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Abstract: This paper investigates the recognition of expressed emotion from speech and facial expressions 
for the speaker-dependent task. The experiments were performed to develop a baseline system for the 
audio-visual emotion classification, and to investigate different ways of combining the audio and visual 
information to achieve better emotion classification. The extracted features were composed of 106 audio 
and 240 visual features. The audio features consisted of pitch, energy, duration and MFCC features, 
whereas the visual features were related to positions of the 2D marker coordinates. The Plus l-Take Away r 
algorithm was used for feature selection based on the Mahalanobis distance, Bhattacharyya distance, and 
KL-divergence as selection criteria. The feature selection was followed by feature reduction using the PCA 
and LDA, and classification using the Gaussian classifier. Both unimodal and bimodal approaches were 
used for emotion classification. The audio-visual fusion was investigated at two different levels: feature-
level and decision-level. The emotion classification results comparable to human performance were 
achieved on the SAVEE database. 

Keywords: Multimodal emotion recognition, feature selection, distance measures, classification, emotional 
database 

 

1. INTRODUCTION 
The interaction between human and machine is 
becoming more interesting with the development 
in technology. Human beings communicate with 
each other through speech, but its verbal content 
does not carry all the information conveyed. 
Additional information includes vocalised 
emotions, facial expressions, hand gestures and 
body language as well as biometric indicators [1, 
2]. From the human perspective, the human-
machine interaction will be more natural and 
attractive if machines are able to recognize human 
emotions and respond accordingly [3]. On the 
other hand, recognition of the user’s expressed 
emotion can improve the reliability of 

communication in dialogue [4]. 
 Automatic emotion recognition has many 
important applications including affect-sensitive 
automobile systems, emotional intelligent 
customer services systems, and game and film 
industries [5]. The field of emotion recognition has 
attracted researchers from various disciplines and 
current research has made significant progress in 
several areas including acquisition of emotional 
databases, feature extraction and selection, and 
classification and fusion of modalities [5, 6]. 
 Previous studies have mainly focused on 
unimodal approaches (e.g., speech, facial 
expressions) for emotion recognition. The 
modalities have largely been treated independently 
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and the interrelation between them has not been 
explored. In actual fact, speech and facial gestures 
are highly correlated and coordinated, and the 
relationship between these two modalities is 
affected by emotions and linguistic content [7]. 
Humans express their emotion through both 
speech and gesture, and it has been suggested that 
an ideal emotion recognizer should be based on 
multimodal information [1, 8].  
 The reliability of an emotion recognizer is 
based on several factors including the quality of 
emotional data used to build the system. Popular 
audio databases include the AIBO corpus, Berlin 
database (EMODB) and Danish database [9–11]. 
Visual databases include the Cohn-Kanade and 
MMI databases [12, 13]. Examples of audio-visual 
databases are GEMEP, Facial Motion Capture 
database, IEMOCAP, Belfast Naturalistic database 
and HUMAINE database [7, 14–17]. These 
databases are either acted or natural. 
 Audio and visual features of different types 
have been investigated for the analysis of emotion. 
Important acoustic features include pitch, 
formants, duration, spectral energy, and mel 
frequency cepstral coefficients (MFCCs). Audio 
features have been used at utterance-level [18, 19], 
as well as at frame-level [20, 21]. Vision-based 
emotion recognition is primarily based on facial 
expressions, since the face plays the most 
important role in conveying emotion. Facial 
features can be divided into two categories: 
geometric and appearance [22]. The techniques of 
Pantic and Bartlett [22] and Chankg et al [23] are 
based on geometric features, while [24, [25] used 
appearance features. 
 Feature selection and reduction techniques are 
commonly used to discard uninformative, 
redundant and noisy information. The processes of 
feature selection and reduction improve both the 
classification accuracy and computational 
efficiency. For emotion recognition, different 
types of feature search technique have been used 
including sequential forward selection [19], 
sequential floating forward selection [26], genetic 
algorithms [27] and best-first [28]. Feature 
reduction techniques include PCA and LDA [29, 
30]. 
 The choice of classifier plays a crucial role in 
any pattern recognition problem. Commonly used 
classifiers are Gaussian mixture model [31], 
hidden Markov model [20], neural network [32], 

support vector machine [33], and adaptive 
boosting [34]. Multimodal approaches have been 
adopted to improve the emotion classification by 
fusion of data at feature [2], decision [35], and 
model [36] levels. 
 Most research in the area of emotion 
recognition is based on using a single modality 
(e.g., audio or visual), and less progress has been 
made in terms of multimodal approaches. This 
research aims to achieve better emotion 
classification by combining the audio and visual 
modalities. The following sections present the 
SAVEE database, method, experimental results 
and conclusion. 
 

2. SURREY AUDIO-VISUAL EXPRESSED 
EMOTION (SAVEE) DATABASE 

The design of an automatic emotion recognizer is 
based on many factors, and one of the important 
factors that can affect its performance is the 
emotional database used to build its models 
representing human emotions. Emotional 
behaviour databases of acted and spontaneous 
emotions have been recorded for emotion analysis. 
The attributes of an emotional database that affect 
the performance of an emotion recognizer include 
emotion categories, number of speakers, 
modalities and quality of the data [14]. 
 
2.1 Corpus Design 
We used SAVEE database [37] for our analysis. 
The database consists of data from four British 
male speakers, with an average age of 30 years, in 
Ekman’s six basic emotions (anger, fear, disgust, 
sadness, happiness and surprise) [38] plus neutral.  
 The text material for the database was selected 
from the TIMIT database [39], which consists of 
phonetically-diverse sentences. The text material 
consisted of 15 sentences for each of the six 
emotions and 30 sentences for the neutral. The 
distribution of sentences in this way resulted in 
120 utterances per actor and 480 utterances in 
total. 
 
2.2 Data Recording 
The data were recorded using 3dMD’s 4D capture 
system [40] at the University of Surrey, UK. The 
3dMD’s system covers 180 degrees of the face. 
The sampling rate for audio data was 44.1 kHz, 
while that for video was 60 fps. To extract facial 
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features, each actor’s frontal face was painted with 
60 markers. Markers were painted on the forehead, 
eyebrows, cheeks, lips and jaw. 
 
2.3 Data Processing and Annotation 
Both the audio and visual data were annotated. 
The audio data were labelled at the phone level, 
and facial markers were tracked for each frame of 
the visual data.  
 
2.4 Subjective Quality Evaluation 
Quality of the recorded data was checked in terms 
of expressed emotions by performing the 
subjective evaluation. The SAVEE database was 
evaluated by 20 subjects (10 male, 10 female) with 
an average age of 25 years. The audio, visual and 
audio-visual data were evaluated at utterance 
level.  
 Each actor's data were evaluated by 10 
subjects. The classification accuracy for seven 
emotion classes averaged over four actor’s data 
and 10 evaluators was 66.5 % for audio, 88.0% for 
visual, and 91.8 % for audio-visual data. Overall, 
at least 8 out of 10 evaluators were able to 
recognize the expressed emotions for 441 out of 
480 utterances under bimodal scenario, indicating 
that the database contain a high quality recorded 
data. 
 

3. METHOD 
The speaker-dependent emotion classification was 
performed by adopting a method comprising three 
main steps, please see Fig.1. The first step was 
feature extraction, in which audio features 
consisting of pitch, duration, energy and spectral 
envelope, and visual features consisting of 2D 
coordinates of facial markers were extracted. The 
next step consisted of feature selection and 
reduction. The Plus l-Take Away r algorithm 
(sequential forward backward selection) was used 
for feature selection based on three criteria: 
Bhattacharyya distance, Mahalanobis distance and 
KL-divergence. Feature selection was followed by 
feature reduction using the PCA and LDA 
transformation techniques. Finally, different 
emotion categories were classified using the 
Gaussian classifiers. 
 
3.1 Feature Extraction 
For the speaker-dependent emotion classification 
features were extracted at utterance-level 

consisting of 106 audio and 240 visual features. 
The details of the audio and visual features and 
their extraction are given below. 
 
3.1.1 Audio Features 
The audio features were related to pitch (f0), 
duration, energy and spectral envelop. These 
features were extracted using the Speech Filing 
System [41] and HTK [42], as shown in Fig. 2a. 
Pitch Features: The fundamental frequency (f0) 
was extracted using the Speech Filing System 
based on RAPT algorithm. Features related to f0

 contour were minimum and maximum of mel 
frequency; mean and standard deviation of first 
and second Gaussian of mel frequency; minimum, 
maximum, mean and standard deviation of mel 
frequency first order difference. 
Duration Features: Semi-automated phone labels 
were used to extract duration features. The phone 
labelling was performed in two steps: first 
automatic labelling of the audio was performed 
using the HTK, and second the Speech Filing 
System was used to correct the automatic phone 
labels based on listening assisted by the waveform 
and spectrogram. The following duration features 
were extracted: voiced speech duration, unvoiced 
speech duration, sentence duration, average voiced 
phone duration, average unvoiced phone duration, 
voiced-to-unvoiced speech duration ratio, average 
voiced-to-unvoiced phone duration ratio, speech 
rate, voiced-speech-to-sentence duration ratio, and 
unvoiced-speech-to-sentence duration ratio. 
Energy Features: The energy features were 
extracted by first filtering the signal in different 
bands using a Butterworth filter and then 
calculating the energy at frame level using a 
Hamming window having a duration of 25 ms. 
The step size was 10 ms. The following energy 
features were extracted: mean and standard 
deviation of total log energy; minimum, 
maximum, range, mean and standard deviation of 
normalised energies in the original speech signal 
and speech signal in the frequency bands 0-0.5 
kHz, 0.5-1 kHz, 1-2 kHz, 2-4 kHz and 4-8 kHz; 
minimum, maximum, range, mean and standard 
deviation of first order difference of normalised 
energies in the original speech signal and speech 
signal in the same frequency bands. 
Spectral Features: The spectral envelope features 
were extracted at utterance level using the HTK: 
mean and standard deviation of 12 MFCCs. 
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Fig. 1. Block diagram of emotion classification method for the speaker-dependent scenario. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. (a) Audio feature extraction with Speech Filing System software; (b) video data with marker locations. 

 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Block diagrams of the audio-visual fusion at two levels: (a) feature-level; (b) decision-level. FS: Feature 
Selection; FR: Feature Reduction; GC: Gaussian Classifier. 
 
 
 
 
 

30	 Sanaul Haq et al



 

 

 
Fig. 4. Average classification accuracy (%) achieved for seven emotions on the subject KL data using the LDA-
transformed features selected with the Bhattacharyya (Bhat), Mahalanobis (Mah) and KL-divergence (Div) 
measures. The results were obtained for the (a) audio, (b) visual, and audio-visual modalities fused at (c) feature-
level (FL), and (d) decision-level (DL). 
 
 

(a) (b) 

(c) (d) 
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3.1.2 Visual Features 
The visual features were extracted by painting 
markers on actors’ foreheads, eyebrows, cheeks, 
lips and jaws, as shown in Fig. 2b. After data 
capture, the markers were manually labelled for 
the first frame of a sequence and automatically 
tracked for the remaining frames using a marker 
tracker. The tracked marker x and y coordinates 
were normalised relative to a reference point at the 
bridge of the nose by subtracting the mean 
displacement and rotating for the correction of the 
head pose [7]. Finally, 240 visual features were 
obtained from the 2D marker coordinates as the 
mean and standard deviation of the adjusted 
marker coordinates. The facial markers were 
divided into upper, middle and lower sections. The 
upper region included region above the eyes, the 
lower region contained area below the upper lip, 
and the middle region covered the cheek region. 
 
3.2 Feature Selection and Reduction 
The feature selection improves the classification 
accuracy and makes the algorithm faster by 
removing the uninformative, redundant or noisy 
information. For the speaker-dependent emotion 
classification, we adopted a two-step process: 
feature selection with Plus l-Take Away r 
algorithm, followed by feature reduction with 
PCA and LDA. 
 
3.2.1 Feature Selection 
Feature selection was performed using a standard 
algorithm based on the discriminative criterion 
function. The Plus l-Take Away r algorithm [43] 
is a feature search method based on some criterion 
function. It combines the sequential forward 
selection (SFS) and sequential backward selection 
(SBS) algorithms to achieve better results.  
 At each step, l numbers of features are 
included to the current feature set and r numbers 
of features are discarded. The process continues 
until the required feature set size is achieved. The 
feature search was performed with l = 2 and r = 1, 
i.e., one feature was added at each step. We used 
this algorithm for feature selection based on three 
different criteria: Mahalanobis distance, 
Bhattacharyya distance, and KL-divergence [44]. 
These distance measures have been used as 
dissimilarity measures in different applications 
including speaker recognition [44], emotion 
recognition [45] and texture retrieval [46]. 

Mahalanobis distance: It is used to define the 
similarity between two classes [47]. The 
Mahalanobis distance between two normally 
distributed classes ωi and ωj  is defined as 

     √(     )
 (         )

  (     )    (1) 

where µi and µj are the means, Σi and Σj are the 
covariances, and Pi and Pj are the prior 
probabilities of classes ωi and ωj, respectively. The 
prior probabilities are calculated as Pi

 
= (ni − 

1)/(ni + nj − 2) and Pj
 
= (nj − 1)/(ni + nj − 2), 

where ni
 
and nj

 
denote the numbers of samples 

from classes ωi and ωj, respectively. The 
Mahalanobis distance is scale invariant and it 
takes into account the correlation between 
variables. The Mahalanobis and Euclidean 
distances are equivalent when the covariance term 
Pi

 
Σi

 
+ Pj

 
Σj is equal to the identity matrix. 

 

Bhattacharyya distance: It is another way of 
defining the separability between two classes [48]. 
For normally distributed classes it is given by 

         (     )
 (

     
 )

  
 

(     )       
|
     

 |

√|  ||  |
      (2) 

The Bhattacharyya distance consists of two 
components: the first term defines the class 
separability based on class means, whereas the 
second term provides the class separability based 
on class covariance matrices. The first term 
represents the Mahalanobis distance using an 
average covariance matrix. 
Kullback-Leibler (KL) divergence measure: The 
divergence measure provides the dissimilarity 
between two classes based upon information 
theory [49]. For two normally distributed classes 
ωi and ωj, the KL-divergence is defined as 

     
 
   [(  

       )(     )(     )
 ] 

  
   [(     )(         )]   (3) 

where tr denotes the matrix trace operation. The 
above-mentioned relation consists of two 
components: the first term provides the difference 
between two classes using the class means, while 
the second term provides the difference based on 
covariance matrices. In this way, the divergence 
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measure defines the separation between two 
classes based on both the class means and 
covariance matrices. 
 Features were normalised prior to applying the 
feature selection by using the Z-norm (i.e., mean 
subtraction and division by standard deviation). 
The data was assumed to be normally distributed 
and full covariance matrices were used for 
computation, similar to other studies [44]–[46]. 
The above-mentioned distance measures provide 
the separability between two classes. For m 
number of classes the separability measure is 
obtained by averaging it over all binary 
combinations of the classes, and is given by 

  ∑ ∑           
   
    (4) 

where Jij is the separability measure between two 
classes ωi and ωj, whereas Pi and Pj  are the prior 
probabilities of classes ωi and ωj, respectively. 
 
3.2.2 Feature Reduction 
Statistical methods can be used to reduce the 
dimensionality of a feature set. This is achieved by 
applying the linear transformation, y = Wx, where 
y denotes the feature vector in reduced feature 
space, W is the transformation matrix, and x is the 
original feature vector. PCA technique [50] is used 
to extract the important characteristics of high-
dimensional data and to remove the uninformative 
and noisy data. The LDA method [51] provides 
the separation between classes based on the ratio 
of between-class variance to within-class variance. 
We applied LDA by using the covariance of all 
training data rather than between-class variance in 
order to compare the LDA and PCA for different 
numbers of features. PCA and LDA methods 
involve feature centring, whitening, covariance 
computation and eigen decomposition. For feature 
reduction, we applied both PCA and LDA as 
linear transformation techniques to the selected 
features. 
Principal Component Analysis (PCA): PCA 
method is widely used for the statistical analysis of 
data [50]. It has the ability to extract useful 
information from noisy data by reducing its 
dimensionality. 
     Let X be an m × n matrix, where m denotes the 
number of features and n denotes the number of 
samples. First, the mean value of each feature is 
subtracted and each feature is divided by its 
standard deviation to have the same range of 

variation for different features. Second, we define 
a matrix Y of n × m dimensions. 

   
√    

    (5) 

 It can be shown that 
          (6) 
where ΣX  denotes the covariance of X. The 
eigenvectors of ΣX provides the principal 
components of X. The Singular Value 
Decomposition (SVD) of matrix Y provides the 
eigenvector matrix V. The columns of matrix V 
are the eigenvectors of YTY = ΣX, and therefore 
the principal components of X. 
The SVD decomposition of a matrix M is given by 
       (7) 
 Here U and V are the orthogonal matrices, 
where the elements of V are eigenvectors, and U is 
the set of vectors defined by ui ≡ (1/σi)Xvi. Σ is a 
diagonal matrix with singular values  
σ1 ≥ σ2 ≥ … ≥ σr. Singular values are positive and 
real, which are obtained by taking the square roots 
of eigenvalues of a matrix. 
Linear Discriminant Analysis (LDA): LDA is 
another example of the feature reduction 
techniques, which provides the separation between 
classes based on the ratio of between-class 
variance to within-class variance [51]. The 
criterion function for LDA is given by 

 ( )  |     |
|     |   (8a) 

   ∑  (    )(  
 

   
  )                                         (  ) 

         (8c) 

   ∑(   )( 
 

  )                                     (  ) 

 where ΣB is the between-class variance, ΣW 
denotes the within-class variance, and ΣT is the 
total variance matrix. µ is the total mean vector, µi 
denotes the mean vector for class i, and m is the 
total number of classes. The transformation matrix 
W maximises the ratio of between-class variance 
to within-class variance. The columns of matrix W 
contain the eigenvectors corresponding to the 
largest eigenvalues in 
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                     (9) 

 In the above relation, if ΣW is non-singular 
then the equation can be solved by eigenvalue 
decomposition of ΣW

-1
ΣB. Alternately, the 

eigenvalues can be calculated as the roots of 
characteristic polynomial 

|       |      (10) 

and then solving 

(       )        (11) 

for eigenvectors wi. The matrix ΣB is of the rank m 
− 1 or less, since it is the sum of m matrices of 
rank one or less, and only m − 1 of these are 
independent. There are m − 1 non-zero 
eigenvalues and weight vectors corresponding to 
these eigenvalues. In the case of isotropic within-
class scatter, the eigenvectors are those of ΣB. In 
general, the solution for W is not unique and the 
transformations rotate and scale the axes in 
different ways. These linear transformations do 
not make any significant changes to the criterion 
function J(W) or classifier. 

 PCA is non-parametric and the solution is 
unique and independent of any hypothesis about 
the data probability distribution. These two 
properties are the weakness as well as the strength 
of PCA. LDA is closely related to PCA in the 
sense that both are linear feature reduction 
techniques. The difference is that PCA does not 
take into account any information about the 
classes, while LDA explicitly attempts to model 
the difference between the classes of data. 

 

3.3 Classification and Fusion of Modalities 
The Gaussian classifier utilises the Bayes decision 
theory for classification. It is assumed that the 
class-conditional probability p(x|ωi) have Gaussian 
distribution for each class ωi. The Bayes decision 
rule is described as 

               (  | )   

      
 
 ( |  ) (  )                                    (  ) 

where P(ωi|x) denotes the posterior probability, 
and P(ωi) defines the prior class probability. A 
single component Gaussian was used to model 
each emotion class ωi using a diagonal covariance 
matrix. 

 The audio-visual emotion classification was 
performed by the fusion of modalities at feature-
level, and at decision-level, as shown in Fig.3.  
 

4. EXPERIMENTAL RESULTS 
A detailed analysis was performed to compare the 
class separability performance of the Mahalanobis 
distance, Bhattacharyya distance, and KL-
divergence measures using the single subject (KL) 
data from the SAVEE database.  
 The feature selection with the Mahalanobis 
distance and KL-divergence criteria was 
performed using the full set of audio, visual, and 
audio-visual (feature-level fusion) features. In the 
case of Bhattacharyya distance, the feature 
selection process encountered a numerical 
problem after selecting a certain numbers of 
features, which is discussed in more detail later in 
this section. For this reason, the audio features 
were selected from the pitch, energy, duration, and 
MFCC features subgroups, whereas the visual 
features were selected from the upper, middle, and 
lower region of the face. In the case of audio 
modality, the proportions of selected features were 
13 % (pitch), 49 % (energy), 12 % (duration) and 
26 % (MFCC), whereas for the visual modality, 
the proportions of selected features were 37 % 
(upper face), 37 % (middle face) and 26 % (lower 
face). The feature-level fusion was performed by 
combining 30 % audio and 70 % visual features, 
as the visual modality performed better than the 
audio modality. This combination was chosen as it 
performed better than other combinations, such as 
40 % audio, 60 % visual; and 50 % audio, 50 % 
visual features. For the decision-level fusion, the 
posterior probabilities obtained for the two 
modalities were multiplied for equal numbers of 
selected features from the audio and visual 
modalities. The weighting of the two modalities 
were equal. The data were divided into six sets, 
where in each experiment the training data consist 
of five sets and the testing data consist of one set. 
The average results were obtained by combining 
the results of all six experiments. 
 The results achieved for the seven emotion 
categories using the audio, visual, and audio-visual 
modalities are plotted in Fig.4. These results were 
obtained for the LDA 6 features. The best results 
achieved for the audio modality were 53 % 
(standard error (SE): 7.2, 40 features (ft.)), 52 % 
(SE: 7.5, 20 ft.) and 48 % (SE: 13.5, 10 ft.), 
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whereas for the visual modality it were 99 % (SE: 
1.6, 50 ft.), 98 % (SE: 3.3, 20 ft.) and 98 % (SE: 
3.3, 30 ft.) using the Bhattacharyya, Mahalanobis 
and KL-divergence measure-based features, 
respectively. In the bimodal scenario, the best 
results for the feature-level fusion were 99 % (SE: 
1.6, 70 ft.), 
99 % (SE: 1.6, 50 ft.) and 98 % (SE: 2.1, 190 ft.), 
whereas for the decision-level fusion it were 99 % 
(SE: 1.6, 50 ft.), 99 % (SE: 1.6, 40 ft.) and 98 % 
(SE: 3.3, 30 ft.) for the Bhattacharyya, 
Mahalanobis and KL-divergence measure-based 
features, respectively. 
 The LDA-transformed features performed 
better than the PCA-transformed features. The 
results obtained for the PCA 20 components are 
discussed here. The best results for the audio 
modality were 42 % (SE: 6.5, 50 ft.), 42 % (SE: 
5.5, 10 ft.) and 38 % (SE: 7.9, 30 ft.), whereas for 
the visual modality it were 98 % (SE: 3.3, 50 ft.), 
98 % (SE: 3.3, 80 ft.) and 98% (SE: 3.3, 140 ft.) 
for the Bhattacharyya, Mahalanobis and KL-
divergence measure-based features, respectively. 
In the case of bimodal scenario, the best results for 
the feature-level fusion were 90 % (SE: 3.0, 20 
ft.), 89 % (SE: 3.9, 130 ft.) and 80 % (SE: 10.1, 
170 ft.), whereas for the decision-level fusion it 
were 98 % (SE: 3.3, 70 ft.), 98 % (SE: 3.3, 40 ft.) 
and 95 % (SE: 6.2, 30 ft.) for the Bhattacharyya, 
Mahalanobis and KL-divergence measure-based 
features, respectively. 
 A comparison of the human and machine 
performance for the seven emotion categories is 
shown in Table 1. We achieved classification 
accuracy comparable to human performance.   In 
general, the visual modality performed better than 
the audio modality, and the performance of fusion 
at decision-level was better than the fusion at 
feature-level, especially in the case of PCA. A 
much higher accuracy was obtained for the visual 
modality alone. For this reason, no significant 
improvement was observed in the classification 
accuracy when the two modalities were combined. 
The overall performance of Bhattacharyya 
distance was better than the KL-divergence. In 
comparison to the Mahalanobis distance, the 
Bhattacharyya distance performed slightly better 
for the audio and visual modalities in the case of 
LDA, whereas for the bimodal scenario the results 
were comparable. In the case of PCA, a 
comparable performance was achieved for both 
the Bhattacharyya and Mahalanobis distances. 

Table 1. Comparison of human and machine average 
classification accuracies (%) for seven emotions on the 
SAVEE. FL: Feature-Level; DL: Decision-Level; 
Bhat.: Bhattacharyya distance; Mah.: Mahalanobis 
distance; Div.: KL-Divergence measure. 
 

Modality Human Machine (PCA) Machine (LDA) 

Bhat. Mah. Div. Bhat. Mah. Div. 

Audio 67 ± 2.5 42 ± 
6.5 

42 ± 
5.5 

38 ± 
7.9 

53 ± 
7.2 

52 ± 
7.5 

48 ± 
13.5 

Visual 88 ± 0.6 98 ± 
3.3 

98 ± 
3.3 

98 ± 
3.3 

99 
±1.6 

98 ± 
3.3 

98 ± 
3.3 

Audio-
visual 
(FL 
fusion) 

92 ± 0.1 90 ± 
3.0 

89 ± 
3.9 

80 ± 
10.1 

99 ± 
1.6 

99 ± 
1.6 

98 ± 
2.1 

Audio-
visual 
(DL 
fusion) 

92 ± 0.1 98 ± 
3.3 

98 ± 
3.3 

95 ± 
6.2 

99 ± 
1.6 

99 ± 
1.6 

98 ± 
3.3 

  
 For the Bhattacharyya distance, the feature 
selection starts with the full set of features but it 
encounters a problem after selecting a certain 
number of features. The Bhattacharyya distance 
for two normally distributed classes is defined as 

         (     )
 (

     
 )

  
 

(     )       
|     

 |

√|  ||  |
 

where µi and µj are the means, while Σi and Σj are 
the covariance matrices of classes ωi and ωj, 
respectively. The Bhattacharyya distance consists 
of two components: the first term defines the class 
separability based on class means, whereas the 
second term provides the class separability based 
on class covariance matrices. The first term does 
not cause any problems, but the second term 
becomes infinite after selecting a certain number 
of features. The distance measure is averaged over 
all binary combinations of the emotion classes for 
different numbers of selected features, and when 
one or more of these combinations fails, it leads to 
the failure of the feature selection process. This 
problem is caused by the denominator of second 
term, which consists of the product of 
determinants of the two covariance matrices. If the 
values of the two determinants are very small, 
their product results in a zero value, and thus 
returns an infinite value for the second term. It was 
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observed that the feature selection process was 
affected by the small amount of training data. The 
problem of singularity can be avoided by using a 
large amount of training data and reducing the 
number of features [46]. To overcome this 
limitation of the Bhattacharyya distance, we 
selected features from the subgroups of features 
for each of the audio and visual modalities. 
 

5. CONCLUSIONS 
Classification of seven emotion classes was 
performed on the SAVEE database using the 
Mahalanobis distance, Bhattacharyya distance, and 
KL-divergence measures as feature selection 
criteria. The LDA-transformed features performed 
better than the PCA-transformed features. The 
overall best results were achieved with LDA 6 
features and PCA 20 features (components). 
 In general, better results were achieved for the 
visual modality in comparison to the audio 
modality, and the fusion at decision-level 
performed better than the fusion at feature-level, 
especially in the case of PCA. The overall 
performance of Bhattacharyya distance was better 
than the KL-divergence. In comparison to the 
Mahalanobis distance, the Bhattacharyya distance 
performed slightly better for the audio and visual 
modalities in the case of LDA, whereas for the 
bimodal scenario it was comparable. In the case of 
PCA, a comparable performance was achieved for 
both the Bhattacharyya and Mahalanobis 
distances. 
 Classification accuracy comparable to human 
was achieved on the SAVEE database. Differences 
existed between the classification accuracies of the 
machine and humans. The possible reasons are 
differences in the training data, i.e., the machine 
was trained/tested in a speaker-dependent scenario 
but humans were adapted to a small amount of 
data and evaluation was performed in a speaker-
independent fashion, the task was discrete emotion 
classification, and the expressed emotions may 
have been lacking in naturalness. 
 In future the current method will be applied to 
the data of all speakers of SAVEE database and 
the method will be extended to other databases. It 
will be interesting to investigate the emotion 
classification both in the speaker-dependent and 
speaker-independent scenarios. 
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