

(1 ( ))(1 ( ))0 0

''mz K f zr s

'mK f zr s

'Aw z z w z A B
Aw z Bw z

    

    

        
  

    
    
  
   

2(1 ) ( )=
(1 )(1 )

i iAe ke A B
i iAe Be

 

 

    
   

 

2(1 ) ( )=
(1 )(1 )

A k A B
A B

    
   

.
))(1(1

)()(1 2

BA
BAA




  

 We conclude that  

( ,..., ; ,..., ) ( )1 1,1 21

( ,..., ; ,..., ) ( )1 1,1 2
2(1 ) ( ) ; ( ),

(1 )(1 )

''mz K f zr s

'mK f zr s

A A B z U
A B

    

    

        
  

    

  
 

 

 

which contradicts our assumption. Therefore, we 
can obtain that 1|<)(| zw  for all ( )z U  implies  

( ,..., ; ,..., ) ( )1 1, 11 2 ;
1( ,..., ; ,..., ) ( )1 1,1 2

'mz K f zr s Az
m BzK f zr s

    

    

 
   


 

 where 10  A  and 10  B . Thus, the proof 
is complete. 

 

Corollary 3.3 Suppose that ,0)(* ASf   then 
we can write  

( ,..., ; ,..., ) ( )1 1,1 2 1 < .
( ,..., ; ,..., ) ( )1 1,1 2

'mz K f zr s
A

mK f zr s

    

    

 
     

Putting 1=A  implies that ( ,..., ; ,..., )1 1,1 2
mK r s      

is starlike. 

 

4.   CONCLUSIONS 

In this paper, two new subclasses 
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( , ; , ) and *( , ),1 2 
mW r s A B S A B

 
were introduced 

involving the operator ( ,..., ; ,..., )1 1,1 2
mK r s     . 

Moreover, by considering the subordination 
notion, certain properties of the two subclasses 
were investigated. 
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