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1. INTRODUCTION

The local fractional calculus theory was applied to
model and process the non-differentiable
phenomena in fractal physical phenomena [1-12].
Here are some local fractional models, such as the
local fractional Fokker-Planck equation [1], the
local fractional stress-strain relations [2], the local
fractional heat conduction equation [9], wave
equations on the Cantor sets [11], local fractional
Laplace equation [12], Newtonian mechanics on
fractals subset of real-line [13], and the local
fractional Helmholtz equation [14]. There are exist
some analytical methods widely applied to solve
non-linear problems includes fractional adomian
decomposition method [15], the homotopy
perturbation method [16], the heat-balance integral
method [17], the complex transform method [18],
the homotopy analysis method [19], the fractional
sub-equation method [20] and the fractional
variational iteration method [21] and more details
seen in [22].

Recently, the application of Adomian
decomposition method for solving the linear and
nonlinear fractional partial differential equations
in the fields of the physics and engineering had
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been established in [23, 24]. Adomian
decomposition method was applied to handle the
time- fractional Navier-Stokes equation [25],
fractional space diffusion equation [26], fractional
KdV-Burgers equation [27], linear and nonlinear
fractional diffusion and wave equations [28],
fractional Burgers’ equation [29]. The Adomian
decomposition method, as one of efficient tools for
solving the linear and nonlinear differential
equations, was extended to find the solutions for
local fractional differential equations [30-33] and
non-differentiable solutions were obtained.

In this paper, our aim is to apply the local
fractional Adomain’s decomposition method [34,
35] for solving fractional partial differential
equations in the sense of local fractional
derivative. To illustrate the wvalidity and
advantages of the method, we will apply it to the
space-time fractional wave and heat equations.

2. PRELIMINARY RESULTS AND
DEFINITIONS

In this section, we present few mathematical
fundamentals of local fractional calculus and
introduce the basic notions of local fractional
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continuity, local fractional derivative, and local
fractional integral of non-differential functions.

Definition 2.1. If there exists the relation [7, 36]
|f(x)—f(xox<5“,0<a£l, (1)
with|x—x0| <o,fore, 6 >0and &, 6 € R. Now

f (x) is called local fractional continuous at
X =X,,denoted by lim f(x)z f(xo). Then

f (x) is called local fractional continuous on the

interval (a, b), denoted by

f(x)eC,(a,b) 2)

Definition 2.2. A function f (x)is called a non-

differentiable function of exponenta, O < a <1,

which satisfy Holder function of exponent « |,
then for, x, y € X such that [7,36]

)= f) < =" 3)

Definition 2.3. A function f (x)is called to be

continuous of a,0<a <1, or shortly «
continuous, when we have the following relation

[7.36]| £ (x) = £ (x, ) < £,
F)= 1) =ol(x —x, ) )

Compared with (4), Eq. (1) is standard definition
of local fractional continuity. Here (3) is unified
local fractional continuity.

Definition 2.4. Setting f(x)eC,(a,b), local
fractional derivative of f (x) order o at
X = X,, 1s defined [7,36]

f(a)(xo)z daf(x) ~1im Aa(f(x)_f(xo))

dxa . XX, (x _ xo )a ’

)

where0 < a <1,

A (f ()= £ (0 )) = T+ )AL (x) = 1 (x, )
Forany x € (a,b), there exists

S) =Dy 1 (x)

denoted by f(x)= D% f(a,b).

Local fractional derivative of high order is written
in the form

k times

f—%
s*)=Dg..D; £ (x),
and local fractional partial derivative of high order

k times

akaf(x) _ aa 80{
P G f(x)

Definition 2.5 Setting f(x)e C,(a,b) local
fractional integral of f (x)of order & in the
interval [a, blis defined [36]

L o) ary

3 f(x)=
1
F( + a) ©)

1 oo
_mkr&;f(&)(mj)”, 0<ac<l,

where
At,=t,, —t;, At =max{At,,At,,At,,...}and

At A, ) i=0,1,..,N~1,t, =a,ty =b,

is a partition of the interval [a,b] For any
xe(a,b), there exists, 1% f(x), denoted by

f(x)e 11(a,b).

Iff(x) = Dj‘f(a, b), orlia)(a,b), we have
flx)eC,(a,0).

Here, it follows that

A4 f(x)=0,if a=b.
A )=, 15 f(x), if a<b.
oS ()= f(x)

For any f(x) € Ca(a, b), O<a<l,we have
local fractional multiple integrals

ktimes

Xo Ix(ka)f(x): Xo ]x(a)"' xolx(a)f(‘x)’

For O0<a<l, f((k“))(x) e C*u(a,b), then we
have

(, 2.5 )N = (),
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ktimes
where Ix(ka)f(x) =, Ix(a)... xolx(a)f(x), and
k times
sE(x)=Dy...D{ f(x).

Definition 2.6 Mittag-Leffer function in fractal
space is defined by

E,(x“)= Z(; (1+ 3 L 0<a<l. )
The following rules hold
P ka
cos, ()= ;( )F(l+k2 ) ®
© (2k+)e
. a)_ 1 k X .
sin, ) Z(;( ) T+ 2k +1)a) ©)

3. LOCAL FRACTIONAL DERIVATIVES
AND INTEGRALS

Some useful formulas and results of local
fractional derivative were summarized [7,37].

d*x* T +ka)x e
dx  T+(k-1a)’

TEN) g ) "
%Mzk@(’”ﬂ (12)
r(1ia)iEa(xa)(dx)a -E,(b")-E,(a") (13)
P e P S

(b(k+l)a B b(k+l)a) (15)

1t otep . Dl+ka)
!x(”)iﬂ+@ﬁp)

4. ANALYSIS OF LOCAL FRACTIONAL
ADOMIAN DECOMPOSITION METHOD

Consider the general local fractional differential
equation in a local fractional differential operator
form

L0%u(x)+ R u(x) = f(x), (16)

In Eq. (15) L(xza) is local fractional 2a” order

differential operator, which by the definition reads

s 58
X X

()5l
o (x —X )a

X=X

is local fractional o order differential operator
O<a<l,and S(x) is
continuous. Applying the inverse
L(f“) to both sides of (16) yields

L(’Z“)L(,Z“)u(x) = —L(’Z“)R(,”)u(x)+ L(x’f“) f (x),

XX X XX X

local fractional

operator

(17)

If the inverse differential operator L(x_za)

exists, according to the local fractional
decomposition method mentioned above, we have

w(0)=r(2) .
un+1 (‘x) = _Lgc_xza)Ria)un (X), n Z 0
Finally, WERAn find a solution in the form
= Z u, (x) (19)
n=0

Hence, we can obtain that the following condition
£ ()= £l ) < &,

where fractional dimension f (x) is equal to o for

any X € (a,b).

5. NUMERICAL APPLICATIONS

Example 5.1. Consider the diffusion equation
involving local fractional derivative

a 2a
d ”(f’t): d ”(ji’t), O<a<l, (20)
ot ox
subject to the initial conditions
xO{
0)=———. 21
u(x, ) F(l+a) @0

Making use of Eq. (18), the recurrence relation
reads as
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u, (x, t) = u(x, 0),
(x,¢)= LS\ Pu, (x, t)}, n=0. (22)

P

u

n+l

The component of the solution can be determine
from initial conditions as

rl+a)

Applying the recursive relation (22) and, we get
the following results

U (xa t) = L(tia) (xzxa)uo (xa t)}

uy(x,t)= (23)

b

Z/l3 (‘x’ t) = L(tia) {Lgczxa)uZ (x9 t)}
= 0’

and so on.

Thus the approximate solution of (20) in the form
(7) is given by
X

rl+a)
The result is the same as the one which is obtained
in [38].
Example 5.2 Consider the following diffusion
equation on cantor set

0" u(x,z) ~ ¢ 0% u(x,t)

ot*  T(1+2a) ox™

ulx, y)=

=0,0<a<l, (24)

subject to the initial conditions

2a
by
ulx,0)=—F/——, 25
(x.0) r(1+2a) =
According to local fractional Adomain’s

decomposition method, the recurrence relation
reads as

u, (x, t) = u(x, 0),

x211

u,,(x,t)= L0 {Wﬁff)un (x,t)}, n>0. (26)

Applying the recursive relation (26) and the initial
conditions (25), we get the following results

2a
=— 27
) (1l +2a) @D
2a
)= 2 )|
(28)
B x2a ta
T(1+2a)T(1+a)
2a
uy(x,1)= L {m L3%u,(x, t)}
(29)
x2a t2a
C(1+2a) T(1+2a)’
2a
uy(x,1)= L7 {m LEu, (x, f)}
x2a t3a
= 30
r(1+2a)T(1+3a)’ G0
and so on.
Thus, the final series solution is reads as
ta t2a
1+ +
X TMl+a) T(+2a)
u(x, t) = ,
I(1+2a) £
+——
I(1+3a)
The closed form solution is
xZa
= —E o 31
ulx.1) rﬁ+2a)‘ix) Gl

This result is the same as obtained by Yang [38].

Example 5.3 Consider the following wave
equation on cantor set
ulx,t) X 0™ulx1)

- =0,0<a<l, 32
o T(1+2a) ox™ 32

with the fractal value conditions given by

a

X
ulx,0)=———. 33
( ) F(1+a) ©3)
According to local fractional Adomain’s

decomposition method, the recurrence relation
reads as
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uo(x,t): u(x,0)+ t aau(X,O)

Il+a) ox*
un+1 (’x’ t) = L(t;za) {ﬁ[’gj)un (x’t)}’ nz 0 (34)

Applying the recursive relation (34) and the initial
conditions (33), we get the following results

x? t”
= 35
W0 = i T ) G
_ (2@ X" 72
T P L | B
= 0,
let) = {F(lx +a) L I)} (37)
= 0,
o) 17 s 1)
=0, (38)
and so on.
Finally, we obtained
u(x,t)= x* _,_r (39)

Il+a) T(l+a)
This is the same as obtained by Yang [38].

Example 5.4 Finally, consider the following wave
equation on cantor set
O u(x,t) 0™ ulx,t)

Spe g ae =0, 0<asl (40)

with the fractal value conditions given by
u(x,0)=E,(x) (41)
where c is a constant.

According to local fractional Adomain’s
decomposition method, the recurrence relation
reads as

t* 0“u(x,0)
F(l + a) ox”

u,,(x,t)= L(,;za){r (1x+ 2) L2y, (x,t)}, n>0. (42)

uy(x,1)=u(x,0)+

b

Applying the recursive relation (34) and the initial
conditions (33), we get the following results

1+

uy(x,6)=E, (x* )(1 + ﬁ] (43)

()= 2177 L2y (1)

=CEa(X“)(r(m . o )} (44)

1+2a) T(1+3a

y(e,t)= Ll 2, ()

=c2Ea(xa)[ s + £ )j 9

I(1+4a) T(1+5a
Uy (x’ t) = Lg;za) {CL(xzxa)uz (x, t)}

~ t()a t

=CE,[x° )(F(l v6a) T(1 +7“7 a)}

(46)

and so on.

Finally, we obtained
u(x,t)=E, (x“Xcosha (cx“)+ sinh, (cx“ )) (47)
This is the same as obtained by Yang [38].

6. CONCLUSION

In this paper, the non-differentiable solution for
the heat and wave equations involving local
fractional derivative operators in mathematical
physics fractal value conditions are investigated by
using the proposed local fractional Adomain’s
decomposition method. The obtained results
demonstrate the reliability of the methodology and
its wider applicability to local fractional
differential equation arising in mathematical
physics, engineering and hence can be extended to
other problems of diversified nonlinear nature.
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