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Abstract: In this paper, numerical solution of two points 2" order nonlinear boundary-value problems was
considered. The numerical solution was reviewed with nonlinear shooting method, finite-difference method
and fourth order compact method. The results were compared to check the accuracy of numerical schemes
with exact solution. It was found that the nonlinear shooting method is more accurate than finite-difference

method and fourth order compact method.
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1. INTRODUCTION

Consider a two point 2™ order nonlinear boundary
value problem (BVP) of the type

V'=f(x,3,)).x €[a.b]; a,beR (1)
jointly among the boundary conditions
y(@=a and y(b)=p. ()

Where a and 3 are constants.

The approach for solving this problem has been
projected by a number of researchers such as
Roberts and Shipman [1], Malathi [2], Ha [3],
Auzinger et al [4] and Attili and Syam [5].

In this research paper, we considered nonlinear
shooting method (NLSM), finite-difference method
(FDM) and fourth order compact method (FOCM)
for the solution of above two points 2™ order
nonlinear boundary value problems (BVPs).

2. NONLINEAR SHOOTING METHOD
(NLSM)

Consider a two point’s 2™ order non-linear
boundary-value problem (BVP)
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V=) ya)=a, y(b)=p

wherea < x < b and a, B are constants.

)

Here, we used the solutions to a sequence of
initial value problems (IVPs) of [3, 5, 6]
V'=f(». @ =a, y(a)=t &)

Concerning a parameter t, anda <x<b, to
approximate the solution to our BVP (3).

By choosing parametersf =7, in such a way that

lim y(b,1,) = y(b) = )
Where y(x,¢,) is the solution to the IVP (4) with
t =, and y(x) is the solution to the BVP (3).

This procedure is called a Shooting method.

We begin with a parameter?, that find out the
initial elevation at which the object is excited from
the point(a, ) and beside the curve described by
the solution to the IVP [6].

y”:f(x,yay’)a y(a)za’ y'(a)=to (6)
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If y(b,t,) isnot satisfactorily close to 3, we try
to correct our approximation by choosing another
elevation #, and so on, until y(b,t,) is

satisfactorily close to striking f [3].

To decide how the parameter?, can be chosen,

suppose a BVP (3) has a single solution. If y(x, t) is
the solution to the IVP (4), then we need to
determine t so that

(b, t)y-p= ( (7

Since this is a nonlinear equation, we use
Newton’s method

S (x,)

xn+1 xn - fy(x )
n

to solve the problem. We need to choose initial
approximationf, and then generate sequence by

_ yobit ., »p

(8)
&
pACESD

tk_tkl

this requires the knowledge of ?(Z), t,,). This
t

presents a complexity, since an explicit illustration
for y (b, t) is not identified; we only know the
values

y(b,ty), y(b,t)), .......... , y(b,t, ).

Suppose we modify the IVP (4), emphasizing
that the solution depends on together x and t.

V'(x,0) = f(x,p(x,0),)'(x,1)),a<x<b,

yva,t)=a,y'(a,t)=t )

retaining the prime notation to
differentiation with respect to x.

indicate

d
Since we need to determine ?y(b,t) , when
t

t=t,_,, we take partial derivative of (9) with
respect to t.

oy"(x,t) _df (x, y(x,t), y'(x,1))
ot ot
_Y ox
Cox ot

+% oy (x,t)
oy Ot

Lo )
oy' ot

: . ox
Since x and t are independent, 8_ =0,so0
t

GNP 1080

ot oy Ot
L D o
oy' ot
fora < x <b . The initial conditions give
% o'
——(a,t)=0,and —(a,t )= 1
at( ) 81( )

If we make simpler the notation by using
0

z(x,t) to denote a—y(x, t) and suppose that the
t

order of differentiation of x & t can be reversed, Eq.
(10) with initial conditions becomes IVP [6]

of of

z"(x,1) =§Z (x,t)+§z "(x,t),

a<x<b,z(a,t)=0,z'(a,t)=1 (11)

Therefore, one requires that two IVPs be solved
for each iteration, (4) and (11).

Then from Eq. (8),

_ y(b’ tk—l)_ﬂ

Z(b, 1) (2

L =1,

In practice, none of these IVPs is solved
exactly; instead, the solutions are approximated by
one of the IVP solvers [3].

Hence, in shooting method for nonlinear BVPs,
we use classical Runge-Kutta fourth-order method
to approximate both solutions required by
Newton’s method.

3. FINITE-DIFFERENCE M ETHOD (FDM)

Methods involving finite differences for solving
boundary value problems (BVPs) replace each of
the derivatives in the differential equation by an
appropriate difference-quotient approximation. The
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difference quotient is chosen to maintain a
specified order of truncation error [7].

The nonlinear second order BVP of the form
3) requires that difference—quotient
approximations be used to approximate both
y'and y". First, we take N>0, which is an

integer, and break up [a,b] into N+1 equal

subintervals, whose end points are mesh points

X, =a+ih,fori =0,12,..., b-a

N +1where h = .
N +1

At interior mesh
fori=0,1,2,..., N, following

equation is to be approximated
V') = 1 (%, 0(x), ' (x,)

Expanding y, in the third Taylor-polynomial,
aboutx ; evaluated atx, ,andx

points, X

i

differential-

(13)

we get

i-1°

Y=y ) +Hhy'(x, )+* "(x; )+*y'”(x )+*y "

for some §i+in(x[ ,le), and

YO, )=y ) —hy'(x, )+ y"(x )**y ")+ *y &)

in (xl. 1,x.) , assuming

y eC 4[x X +1] By adding the above two

for some &~

equations, we have

Y= [y(xw.) 2y (x)+y(x, .)]—f[y EH+r'&N]

Using intermediate value theorem, this can be
simplified even further as

¥ ) =[x - 205 435, )] —f—zy“(g:) (14)

for some & in(x,,x,, ). This is called the

centered-difference formula for y "(x, ).

A centered difference formula for y'(x,) is

obtained in a related manner resulting in

V(x, )——[y(xm) 2y(x, J]—Zy'”(n) (15)

for some7, in(x, ,x,,,).
The use of the centered difference formulas in
equation (13) gives

yx)=2y(x)+y(x,)
h2

=f [X,»,y (x;)

y(xm) 2y (x;) h
Y (m)j

for some &, and 17, in the interval (x, ,,x,,,).

=9

As in linear case, the difference method results
when the error terms are deleted and boundary
conditions employed [7]:

= f, and

Wo=&, Wyy

_Wi+1_2Wi+Wi—1 f | xw, Win Wi, -0
h’ )

for eachi =1,2,...,N.

The N XN nonlinear system obtained from this
method is

2wl—w2+h2f(xl, j

W, +2w, —w +hf(x2,w2,w 5 j 0,

To approximate the solution to this system, we
use Newton’s method for nonlinear system. A

("),wz("), ..... W “‘)) is

generated that converges to the solution of system,
provided that the initial approximation

sequence of iterates (w]

the solution, (Wl,wz, ..... W N)t , and that the

Jacobian matrix for the system is nonsingular. For
the system, the Jacobian matrix is tridiagonal.

Newton’s method for nonlinear systems
requires that at each iteration, the N XN linear
system [8]
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JW Wy ) (V0 5evy )

=—[2w1—wz—a+h2f (xwwz—;“j

Wi —w,
W, ——L ,
2h

w,, =W
2 N N2
Wyt 2wy _W]\/-I—hf(le’WNl’ J’

W, +2w, —w, +h’f (xz

_1WN—]+2WN +h2.f‘(xN’WN7%j_ﬂ]

be solved for Vv

w,® =w * Py | foreachi =1,2,....,N 16)

i

4. FOURTH ORDER COMPACT
METHOD (FOCM)

A fourth order general differencing scheme,
proposed by Kreiss [9], is developed and it is
applied on the three test problems to confirm
accuracy and applicability of this technique.
Burger’s equation, the Howarth’s retarded
boundary flow, and the incompressible driven
cavity, are the solved test problems [6, 8, 9]. A
number of researchers have contributed in this
method, some of them are Ahmad [8], Orsazag and
Israeli [10], Richard [11], Leventhal and Ciment
[12] and Pettigrew and Rasmussen [13]. The
detailed work on compact method was done by
Ahmad [8]. We follow the procedure of Pettigrew
and Rasmussen [13] to derive the compact method
for nonlinear ODEs [14, 15].

Consider the nonlinear two point second order
BVP of the form (3). Let us denote first and second
derivatives with respect to x of y by F and S
respectively, i.e.

Vv=F,and y"=S (17)
= F'=S
Consider y'=F
Integrating both sides fromx, ,fo x,,, we get
Vi =Via = | F(&ME (18)

Yin=Yiat J.F(é:ﬂég

Approximating integral by Simpson’s rule [§]

h 1
Yia=YVia 3[E +4F, +F}, ] 9_h5F4(§)
:>£[F. +4F, +F |+, —», _ L g €3)
3 i1 i i+1 i1 i+1 90

3
multiplying both sides byz , we get

3
F  +4F +F +Z[yz'—1 _ym] _ﬁh“F ()

and to the fourth order, we have

F_ +4F+F;+1+Z[yi—l_yi+l]=0 19)

Thus we have a relationship between y and F and it
is the first difference-equation.

Now for the second equation, we start by
evaluating equation (eq) (1) at the midpointi .
Thus equation (1) becomes [7]

yi=f(x,yx)y'(x,))

Since y " =S, so we have

S, = f(x,y(x). F) (20)

Now, we require an expression forsS, .

If we expand y in the 5" Taylor’s polynomial on
x; evaluated atx,, and at thex, |, we get

2 3

L M I N L AT
Vin =i thyi+ oyt oy i+ ey Uy + &)
+
for some &, 1n(xi,xi+l),and
h’ h’ "y ! h’ (5) (()
Yia=yi—hyi+ oyl 4,y ;y, + &)
for some & in (x i X [) , assuming

y eC® [ s X ,+1]- If we add these equations,

terms involving y!,y"and y > are eliminated

and we get
'
+y,, =2y, +hy +— OEY+y©®
Viat Y= oy 720[y (EN+y (&)
h h°
=S YAV =2, RS, Ay e[y O+ O
Yin*Yia=2y, S0 €y )]

Here intermediate-value theorem is used to further
simplify this as

4 6

h h
+Y, =29+ 1S, A — yi 4+ — @ (21)
Via+ Vi =2y, 12)/ 360y )
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for some &, in(x,_,X,,,).

Now expanding F in Taylor series

2 3 (5)

F, _F+hF'+h—F+h—F, h—E‘” " EO(ED (22)
200731 4
2 3 5)

Fo=Fenbe e B I ey (23)
2000 31 4 5!

On subtracting eq(23) from eq(22), we get

[—
F, —F,_ =2hF/+—F"+—| FO()+F®
i+ 3 120[ &) €]

By using intermediate value theorem, we get
h3 (5)
F_ =2hF'+—F"—F"(&")
3 0
For a few ¢, in(xl._l,xl.ﬂ) .
Since, F'=S,F"=y¥ F® =3 s,

F

i+

5)

h3
F,—F_ =2hS +—y® +—y9& (24)
i+1 i-1 i 3 yl 60 y (é:z)

Eliminating y @ from eq (21) and (24), we get
2 1 Y6

S; :P[yi—l -2y, +yi+1]_E[F;+l _E'-l]Jr%y &)

By a similar procedure, we get

N
i1z 2h2

S, :W[’U’H +16y, 723yi+1]+

and to the fourth order, we have

1 Y
Szl 16y 4Ty | [6F L +8F +F L [+ (&)

1 Y
E[FH +8F, +6F,+1]+%y‘ (&)

2 1
Si:?[yi—l_zyi—‘ryiﬂ] E[ i+l F;fl] (25)

S, = 23y, +16y,+ 7y, ]~ h[GF,.,,+8E+F,H] (26)

Sl

i+

1 1
Sa= ﬁw)’f—l +16y, —23y,,, ] +Z[F;'—1 +8F, +6F,, ] (27)
From eq (25), putting the value of S, in eq (20), we
get

L E+1_E—I]:f(xi’y(x1)’F;) (28)

2
P[y{—l _2yi +yi+l]_2h[

We have replaced now differential equation (3) by
two difference-equations (19) and (28).

Now, consider 1st boundary condition i.e. at x=a,
and denote the points x=a,a+h,
a+2h by 0,1,2.
we obtain from the boundary condition, is [7]
W=« (29)
Now to obtain the second equation, we begin with

the first difference-equation,

differential equation at points 0 and1.

So:f(xo’ymE)) (30)
S1:f(x17y1:FI) (3D
For i=1, eq(26) implies
Sy = 2:12 [ 23y()+16y|+7y2] h[6E)+8E+F;] (32)
Eq (25) implies
2 1
Sl=;[yo—2y1+yz]—E[Fz—Fo] (33)
Eq (19) implies
3
Fy+ 4R+ B+ 2y =3, =0 (34)

Now, we have five equations from (30) to (34).
We eliminate S, S, ,, F, from these equations.

From eq (30) and (32), we have

S (o rs ) == Sp-3r-or (9

8 7
27}12)’0"'?}’1"'27}’2)’2_}1 oy

From eq (31) and (33), we have

2 4 2 1 1
f(xuprl):?yo—;yl+ﬁ)’z—ﬁFz+EFo (36)
From eq (34), we get

h 4h h
+—F +—F+=F, 37
Y2 =V 3 3 13 (37)

Putting this value of y, in equations (35) and
(36), we get

8 8 29 10 1
f(xO’yO’F(')):_FyO_FFyI_a}i}_ﬁF a2 (38)
4 4 7 8 1
F(R) ==z n =g nt R R B (39)
Subtracting eq (38) from eq (39), we get
12 12 6 6
S B) =S (v Fy) =50 —zn+ Bt o F (40)

In a similar approach, we derive the following two
difference-equations for y and F at x=m. i.e. at the
right boundary point [7]

V=P (41)
12 6
f(xm’ym’En)_f( m- l’ym l’Fm l) hz (ymfl_ym) h(Fm 1+F ) (42)
Thus for each point we have two difference
equations. If we write them all together, we have
the following “Fourth Order Compact Scheme”.
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Yo=a 5. RESULTS AND DISCUSSION
2 12 6. 6, :
Fyo_h*zyl"';Fo"';Fl =f (xl’yl’E)_f (xosyano) Test Problem-1:
% Yo, _% v, +F_ +4F +F =0 Consider the two points 2™ order nonlinear BVP of
5 4 5 the form
1 1
?yl—lipyi+Fyt+l+EEfliﬁE+l =f (xlayl’:F:’) " 2 3 1< <5 1 1 5 1
" Pe) =27 153 <5,y ()= 2Ly ()= ¢
12 12 6 6
2V T2 Vm +—F,  +—F, =f XY .F, -f X5V ms By . . . 1
h h h h ( )1 ) and its exact solutionis y (x ) = ——.
x +3
Table 1. Comparison of results.

X Exact values FDM results FOCM results NLSM results
1.00000000 0.25000000 0.25000000 0.25000000 0.25000000
2.00000000 0.20000000 0.15976405 0.20019856 0.20002568
3.00000000 0.16666667 0.12060503 0.16719549 0.16668811
4.00000000 0.14285714 0.11056759 0.14333433 0.14286864
5.00000000 0.12500000 0.12500000 0.12500000 0.12500000

The above Table shows that results of NLSM are more accurate to the exact solution as compared with the
results of FDM and FOCM.

025
X
\ Exact
—— FDM
FOCM
02r ——— NLSM T
0.15 i
01 1 1 1 1 1 1 1
1 15 2 25 3 35 4 45 5
X
Fig. 1. Comparison of results.
Table 2. Comparison of absolute errors.

X FDM results FOCM results NLSM results
1.00000000 0.00000000 0.00000000 0.00000000
2.00000000 0.04023595 0.00019856 0.00002568
3.00000000 0.04606164 0.00052882 0.00002144
4.00000000 0.03228955 0.00047719 0.00000115
5.00000000 0.00000000 0.00000000 0.00000000

The above table shows the comparison of absolute errors for FDM, FOCM and NLSM. It is found that an
absolute error for NLSM is less as compared to the other two methods.
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Consider the

two
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points 2™

order

nonlinear

BVP of the

1<x<2, ()= 3 ¥(2) =—1 and its actual solutionis y (x ) = 2z .

Table 3. Comparison of results.

x —4
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1
form  y"(x) = 5)/3,

X Exact values FDM results FOCM results NLSM results
1.00000000 -0.66666667 -0.66666667 -0.66666667 -0.66666667
1.25000000 -0.72727272 -0.78365013 -0.72732785 -0.72727455
1.50000000 -0.80000000 -0.88144644 -0.80010259 -0.80000299
1.75000000 -0.88888888 -0.95496986 -0.88999967 -0.88889178
2.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000000

The above table shows that results of NLSM are more accurate to the exact solution as compared with the
results of FDM and FOCM.

y(x)

065

0751

085

095+

-06 T T T

0.7

08F

09r

Exact
— FDM

- FOCM
— NLSM

Fig. 2. Comparison of results.

Table 4. Comparison of absolute errors.

X

FDM results

FOCM results

NLSM results

1.00000000
1.25000000
1.50000000
1.75000000
2.00000000

0.00000000
0.05637741
0.08144644
0.06608098
0.00000000

0.00000000
0.00005513
0.00010259
0.00111079
0.00000000

0.00000000
0.00000183
0.00000299
0.00000029
0.00000000

The above table shows the comparison of absolute errors for FDM, FOCM and NLSM. It is found that an
absolute error for NLSM is less as compared to the other two methods.
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6. CONCLUSION

In this paper, we considered two different nonlinear
2" order two points BVPs for ordinary differential
equations (ODEs) and solved these problems using
NLSM, FDM and FOCM. All the above methods
are appropriate for solving two points 2™ order
nonlinear BVPs, but it was found that NLSM is
more accurate than FDM and FOCM.
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