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1.    INTRODUCTION 

The local fractional calculus theory was applied to 
model and process the non-differentiable 
phenomena in fractal physical phenomena [1–12]. 
Here are some local fractional models, such as the 
local fractional Fokker-Planck equation [1], the 
local fractional stress-strain relations [2], the local 
fractional heat conduction equation [9], wave 
equations on the Cantor sets [11], local fractional 
Laplace equation [12], Newtonian mechanics on 
fractals subset of real-line [13], and the local 
fractional Helmholtz equation [14]. There are exist 
some analytical methods widely applied to solve 
non-linear problems includes fractional adomian 
decomposition method [15], the homotopy 
perturbation method [16], the heat-balance integral 
method [17], the complex  transform  method [18], 
the homotopy analysis method [19], the fractional 
sub-equation method [20] and the fractional 
variational iteration method [21] and more details 
seen in [22]. 

 Recently, the application of Adomian 
decomposition method for solving the linear and 
nonlinear fractional partial differential equations 
in the fields of the physics and engineering had 

been  established in [23, 24]. Adomian 
decomposition method was applied to handle the 
time- fractional Navier-Stokes equation [25], 
fractional space diffusion equation [26], fractional 
KdV-Burgers equation [27], linear and nonlinear 
fractional diffusion and wave equations [28], 
fractional Burgers’ equation [29]. The Adomian 
decomposition method, as one of efficient tools for 
solving the linear and nonlinear differential 
equations, was extended to find the solutions for 
local fractional differential equations [30-33] and 
non-differentiable solutions were obtained.  

 In this paper, our aim is to apply the local 
fractional Adomain’s decomposition method [34, 
35] for solving fractional partial differential 
equations in the sense of local fractional 
derivative. To illustrate the validity and 
advantages of the method, we will apply it to the 
space-time fractional wave and heat equations. 

 

2. PRELIMINARY RESULTS AND 
DEFINITIONS  

In this section, we present few mathematical 
fundamentals of local fractional calculus and 
introduce the basic notions of local fractional 
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continuity, local fractional derivative, and local 
fractional integral of non-differential functions. 

Definition 2.1. If there exists the relation [7, 36] 

    ,10,0  xfxf                         (1) 

with ,0  xx for , 0 and , .  Now 

 xf  is called local fractional continuous at 
,0xx  denoted by    0

0

lim xfxf
xx




. Then 

 xf  is called local fractional continuous on the 
interval  ,,ba denoted by 

   .,baCxf                           (2) 

Definition 2.2. A function  xf is called a non-
differentiable function of exponent ,  10  , 
which satisfy Hölder function of exponent   , 
then for, Xyx , such that [7,36] 

    .yxCyfxf                 (3) 

Definition 2.3. A function  xf is called to be 
continuous of , ,10   or shortly   
continuous, when we have the following relation 
[7,36]     ,0

 xfxf

      .00
xxoxfxf                           (4) 

Compared with (4), Eq. (1) is standard definition 
of local fractional continuity. Here (3) is unified 
local fractional continuity. 

Definition 2.4. Setting    ,,baCxf   local 

fractional derivative of  xf  order   at 
,0xx  is defined [7,36] 

          
 

,lim
0

0
0

0









xx
xfxf

dx
xfdxf

xx
xx o









  (5) 

where ,10 
           .1 00 xfxfxfxf    

For any  ,,bax  there exists 
    ,xfDxf x

   

denoted by    .,bafDxf x
  

Local fractional derivative of high order is written 
in the form 

     ,...
 timesk

xx
k xfDDxf    

and local fractional partial derivative of high order 

   ....

   timesk

k

k

xf
xxdx

xf





















 

Definition 2.5 Setting    ,,baCxf  local 

fractional integral of  xf of order   in the 
interval  ba, is defined [36] 

      

     ,10,lim
1
1

1
1

1

00

























j

N

j
jt

b

a
ba

ttf

dttfxfI
   (6) 

where 
,1 jjj ttt    ...,,,max 321 tttt  and 

  ,1,...,1,0,, 1   Njtt jj ,,0 btat N   

is a partition of the interval  .,ba  For any 
 ,,bax  there exists  ,xfI xa

 denoted by 

    .,baIxf x
  

If    ,,bafDxf x
 or    ,,baI x

 we have 
   .,baCxf   

Here, it follows that  

  ,0xfIaa
 if .ba   

   ,xfIxfI abba
   if .ba   

   .0 xfxfIaa   

For any    ,,baCxf  ,10  we have 
local fractional multiple integrals 

         ,...
000

   timesk

xxxx
k

xx xfIIxfI    

For ,10       ,,baCxf kk


  then we 
have  

       ,
0

xfxfI
kk

xx 
  
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where          ,...
000

   timesk

xxxx
k

xx xfIIxfI   and 

     ....
 timesk

xx
k xfDDxf    

Definition 2.6 Mittag-Leffer function in fractal 
space is defined by 

    .10,
10










k

k

k
xxE 






           (7) 

The following rules hold 

     .21
1cos

0

2




 


k

k
k

k
xx






              (8) 

   
 

  .121
1sin

0

12











k

k
k

k
xx






           (9) 

 
3. LOCAL FRACTIONAL DERIVATIVES 
AND INTEGRALS 
Some useful formulas and results of local 
fractional derivative were summarized [7,37]. 

   

   .
11

1 1


 











k
xk

dx
xd kk

                        (10) 

   .







xE
dx

xEd
                        (11) 

   .







xkkE
dx

xkEd
                        (12) 

        .
1
1 








aEbEdxxE

b

a


    (13) 

        .coscossin
1
1 








badxx

b

a


    (14) 

     
  

    .
11

1
1
1 11 





 





  kk

b

a

k bb
k

kdxx  (15) 

 
4. ANALYSIS OF LOCAL FRACTIONAL 
ADOMIAN DECOMPOSITION METHOD 
Consider the general local fractional differential 
equation in a local fractional differential operator 
form 

         ,2 xfxuRxuL xxx                          (16) 

In Eq. (15)  2
xL  is local fractional th2  order 

differential operator, which by the definition reads 

     








 








dx
xSd

dx
dxSLx

2  

and  

          
 








0

0

0
0

lim
xx

xSxS
dx

xSdxSR
xx

xx
x 







 

is local  fractional th order differential operator 
,10  and  xS  is  local  fractional  

continuous. Applying the inverse operator 
 2
xL to both sides of (16) yields 

               ,2222 xfLxuRLxuLL xxxxxxxx
       (17) 

 If the inverse differential operator  2
xL  

exists, according to the local fractional 
decomposition method mentioned above, we have 

   
       








 .0,

,
2

1

0

nxuRLxu
xrxu

nxxxn
                (18) 

Finally, we can find a solution in the form 

   .
0






n

n xuxu                                      (19) 

Hence, we can obtain that the following condition  

    ,0
 xfxf  

where fractional dimension  xf  is equal to  for 
any  .,bax  

     
5. NUMERICAL APPLICATIONS  
Example 5.1. Consider the diffusion equation 
involving local fractional derivative  

    ,10,,,
2

2








 







x
txu

t
txu

        (20) 

subject to the initial conditions 

    .1
0,








xxu                        (21)  

Making use of Eq. (18), the recurrence relation 
reads as 
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   ,0,,0 xutxu   

     .0,,, )2()(
1  
 ntxuLLtxu nxxtn

         (22) 

The component of the solution can be determine 
from initial conditions as 

    ,
1

,0 






xtxu                                   (23) 

Applying the recursive relation (22) and, we get 
the following results 

    ,,, 0
)2()(

1 txuLLtxu xxt
  

,0  

    ,,, 1
)2()(

2 txuLLtxu xxt
  

,0  

    


,0

,, 2
)2()(

3



  txuLLtxu xxt


 

and so on. 
Thus the approximate solution of (20) in the form 
(7) is given by 

    .1
,








xyxu  

The result is the same as the one which is obtained 
in [38]. 
Example 5.2 Consider the following diffusion 
equation on cantor set 

 
 

 
  ,10,0,

21
,

2

22










 
 







x
txux

t
txu

 
(24) 

subject to the initial conditions 

    ,21
0,

2








xxu                        (25) 

According to local fractional Adomain’s 
decomposition method, the recurrence relation 
reads as 

   ,0,,0 xutxu   

      .0,,
21

, )2(
2

)(
1 










 

 ntxuLxLtxu nxxtn






    (26) 

Applying the recursive relation (26) and the initial 
conditions (25), we get the following results 

    ,21
,

2

0 






xtxu                        (27) 

     

    ,121

,
21

,

2

0
)2(

2
)(

1























 

tx

txuLxLtxu xxt

     (28) 

     

    ,2121

,
21

,

22

1
)2(

2
)(

2























 

tx

txuLxLtxu xxt

     (29) 

     

   
,

,
3121

,
21

,

32

2
)2(

2
)(

3
























 

tx

txuLxLtxu xxt

    (30) 

and so on.  
Thus, the final series solution is reads as 

   
   

 

,

31

211
1

21
,

3

2

2





































 





t

tt
xtxu

 
The closed form solution is 

     .
21

,
2







xExtxu


                  (31) 

This result is the same as obtained by Yang [38]. 
Example 5.3 Consider the following wave 
equation on cantor set 

 
 

  ,10,0,
21

,
2

22

2

2










 
 







x
txux

t
txu

 
 (32) 

with the fractal value conditions given by 

    .1
0,








xxu                                      (33) 

According to local fractional Adomain’s 
decomposition method, the recurrence relation 
reads as 
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     
  ,0,

1
0,,0 



 x
xutxutxu





  

      .0,,
1

, )2()2(
1 










 

 ntxuLxLtxu nxxttn





  
(34) 

Applying the recursive relation (34) and the initial 
conditions (33), we get the following results 

      ,11
,0 









txtxu                       (35) 

     

,0

,
1

, 0
)2()2(

1











  txuLxLtxu xxtt






         (36) 

     

,0

,
1

, 1
)2()2(

2











  txuLxLtxu xxtt






       (37) 

     

,
,0

,
1

, 2
)2()2(

3













  txuLxLtxu xxtt







     (38) 

and so on.  
Finally, we obtained 

      .11
,











txtxu                        (39) 

This is the same as obtained by Yang [38]. 
Example 5.4 Finally, consider the following wave 
equation on cantor set 

 
    ,10,0,,

2

2

2

2








 







x
txuc

t
txu

    (40) 

with the fractal value conditions given by 

   ,0, 
 xExu                                       (41) 

where c is a constant. 
According to local fractional Adomain’s 
decomposition method, the recurrence relation 
reads as 

     
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Applying the recursive relation (34) and the initial 
conditions (33), we get the following results 
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and so on.  

Finally, we obtained 

        .sinhcosh, 






 xcxcxEtxu      (47) 

This is the same as obtained by Yang [38]. 
 
6.    CONCLUSION  

In this paper, the non-differentiable solution for 
the heat and wave equations involving local 
fractional derivative operators in mathematical 
physics fractal value conditions are investigated by 
using the proposed local fractional Adomain’s 
decomposition method. The obtained results 
demonstrate the reliability of the methodology and 
its wider applicability to local fractional 
differential equation arising in mathematical 
physics, engineering and hence can be extended to 
other problems of diversified nonlinear nature. 
 
7. REFERENCES 
 
1.  Kolwankar, K.M., & A.D. Gangal. Local fractional 

Fokker-Planck equation. Physical Review Letters 
80(2): 214–217 (1998). 

2.  Carpinteri, A., B. Chiaia, & P. Cornetti. Static-
kinematic duality and the principle of virtual work 
in the mechanics of fractal media. Computer 
Methods in Applied Mechanics and Engineering 
191(1-2): 3–19 (2001). 

	 Solving Wave and Diffusion Equations on Cantor Sets	 85



3. Ben Adda, F., & J. Cresson. About non-
differentiable functions. Journal of Mathematical 
Analysis and Applications 263(2): 721–737 (2001). 

4. Babakhani, A., & V. Datardar-Gejji. On calculus of 
local fractional derivatives. Journal of 
Mathematical Analysis and Applications 270: 66–
79 (2002). 

5. Jumarie, J. Table of some basic fractional calculus 
formulae derived from a modified Riemann-
Liouville derivative for non-differentiable 
functions. Applied Mathematics Letters 22(3): 
378–385 (2009).  

6. Chen, W., H. Sun, X. Zhang, & D. Korosak. 
Anomalous diffusion modeling by fractal and 
fractional derivatives. Computers & Mathematics 
with Applications 59(5): 1754–1758 (2010). 

7. Yang, X.J. Local Fractional Functional Analysis 
and Its Applications. Asian Academic Publisher, 
Hong Kong, China (2011). 

8. Yang, X.J. Advanced Local Fractional Calculus 
and Its Applications. World Science Publisher, 
New York, NY, USA, (2012) 

9. Yang, X.J. & D. Baleanu. Fractal heat conduction 
problem solved by local fractional variation 
iteration method. Thermal Science 17(2): 625–628 
(2013). 

10. Yang, X.J., H.M. Srivastava, J.H. He, & D. 
Baleanu. Cantor type cylindrical-coordinate 
method for differential equations with local 
fractional derivatives. Physics Letters A, 377(28–
30): 1696–1700 (2013). 

11. Hu, M.S., R. P. Agarwal, & X. J. Yang. Local 
fractional Fourier series with application to wave 
equation in fractal vibrating string. Abstract and 
Applied Analysis 15: Article ID 567401 (2012). 

12. Yang, Y.J., D. Baleanu, & X.J. Yang. A local 
fractional variational iteration method for Laplace 
equation within local fractional operators. Abstract 
and Applied Analysis 2013: Article ID 202650 
(2013). 

13. Golmankhaneh, A.K., V. Fazlollahi, & D. Baleanu. 
Newtonian mechanics on fractals subset of real-
line. Romania Reports in Physics 65: 84–93 
(2013). 

14. Hao, Y.J., H.M. Srivastava, H. Jafari, & X.J. Yang. 
Helmholtz and diffusion equations associated with 
local fractional derivative operators involving the 
Cantorian and Cantor-type cylindrical coordinates. 
Advances in Mathematical Physics 2013: Article 
ID 754248 (2013). 

15. Jamshad,A., & S.T. Mohyud-Din. Adomian’s 
Decomposition Method for Solving Fractional 
Ginzburg-Landau Equation Arising in 
Mathematical Physics Using Jumarie’s Fractional 
Derivative. Science International 26(1): 35-39 
(2014). 

16. Khan, Y., & S.T. Mohyud-Din. Coupling of He’s 
polynomials and Laplace transformation for MHD 

viscous flow over a stretching sheet. International 
Journal of Nonlinear Sciences and Numerical 
Simulation 12: 1103–1107 (2010). 

17. Hristov, J. Heat-Balance integral to fractional 
(Half-Time) heat diffusion sub-model. Thermal 
Science 14(2): 291-316 (2010). 

18. He, J.H., S.K. Elagan, & Z.B. Li. Geometrical 
explanation of the fractional complex transform 
and derivative chain rule for fractional calculus. 
Physics Letters A 376(4): 257-259 (2012). 

19. Jafari, H., & S. Seifi. Homotopy analysis method 
for solving linear and nonlinear fractional 
diffusion-wave equation. Communications in 
Nonlinear Science and Numerical Simulation 
14(5): 2006-2012 (2009). 

20. Zhang, S., & H.Q. Zhang. Fractional sub-equation 
method and its applications to nonlinear fractional 
PDEs. Physics Letters A 375(7): 1069-1073 (2011). 

21. Khan, Y., N. Faraz, A. Yildirim, & Q.B. Wu. 
Fractional variational iteration method for 
fractional initial-boundary value problems arising 
in the application of nonlinear science. Computers 
and Mathematics with Applications 62(5): 2273-
2278 (2011). 

22. Baleanu, D., K. Diethelm, E. Scalas, & J.J. 
Trujillo. Fractional Calculus Models and 
Numerical Methods. Series on Complexity, 
Nonlinearity and Chaos, World Scientific, Boston, 
USA, (2012). 

23. Li, C., & Y. Wang. Numerical  algorithm  based  
on Adomian  decomposition  for  fractional 
differential  equations. Computers  &  Mathematics  
with  Applications 57(10): 1672-1681 (2009). 

24. Jafari, H., & V.  Daftardar-Gejji.  Solving  a  
system  of  nonlinear  fractional  differential 
equations  using  Adomian  decomposition. 
Journal of  Computational  and  Applied 
Mathematics 196(2): 644-651 (2006). 

25. Momani, S. & Z. Odibat. Analytical solution of a  
time-fractional Navier-Stokes equation by 
Adomian decomposition method. Applied 
Mathematics  and  Computation 177(2): 488-494 
(2006). 

26. Ray, S.S., &  R.K. Bera. Analytical solution of a 
fractional diffusion equation by Adomian 
decomposition  method. Applied Mathematics and  
Computation 174(1): 329-336 (2006). 

27. Wang, Q. Numerical  solutions  for  fractional  
KdV-Burgers  equation  by  Adomian 
decomposition method. Applied  Mathematics  and  
Computation 182(2): 1048-1055 (2006). 

28. Jafari, H., & V. Daftardar-Gejji. Solving linear and 
nonlinear fractional diffusion and wave equations 
by Adomian decomposition. Applied Mathematics 
and Computation 180(2): 488-497 (2006). 

29. Safari, M., D.D. Ganji, & M. Moslemi.  
Application  of He’s  variational  iteration method 
and  Adomian’s  decomposition  method  to  the  

86	 Jamshad Ahmad et al



fractional  KdV–Burgers–Kuramoto equation. 
Computers & Mathematics with Applications 
58(11):  2091-2097 (2009). 

30. El-Shahed, M.  Adomian decomposition  method  
for  solving  Burger’s  equation  with fractional 
derivative. Journal of Fractional Calculus 24: 23-
28 (2003). 

31. Yang, X.J., D. Baleanu, & W. P. Zhong. 
Approximate solutions for diffusion equations on 
cantor space time.  Proceedings  of  the  Romanian  
Academy  Series  A  Mathematics Physics 
Technical Sciences Information Science 14(2): 
127–133 (2013). 

32. Jamshad A., S.T. Mohyud-Din, & X.J. Yang. 
Applications of local fractional decomposition 
method to integral equations. Journal of Science 
and Arts 26(1): 81-90 (2014). 

33. Yang, A.M., Y.Z. Zhang, & Y. Long. The Yang-
Fourier transforms to heat-conduction in a semi-
infinite fractal bar. Thermal Science 17: 707-713 
(2013). 

34. Liu, C.F., S.S. Kong, & S.J. Yuan. Reconstructive  

schemes  for  variational  iteration method  within  
Yang-Laplace  transform with  application  to  
fractal  heat  conduction problem. Thermal Science 
17(3): 715-721 (2013). 

35. Yang, Y.J., D. Baleanu, & W.P. Zhong. 
Approximation solution to diffusion equation on 
Cantor time-space. Proceeding of the Romanian 
Academy, Series A 14(2):127-133 (2013). 

36. Yang, X.J., & Y.D. Zhang. A new Adomain 
decomposition procedure scheme for solving local 
fractional Volterra integral equation. Advances in 
Information Technology and Management 4: 158-
161 (2012). 

37. Yang, X.J. Local Fractional Integral Transforms. 
Progress in Nonlinear Science 4: 1-225 (2011). 

38. Yang, A.M., Z.S. Chen, H.M. Srivastava, & X.J. 
Yang. Application of the Local Fractional Series 
Expansion Method and the Variational Iteration 
Method to the Helmholtz Equation Involving Local 
Fractional Derivative Operators. Abstract and 
Applied Analysis 2013: Article ID 259125 (2013). 

 

	 Solving Wave and Diffusion Equations on Cantor Sets	 87




