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Abstract: This paper investigates the stability and tractability of the recursive least squares (RLS) and the 
QR decomposition for the recursive least squares (QRD-RLS) techniques for adaptive filtering application 
using the mean weight error norm (MWEN) instead of the conventional mean square error (MSE). The 
analysis is based on the comparative performance with respect to numerical stability and tractability of 
incoming signals.  The analysis depends on the effect of the different values of the filter coefficient   to 
these techniques. The simulation indicate that the RLS procedure reduces tractability and is numerically 
unstable as the value of   increases while the QR decomposition for the recursive least squares showed 
numerical stability and tractability of incoming signals. The simulation also revealed that the RLS 
technique produces high misadjument as the filter coefficient increases; the contrary is true for the QRD-
RLS technique. In general, the RLS technique converges faster than the QRD-RLS technique. 
Keywords: Adaptive Filter, RLS, QRD-RLS 

 

1.  INTRODUCTION  
Filtering is a signal processing operations with 
diverse objectives [9]. From mathematical point of 
view, filtering is a function approximation 
technique. Adaptive filter may be understood as 
self modifying digital filter that adjust its 
coefficients in order to minimize a predefined error 
function. Adaptive filters are time varying since 
their parameters are continually changing in order 
to meet performance specification. Adaptive 
algorithm minimizes error function which includes 
data matrix, desired signal and adaptive filter 
output signal.  Adaptive algorithm is applied to 
adapt the coefficients of the used filter to 
nonstationary process; the coefficient of the filter is 
adapted in a process that the error signal is 
minimized. 

Recursive least squares (RLS) is a modified 
version of conventional least squares problem. 
When solutions to least squares problem are 
computed and updated each time new input 
samples arrive the solution to the system becomes 
recursive.  RLS updates the estimate of least 

squares minimization problem. The computational 
procedure of RLS begins with unknown data value 
or initial condition and applies the new data sample 
to update the previous data value.  RLS is often 
described as time varying process since its 
parameters are recursively updated when new 
sample arrives.  RLS recursively update solution to 
linear least squares filter in which the inverse of the 
autocorrelation matrix is recursively updated via 
matrix inversion lemma. The recursiveness of 
recursive least squares corresponds to adaptive 
filtering application. RLS solve adaptive filtering 
problem in order to compute coefficient vector and 
associated errors recursively. RLS depend heavily 
on input signal vector. RLS has excellent 
performance when working in time varying 
environment than stationary environment. The 
acceptance of the RLS algorithm has been  
impeded by unacceptable numerical performance 
in limited precision environment [13]. For RLS 
algorithm to operate in time varying environment 
the forgetting factor   should be less than one, 
this allows the RLS algorithm to utilize finite 
memory. In this regard, RLS has the capability to 
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track signal variation slowly. When the forgetting 
factor is less than unity, the adaptive filter 
coefficient is inconsistent [12]. This process causes 
noise in the coefficient of the adaptive filter, with 
result that they become misadjusted from their 
optimum setting. Due to numerical instability 
associated with recursive least squares, QR 
decomposition was proposed [13]. In adaptive 
filtering, QR decomposition apply time recursive 
in order to accept input data and desired signal at 
time instant  .k  Conventional  QR decomposition 
transform data matrix to orthogonal and upper 
triangular matrix and also transform desired signal 
vector. QR decomposition decomposes the data 
matrix into orthogonal matrix ( )kQ  and upper 
triangular matrix ( ).kR  In other words we say QR 
decomposition transform triangular system of 
equation to a triangular system that uses only 
transformed matrix [8, 13]. The transformation 
process via QR decomposition reduces the original 
data matrix to a reduced form.  QR decomposition 
recursive least squares (QRD-RLS) is a modified 
version of conventional QR technique for solving 
conventional least squares problem. QR 
decomposition technique is numerically robust and 
stable because of the norm preserving property for 
the 2- norm [3]. Unlike RLS algorithms  and its 
variant  which are highly computationally intensive 
and also sometimes show some properties of 
numerical instability [7, 13]. QR decomposition 
based on Givens rotations approaches the solution 
to recursive least squares problem by decomposing 
the data matrix to upper triangular matrix. The 
upper triangular matrix and the desired signal 
vector are recursively updated via sequence of 
Givens rotations in order to compute coefficient 
vector via backward substitution and subsequently 
perform rank one update when new input is 
appended to the upper triangular matrix.  

The rest of this paper is organized as follows; 
Section Two describes the recursive least squares 
procedure while Section Three contains the 
modification of QR decomposition for adaptive 
filtering.  The QR decomposition for recursive 
least squares algorithm (QRD-RLS) is explained in 
Section Four. Simulation and conclusions are 
contained in Sections Five and Six, respectively. 

 

2. RECURSIVE LEAST SQUARES 
Recursive least squares is a modified version of 
the conventional least squares problem. RLS  

updates the estimate of least squares problem, this 
is done by defining initial conditions and apply the 
new data value to update previous data value [12]. 
When solutions to least squares problem are 
computed and updated each time new input 
samples arrive the solution to the system becomes 
recursive. RLS converges fast with low condition 
number however as the condition number 
increases RLS produce high misadjustment. RLS 
has excellent performance when working in time 
varying environment than stationary environment. 
The acceptance of the RLS algorithm is sometimes 
impeded by unacceptable numerical performance 
in limited precision environment [13]. Our aim is 
to select the coefficient of the adaptive filter such 
that the adaptive filter output during the period of 
observation will correspond to the desired signal, 
since the minimization process requires 
information from the input signal to be available. 
The constant    is the forgetting factor, this 
parameter gives more attention to present data 
values than previous data values during adaptation 
process [1, 5]. In formulating recursive least 
squares cost function it is natural to include 
forgetting factor to the cost function to ensure that 
the previous data are given less attention in other 
to concentrate on the new input data. In other 
word, if the forgetting factor is small the previous 
data sample contribute very infinitesimal to the 
system because the forgetting factor is very 
sensitive to the present data sample than previous 
data sample [2]. In the context of linear least 
squares filter the coefficient vector ( )kw  is the 
least squares solution which can be updated 
recursively. The computation of the inverse 
autocorrelation matrix 1( )kU  is computationally 
intensive as such computing the least squares 
solution directly by computing the inverse of the 
autocorrelation matrix is not a good practical 
option [4]. An   alternative approach is to apply 
matrix inversion lemma to update and recursively 
compute the inverse of  the autocorrelation matrix 
in order to reduce the operations to order  2( ).O n  
Ordinarily, as in conventional least squares by 
inverting the data matrix X and multiplying by the  
desired signal vector d  one obtain the required 
solution. However,  in recursive least squares 
sense we  have  to recursively  update  the  inverse 
of  the  autocorrelation  matrix  via matrix 
inversion lemma [6; 10]. To implement the RLS 
algorithm, we have to initialize the autocorrelation 
matrix and coefficient vector before the algorithm 
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start. In a situation where the time index is smaller 
than the filter order, this means that the inverse of 
the autocorrelation matrix does not exist as such 
we intend to initialize the autocorrelation matrix to 
obtain  

0
( ) ( ) ( ) ,

i
i k T i

k
i k k 



 U x x I  (1) 

where   is  a constant  and I is an identity matrix. 
Suppose 0i  this implies that equation (1) 
becomes 

(0) .U I  (2) 

The constant term in equation (2) is introduced to 
avoid division by zero and is the only parameter 
required during initialization [12]. The 
initialization of the autocorrelation matrix is 
infinitesimal to the steady state behavior of the 
recursive least squares algorithm. The algorithm is 
summarized as follow: 
Initialize autocorrelation matrix and coefficient 
vector  

(0) ,U I  

(0) 0.w  

For 1, 2, 3, ,k   

compute gain vector 
1 1

1 1

( 1) ( )( )
1 ( ) ( 1) ( )T

k kk
k k k




 

 




 
U xh

x U x
 

compute a priori error  

( ) ( ) ( 1) ( )Te k d k k k  w x  

update coefficient vector 

( ) ( 1) ( ) ( )k k k e k  w w h  

compute filter output 

( ) ( ) ( )Ty k k k w x  

compute a posteriori error 

( ) ( ) ( ) ( )Tk k k k e d w x  

update the inverse autocorrelation matrix 
1 1 1

1

( ) ( ( 1)
( ) ( ) ( 1)).T

k k
k k k

  



  



U U
h x U

 

3.  MODIFICATION OF QR 
DECOMPOSITION FOR ADAPTIVE 
FILTERING 

In this subsection, we decompose the data matrix 
with respect to time so that the triangularization 
process is recursive.  Adaptive filtering parameters 
are continually changing in order to meet specified 
requirement where such requirement is based on 
autocorrelation matrix or cross correlation vector 
between data matrix and desired signal vector. As 
mentioned earlier, since time varying is recursive 
in nature we modify conventional least squares 
problem (LSP) with respect to time such that the 
data matrix, unknown vector and the desired signal 
is defined with respect to time. The modify LSP 
with respect to time translate to 

2
2( )

min || ( ) ( ) ( ) || .
k

k k k
w

X w d  (3) 

Since we understand that ( )kQ  and ( )kR  are the 
QR factor of ( )kX  and also note that in adaptive 
filtering problem the data matrix ( )kX and k k  
orthogonal matrix ( )kQ are updated for every 
system update. For any time instant k   with 
respect to QR decomposition of the data matrix we 
obtain 

1( )
( ) ( ) ( ) .T k
k k k  

   
 

R
Q X R

0
 (4) 

Where 1( )kR  and ( )kQ are the upper triangular 
and orthogonal matrices, respectively. Both the 
orthogonal and upper triangular matrices are 
obtained due to the transformation of the input 
matrix. The objective is to ensure that the input 
matrix is stable when applied recursively. As new 
data is received into the system the data matrix 
becomes ( 1)k X  with dimension ( 1)k n   

with additional row vector ( 1)T k x  added to the 
data matrix. As such the new data matrix can be 
define as  

( )
( 1) .

( 1)T

k
k

k
 

    

X
X

x
 

If we define  

( ) 0
( 1) ,

0 1
k

k  
   

 

Q
Q  (5) 

and multiplying the above (5) with the new data 
matrix we obtain 
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( ) 0
( 1) ( 1) ( 1)

0 1

( )
.

( ) ( 1)

T
T

T T

k
k k k

k
k k

 
    

 
 

   

Q
Q X X

R
Q x  

(6) 

In order to obtain upper triangular matrix 
( 1),k R  the last row of equation (6) needs to be 

annihilated.  Let  ( 1)k T  be an orthogonal 
matrix that annihilate the last row of  

( 1)
( 1) ( 1) ( 1) ,T

T

k
k k k

 
     

 

R
T Q X

0
 

where ( 1) ( 1) ( 1)T Tk k k   Q T Q  is orthogonal 

because  both ( 1)k T  and ( 1)T k Q  are 
orthogonal. The matrix ( 1)k T  can be formed 
using orthogonalization procedure such as Givens 
rotation and Householder transformation. It is vital 
to state that the upper triangular matrix ( 1),k R  
is henceforth the input matrix and is updated as 
new input data enter the plant. From here onward  
we will use  Givens rotations for 

( 1).k T Updating the dimension of the data 
matrix from k n  to ( 1)k n   at the ( 1)k  th 
system update means that the ( 1)k  th orthogonal 

matrix ( 1)k Q  has dimension    1 1 .k k    
The above analysis shows the procedure for 
transforming data matrix to upper triangular 
matrix with respect to time. 
 
4. QR DECOMPOSITION FOR 

RECURSIVE LEAST SQUARES 
ALGORITHM (QRD-RLS) 

In  previous  section,  we  have  described 
fundamental  steps  to enhance  efficient  
computation of coefficient vector by forming 
triangular system of  equation thereby  paving  way 
for  the solution to  the  triangular  system of  
equation which  can  be  solved using backward  
substitution [4; 11]. Appending input vector and 
applying sequence of Givens rotations to annihilate 
appended input vector except the last row we 
obtain 

1/2 ( 1)
( ) ( ) ( )

( )

T T

T

k
k k k

k

 
   
  

X
Q X Q

x
 

1/2 ( 1)
( 1) 0

( )
0 1

( )

T

T

k
k

k
k

 
       
    

X
Q

T
x

 

 
1/2 1/2

1 1( 1) ( 1)
( ) .

( )T T

k k
k

k

     
       
      

R R
T 0 0

x 0
(7) 

 

The matrix 1/2 ( 1)k R is the upper triangular 
matrix scaled by the square root of the forgetting 
factor.  
QRD-RLS Algorithm 

For each ,k  

Initialize: 

(0) ,w 0  

(0) .X I  

Compute the transformation matrix 

1

2 1
1

( ) ( ) ( )

( ) ( ) ( ).

n n
n

i
i

k k k

k k k

  

  





  

  

T T T

T T T
 

Apply  ( )kT  to update 1( )kR  recursively 

 
1/2

11 ( )( 1)
( )

( ) TT

kk
k

k
   

   
  

RR
T

0x
 

compute and update the transformed desired signal 
vector 

1/2( ) ( 1)
( )

( ) ( )
k k

k
k q k

  
   

   

q q
T

s
 

compute and update the coefficient vector 
recursively 
 via backward substitution 

1
1

1

( ) ( ) ( )
( )

( )

n

i
k k k

k
k






q R w
w

R
 

compute the cosine term 

for each 1:i n  
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1

( ) cos ( )
n

i
i

k k 


  

compute and update the a posteriori error and a 
priori error recursively 

( ) ( ) ( )k k k  q  

( )( )
( )
ke k
k


q

 

end 
If necessary compute and update the errors 
recursively using coefficient vector a priori error 

( ) ( ) ( 1) ( )Te k k k k  d w x  
a posteriori error 

( ) ( ) ( ) ( )Tk k k k e d w x  

 
5. SIMULATION  
Simulation is performed using system 
identification with transfer function in which the 
plant is defined as the transfer function (see Figure 
1. below) to identify the adaptive filter coefficient 
with the optimal coefficient. In this regards the 
length of both parameters are equal. The input 
signal ( )x k  passes through the linear filter. 
Where   

2 1/2 1( ) (1 ) / (1 ),g z z      

 is the transfer function and is applied to produce 
the desired signal vector ( )d k ; the signal to noise 
ratio (SNR) is 30dB. Based on Figure 1, the 
unknown plant is assumed linear. This expression 
revealed that   is an input to the system function, 
  is a real valued constant in the interval (0,1). 
The system function and the unit variance white 
noise ( ) ( ) 1k z   are applied as input to generate 

the autocorrelation function 1( ) ( ) ( )xx z g z g z   
2 1

( ) ( ) 1 / (1 )(1 )k z z z        The input 
signal ( )x k  is defined as  

2 1

2

1 2 3

1
1

.

1

K

K

K K K

  
  

  





  

 
 
 
 
 
 

U  

The input signal  ( )x k  is generated based on the 
normal distributed random numbers (randn) which 

is further applied to the plant.  The plant consist of 
the transfer function g(z). The adaptive filter is 
applied to identify the transfer function. Observe 
that the autocorrelation matrix consist of one in the 
diagonal and alpha   elsewhere. The   is 
applied to determine the condition number of the 
autocorrelation matrix. The performance of these 
techniques strictly depends on the values of the 
filter coefficient .  The filter coefficient is used to 
investigate the stability, tractability and 
adaptability of the techniques, which implies that 
the filter coefficient is user defined. The different 
values of the filter coefficient otherwise called 
forgetting factor are 0.01, 0.5, 0.75 and 0.99 [9].       

To generate the data matrix, the following 
input signal generating procedure, say are applied. 
The mean  used is zero with white Gaussian noise 
added to the desired signal; the variance is 

0.001.   The filter coefficient   stated above 
were applied  to investigate the performance  of 
the algorithms. The mean weight error norm 
(MWEN) is obtained by taking the ensemble 
average of the weighted error norm.  Instead of 
using the conventional MSE, the MWEN was 
applied to determine stability and tractability of 
the technqiues.  The comparison between the two 
methods (QRD-RLS and RLS) showed that the 
QRD-RLS is numerically stable than the RLS. The 
Simulation also indicated that as the filter 
coefficient increases the RLS reduces tractability 
thereby producing high misadjustment. On the 
other hand, QRD-RLS remain stable even though 
the filter coefficient increases. The figures below 
showed that QRD-RLS algorithm using mean 
weight error norm is numerically stable and it’s 
ability to track  incoming signals is consistent and 
robust compared to the RLS procedure. 

 

 

 

 

                                                                                     

                                   - 

 

 
                            

 
Fig. 1. System identification with transfer function. 
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Fig. 2. 0.01  . 
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Fig. 3. 0.5  .            
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Fig. 4. 0.75  . 
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Fig. 5. 0.99.   
 
 
 

CONCLUSIONS 

This study revealed the transformation of the data 
matrix to upper triangular matrix via sequence of 
Givens rotations. Unlike RLS approach the data 
matrix is updated via conventional matrix inversion 
lemma however for the QRD-RLS approach the 
triangularized upper triangular matrix is updated 
via sequence of Givens rotations. We performed 
Simulation to compare the stability and tractability 
of both algorithms. Result from simulations 
showed that the QRD-RLS is numerically stable, 
tractable with respect to incoming signal. In 
general, the QRD-RLS techniques is robust and has 
the capability of accepting incoming signals 
compared to RLS as shown in the figures above. 
The RLS approach converges faster, though as the 
condition number of the data autocorrelation 
matrix increases RLS become numerically unstable 
and is incapable of tracking incoming signals; on 
the other hand QRD-RLS is stable with large 
condition number.   
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