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1. INTRODUCTION 

In the recent years, there has been a noticeable 
interest in the study of neutral functional 
differential equations of first order with delay due 
to their importance of applications in applied 
mathematics (see, for example Adıvar and Raffoul 
[1], Ardjouni and Djoudi [2, 3], Burton [4, 5, 6], 
Kaufmann [7], Kaufmann and  Raffoul [8], 
Raffoul [9, 10, 11], Yankson [12] and the 
references cited in these sources). To the best of 
our knowledge from the literature, although there 
are many works concerned with the existence of 
periodic solutions for various neutral differential 
equations of first order, no works have been done 
to investigate the existence of periodic solutions of 
nonlinear neutral differential equations of first 
order with multiple variable delays. Therefore, it is 
worth to work on the existence of periodic 
solutions of neutral differential equations of first 
order with multiple variable delays.  

We begin with summarizing a few relative 
results done in the literature on the existence of 
periodic solutions for neutral differential equations 
of first order.  

In 2003, Raffoul [9] considered the first order 

nonlinear neutral differential equation with 
functional delay. 

( ) ( ) ( ) ( ) ( ( ))
( , ( ), ( ( ))).

x t a t x t c t x t g t
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
 

Raffoul [9] benefited from Krasnoselskii’s 
fixed point theorem and established sufficient 
conditions, which guarantee that this nonlinear 
neutral differential equation with functional delay 
has a periodic solution. 

Later, in 2010, Ardjouni and  Djoudi [2] 
concerned with the existence of  periodic solutions 
for a nonlinear dynamic equation on a time scale T  
with functional delay )(t of the form 

3 3 3( ) ( ) ( ( )) ( , ( ), ( ( ))),   x t a t x t G t x t x t r t t T     

 Ardjouni and  Djoudi [2] constructed a 
suitable Banach space and a bounded convex 
subset, then convert the existence of periodic 
solutions to a fixed point problem for a map, that 
is ,the sum of a compact map and a large 
contraction, and the authors  used a modification 
of Krasnoselskii’s fixed point theorem due to 
Burton ([4], [6, Theorem 3])  to show the 
existence of a periodic solution of this equation. 

More recently, Yankson [12] used a variant of 
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Krasnoselskii's fixed point theorem by Burton  [6, 
Theorem 3]  to show the existence of periodic 
solutions for the totally nonlinear neutral 
differential equation of first order with functional 
delay 

( ) ( ) ( (( ))) ( ) ( ( ))
( , ( ), ( ( ))).

x t a t h x t c t x t g t
q t x t x t g t
     

  

Motivated by the above discussion, the aim of this 
paper is to give some new sufficient conditions 
which guarantee the existence of periodic 
solutions for the following nonlinear neutral 
differential equation of first order  with two 
variable delays  
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where ),(ta f  and  g   are continuous functions, 
( )jb t  and )(tc j  are continuously differentiable 

functions, and ),0( )( tj  are twice  continuously 

differentiable functions for ,t ).,0[   
We benefit from the fixed point theorem of 
Krasnoselskii’s  to prove the existence of periodic 
solutions of equation (1). First, we transform 
equation (1) into an integral equation written as a 
sum of the two mappings; one of them is compact 
and the other is contraction. Later, we use the 
Krasnoselskii’s fixed point theorem to prove the 
existence of periodic solutions of equation (1).  

It is clear that equation (1) includes and 
improves the equation discussed by Raffoul [9]. 
Further, when )())(( txtxh   in Yankson [12], 
then equation (1) also includes and improves the 
equation by Yankson [12].  

 
2. EXISTENCE OF PERIODIC SOLUTIONS 

Let  
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for 0.T   Here C  denotes the set of all real 
valued continuous functions. Then TC  is a 
Banach space when it is endowed with the 
supremum norm 
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Lemma 1.  Assume that conditions )3()1( CC 
hold. If ( ) ,Tx t C  then )(tx  is solution of 
equation (1) if and only if 

)))(((
)(1

)(
 )(

2

1
 




j
j

j

j ttxg
t

tc
tx 



1
)(

)1( 



t

Tt
dssa

e  

)))((),(,()([
2

1
uuxuxufub j

t

Tt j
j  

 
    

,)))]((()(
)(2

1
dueuuxgur

t

u
dssa

j

t

Tt j
j



 
      (2)   

where  

.
))(1(

)()())(1)(()()((
)( 2u

uucuucuauc
ur

j

jjjjj
j 








 
 (3) 

Proof. Let TCtx )(  be a solution of (1). 

Multiplying both sides of equation (1) by 

t

dssa

e 0

)(

 
and then integrating from Tt   to  ,t  it follows 
that  
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Then, we have  
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By dividing both sides of the last estimate by 
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Rewriting the last term and applying integration 
by parts, it follows that  
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where )(urj  is given by  (3). Hence, substituting 
estimate (5) into (4), we obtain (2).  
Conversely, let 
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It is clear that, )(tx  is a solution of equation (1). 
This completes the proof. 

We now give Krasnoselskii’s fixed point 
theorem to prove the existence of a periodic 
solution for equation (1).  
Theorem A (Krasnoselskii). Let M  be a closed 
convex nonempty subset of a Banach space 
( ,  . ).B  Suppose that A  and B  map M  into 
B  such that 
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)2(K A  is compact and continuous, 

)3(K B  is a contraction mapping. 
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To apply Krasnoselskii’s theorem we need to 
construct two mappings, one is a contraction and 
the other is compact. Therefore, we state (6) as 
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Lemma 2. If )3()1( CC  hold,  then 
: ,TA M C  as defined by (7), is continuous and 

compact. 
Proof. A change of variable in (7) shows that 
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We will now show that A  is continuous in 
the supremum norm.  
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Thus, B  is a contraction. 

Theorem 2. If  ),3()1( CC   (11) and the 
inequality 

2 3 1 1 2 1

2 1 1 2 1
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L T k k k k
T L
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   
 

hold,  then equation (1) has a T -periodic solution. 
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Proof. From Lemma 1, we know that A  is 
compact and continuous. Also, from Lemma 2, we 
know that B  is a contraction mapping. Now, for 

, ,M    we will show that  

.A B M    From (7) and (8) we have  

2 3 1 2

( ) ( )

[( ) ] ( )
t

t T

A B

k k du

 

      


 

    
  

 ])())(([ 121132 kkkkTL    

12112 )()(   T L . 

Then, it follows that all the conditions of 
Krasnoselskii’s theorem hold on the set .M  Thus, 
there exist a fixed point z  in M  such that 

.z Az Bz   By Lemma 1 this fixed point is a 
solution of equation (1). Hence equation (1) has a 
T -periodic solution. 

Theorem 3. Suppose assumptions (2)-(6) and (9)-
(11) hold. If 

1 2 1 2 3( ) ( ) 1,T k k k        

then equation (1) has a unique T  periodic 
solution. 

Proof. Let the mapping  S  be given by (6). For  
, ,M    we have from (6) that  

1 2

2 3 1

( ( )) ( ( )) ( )

( )
t

t T

S t S t

k k k

     
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    

   
 

1 2 1 2 3[( ) ( )] .T k k k           

This completes the proof.  

 
3. CONCLUSIONS 
A kind of non-linear neutral differential equations 
of first order has been considered.  On the basis of 
Krasnoselskii’s fixed point theorem,  two new 
results have been proved on the existence of 
periodic solutions that equation.  The obtained 

results extend and improve some recent results in 
the literature. 
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