ISSN: 0377 - 2969 (print), 2306 - 1448 (online)

Research Article

Concavity Solutions of Second-Order Differential Equations

Ibtisam Aldawish* and Maslina Darus

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia

Abstract: In this article, we consider varieties of second-order linear differential equations in the unit disk. We show that the solutions of the second-order linear differential equations are concave univalent functions under some conditions.

Keywords: Analytic function, differential equation, concave function , univalent function

AMS Mathematics Subject Classification: 30C45

1. INTRODUCTION

Let A denote the class of functions normalized by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad (z \in D),$$
 (1)

which are analytic in the open unit disk $D = \{z : |z| < 1\}$ on the complex plane C. For functions $f \in A$ with $f'(z) \neq 0$ $(z \in D)$, we define the Schwarzian derivative of f by

$$S(f,z) \quad \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2, (f \in A; f'(z) \neq 0, z \in \mathbf{D}).$$

Let B_k denote the class of bounded functions $q(z) = q_1 z + q_2 z^2 + ...$ analytic in the unit disk D, for which |q(z)| < K. If $g(z) \in B_k$, then by using the Schwarz lemma [8], the function q(z) defined by $q(z) = z^{-1/2} = \int_{2}^{z} g(t) t^{-1/2} dt$

is also in B_k . Thus, in terms of derivatives, we have

$$\left| \frac{1}{2} q(z) + z q'(z) \right| < K \Rightarrow |q(z)| < K, (z \in D).$$
 (2)

If we let

$$\psi(u,v) = \frac{1}{2}u + v.$$

We can write (2) as

$$|\psi(q(z),zq'(z))| < K \Rightarrow |q(z)| < K.$$
 (3)

Saitoh [11] and Millar [7] showed that (3) holds true for functions $\psi(u,v)$ in the class H_k given by Definition 1.1. below.

Definition 1.1 (see [7]) Let H_k be the set of complex functions $\psi(u,v)$ satisfying the following conditions:

- i. $\psi(u,v)$ is continuous in a domain $D \subset \mathbf{C} \times \mathbf{C}$;
- ii. $(0,0) \in D$ and $|\psi(0,0)| < K$;
- iii. $|\psi(Ke^{i\theta}, Te^{i\theta})| \ge K$ when $(Ke^{i\theta}, Te^{i\theta}) \in D$, θ is real and $T \ge K$.

Definition 1.2 (see [6]) Let $\psi \in H_k$ with corresponding domain D. We denote by $B_k(\psi)$ those functions

 $q(z) = q_1 z + q_2 z^2 + \dots$ which are analytic in D satisfying:

i. $(q(z), zq'(z)) \in D$,

Received, February 2014; Accepted, August 2014

ii.
$$|\psi(q(z), zq'(z))| < K \ (z \in \mathbf{D}).$$

Many other authors also studied the geometric properties solutions of a class of second-order linear differential equations, for example one can refer to [1, 4, 6, 7, 10, 11, 12].

We now state the following result due to Miller [7].

Theorem 1.3 (Miller [7]) Let p(z) be an analytic function in the unit disk D with |zp(z)| < 1. Let $v(z), z \in \mathbf{D}$, be the unique solution of

$$v''(z) + p(z)v(z) = 0$$
,

with
$$v(0) = 0$$
 and $v'(0) = 1$. Then, $\left| \frac{zv'(z)}{v(z)} - 1 \right| < 1$

and v(z) is a starlike conformal map of the unit disk D.

Theorem 1.3 is related rather closely to some earlier results of Robertson [10] and Nehari [8], which we recall Theorem 1.4 and Theorem 1.5, respectively, as follows:

Theorem 1.4 (Robertson [10]) Let zp(z) be an analytic function in D and $\Re\{z^2p(z)\} \le \frac{\pi^2}{4}|z|^2$ ($z \in \mathbf{D}$). Then, the unique solution v = v(z) of the following initial-value problem:

$$v''(z) + p(z)v(z) = 0$$
 $(v(0) = 0, v'(0) = 1)$

is univalent and starlike in D. The constant $\pi^2/4$ is the best possible one.

Theorem 1.5 (Nehari [8]) If $f(z) \in A$ and it satisfies $|S(f,z)| \le \frac{\pi^2}{2}$ $(z \in \mathbf{D})$, then f(z) is univalent.

The next theorems, which are due to Saitoh [11,12] and Owa et al. [9], involve several geometric properties of the solutions of the second-order linear differential equations.

Theorem 1.6 (Saitoh [11]) Let a(z) and b(z) be analytic in D with $\left|z\left(b(z)-\frac{1}{2}a'(z)-\frac{1}{4}[a(z)]^2\right)\right|<\frac{1}{2}$ and

|a(z)| < 1. Let v(z) ($z \in \mathbf{D}$) be the solution of the following second order linear differential equation v''(z) + a(z) v'(z) + b(z) v(z) = 0, v(0) = 0, v'(0) = 1.

Then, v(z) is starlike in D.

Theorem 1.7 (Owa et al [9]) Let the function a(z) and b(z) be analytic in D with $\Re\{za(z)\} > -2K$ and

$$\left|z^{2}\left(b(z)-\frac{1}{2}a'(z)-\frac{1}{4}[a(z)]^{2}\right)\right| < K$$
. Also, let $v(z)$

denote the solution of the initial- value problem equation:

$$v''(z) + a(z) v'(z) + b(z) v(z) = 0,$$

$$v(0) = 0, v'(0) = 1.$$

Then.

$$1 - K - \frac{1}{2} \Re\{za(z)\} < \Re\left(\frac{zv'(z)}{v(z)}\right) <$$

$$1 + K - \frac{1}{2} \Re\{za(z)\}, (z \in \mathbf{D}; K > 0).$$

Theorem 1.8 (Saitoh [12]) Let $p_n(z)$ be the nonconstant polynomial of degree $n \ge 1$ with $|p_n(z)| < K$ ($z \in \mathbf{D}$; K > 0). Let v(z) be the solution of the initial-value problem:

$$v''(z) + p_n(z)v(z) = 0$$
, $v(0)=0$; $v'(0)=1$.

Then, we have

$$1 - K < \Re\left\{\frac{zv'(z)}{v(z)}\right\} < 1 + K \quad (z \in \mathbf{D}).$$

The following theorem was proved by Abubaker and Darus [1] using the third-order linear differential equation.

Theorem 1.9 (Abubaker & Darus [1]) Let $Q(z) = \sum_{n=0}^{\infty} b_n z^n$ be analytic in D with

 $\sum_{n=0}^{\infty} \left| b_n \right| < K \ (z \in \mathbf{D}; \ K > 0), \text{ and let } v(z) \text{ denote the solution of the initial-value problem}$

$$v'''(z) + Q(z) v'(z) = 0, z \in \mathbf{D}.$$

Then,

$$1 - K < \Re \left\{ 1 + \frac{zv''(z)}{v'(z)} \right\} < 1 + K \quad (z \in \mathbf{D}; \ K > 0).$$

Next, we state the family of concave functions which is our main focus here.

A function $f: \mathbf{D} \to \mathbb{C}$ is said to belong to the family $C_0(\alpha)$ if f satisfies the following conditions:

- i. f is analytic in D with the standard normalization f(0) = f'(0) 1 = 0. In addition it satisfies $f(1) = \infty$.
- ii. f maps D conformally onto a set whose complement with respect to C is convex.
- iii. The opening angle of $f(\mathbf{D})$ at ∞ is less than or equal $\pi\alpha$, $\alpha \in (1,2]$.

The class $C_0(\alpha)$ is referred to as the class of concave univalent functions and for a detailed discussion about concave functions, we refer to [2, 3, 5].

We recall the analytic characterization for functions f in $C_0(\alpha)$, $\alpha \in (1,2]$: $f \in C_0(\alpha)$ if and only if $\Re P_f(z) > 0$, $z \in \mathbf{D}$, where

$$p_f(z) = \frac{2}{\alpha - 1} \left[\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - 1 - z \frac{f''(z)}{f'(z)} \right].$$

Before we establish our main results, we need to indicate to the following theorems to prove our results.

Theorem 1.10 (see [11]) For any $\psi \in H_k$, B_k (ψ) $\subset B_k$, ($\psi \in H_k$; K > 0).

Theorem 1.10 leads us to immediately to the following result, which was also given by Saitoh [11].

Theorem 1.11 (see [11]) Let $\psi \in H_k$ and b(z) be an analytic function in D with |b(z)| < K. If the differential equation

$$\psi(q(z),zq'(z)) = b(z), q(0) = 0, q'(0) = 1$$

has a solution q(z) analytic in D, then |q(z)| < K.

The objective of the present paper is to investigate the concavity of solutions of the second-order linear differential equations.

2. MAIN RESULTS

We derive the following results by employing Theorem 1.11. First, we concentrate on the concavity of the solution of the following initial-value problem:

$$q''(z) + a(z)q'(z) + b(z)q(z) = 0. (4)$$

Theorem 2.1 Let a(z), b(z) be analytic functions in D such that

$$|z^2b(z)| < K, \quad (z \in D; K > 0).$$
 (5)

Let $q(z), z \in \mathbf{D}$ be the solution of the initial value problem (4) in D. Then,

$$\frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} - k \right) < \Re \left\{ \frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - \frac{zq'(z)}{q(z)} \right) \right\} < \frac{20}{\alpha - 1} (\alpha + K + 1),$$
(6)

where $\alpha \in (1,2]$.

Proof. We recall $f \in C_0(\alpha)$ if and only if $\Re P_f(z) > 0$ in D, where

$$p_{f}(z) = \frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - \frac{zg'(z)}{g(z)} \right)$$

with g(z) = zf'(z). We note that p is analytic in D with p(0) = 1.

If we set

$$r(z) = -\frac{zq'(z)}{q(z)} \qquad (z \in \mathbf{D})$$
 (7)

then, r(z) is analytic in D, r(0) = 0 and (4) becomes

$$(r(z))^{2} + (1 - za(z))r(z) - zr'(z) = -z^{2}b(z).$$
 (8)

Thus (8) can be rewritten as

$$\psi(r(z),zr'(z)) = -z^2b(z),$$

where
$$\psi(s,t) = s^2 + (1-za(z))s - t$$
.

Since

i. $\psi(s,t)$ is continuous in a domain $\mathbf{D} \subset \mathbf{C} \times \mathbf{C}$;

ii. $(0,0) \in \mathbf{D}$ and $|\psi(0,0)| = 0 < K$;

iii. For
$$(Ke^{i\theta}, Te^{i\theta}) \in \mathbf{D}$$
, θ is real and $T \ge K$, $|\psi(Ke^{i\theta}, Te^{i\theta})| = |K^2e^{i\theta} + K - T| > T \ge K$.

We conclude that $\psi(s,t) \in H_k$.

From the hypothesis (5) and by employing Theorem 1.11, we obtain that

$$|r(z)| < K$$
, $K > 0$.

Combine this with (7) we have

$$\left| -\frac{zq''(z)}{q'(z)} \right| < K, \quad K > 0.$$

This leads to the following relations

$$\begin{split} &\Re\left\{\frac{2}{\alpha-1}\left(\frac{\alpha+1}{2}\frac{1+z}{1-z}-K\right)\right\} < \\ &\Re\left\{\frac{2}{\alpha-1}\left(\frac{\alpha+1}{2}\frac{1+z}{1-z}-\frac{zq'(z)}{q(z)}\right)\right\} < \\ &\Re\left\{\frac{2}{\alpha-1}\left(\frac{\alpha+1}{2}\frac{1+z}{1-z}+K\right)\right\}. \end{split}$$

We find that

$$\frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} - K \right) < \Re \left\{ \frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - K \right) \right\}$$

and

$$\Re\left\{\frac{2}{\alpha-1}\left(\frac{\alpha+1}{2}\frac{1+z}{1-z}+K\right)\right\}<\frac{2}{\alpha-1}\left(20\frac{\alpha+1}{2}+K\right).$$

We can simplify the last expressions and obtain (6). This completes the proof of the theorem.

If we take $K < \frac{\alpha+1}{2}$ in Theorem 2.1, then we deduce the following corollary.

Corollary 2.2 Let a(z), b(z) be analytic functions in D such that $\left|z^2b(z)\right| < \frac{\alpha+1}{2}, (z \in \mathbf{D}; \alpha \in (1,2])$. Let q(z) be the solution of the initial -value problem (4). Then, $q(z) \in C_0(\alpha)$.

Example 2.3 Let a(z) = 0 and b(z) = 1 in Corollary 2.2. Then, for $z \to 1$ and $\alpha = 2$, the solution of the following initial-value problem:

$$q''(z) + q(z) = 0$$
, $q(0) = 0$, $q'(0) = 1$

is given by

$$q(z) = \sin z \in C_0(2).$$

We next show that the following differential equation

$$q''(z) + M(z)q(z) = 0$$
 (9)

has a solution q(z), which is concave univalent in D.

Theorem 2.4 Let M(z) be analytic functions in D such that

$$|z^2 M(z)| < K \quad (z \in \mathbf{D}, K > 0).$$
 (10)

Let $q(z), z \in D$ be the solution of the initial value problem (9). Then,

$$\frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} - K \right) < \Re \left\{ \frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - \frac{zq'(z)}{q(z)} \right) \right\} < \frac{20}{\alpha - 1} (\alpha + K + 1), \tag{11}$$

where $\alpha \in (1,2]$.

Proof. If we put

$$r(z) = -\frac{zq'(z)}{q(z)} \qquad (z \in \mathbf{D}), \tag{12}$$

we see that r(z) is analytic in D, r(0) = 0 and (9) becomes

$$(r(z))^{2} + r(z) - zr'(z) = -z^{2}M(z).$$
 (13)

We can write this equality as

$$\psi(r(z),zr'(z)) = -z^2 M(z),$$
where $\psi(s,t) = s^2 + s - t$.

It is easy to check that the conditions of Definition 1.1 are satisfied.

Therefore from (12) and in order to apply Theorem 1.11, we obtain

$$|r(z)| < K, \quad K > 0,$$

which implies that

$$\left| -\frac{zq'(z)}{q(z)} \right| < K, \quad K > 0.$$

Hence we conclude that

$$\frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} - K \right) < \Re \left\{ \frac{2}{\alpha - 1} \left(\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - \frac{zq'(z)}{q(z)} \right) \right\} < \frac{20}{\alpha - 1} (\alpha + K + 1)$$

$$(z \in D; K > 0; \alpha \in (1, 2]).$$

Thus, the proof is complete.

Next we obtain the Corollary by following substituting $K < \frac{\alpha+1}{2}$ in Theorem 2.4.

Corollary 2.5 Let M(z) be analytic functions in D such that $\left|z^{2}M(z)\right| < \frac{\alpha+1}{2}$, $(z \in \mathbf{D}; \alpha \in (1,2])$. Let q(z) be the solution of the initial -value problem (9). Then, $q(z) \in C_{0}(\alpha)$.

3. CONCLUSIONS

The varieties of second-order linear differential equations in the unit disk are discussed. Moreover, we showed that the solutions of the second-order linear differential equations are concave univalent functions under some conditions.

4. ACKNOWLMEEDGNTS

The work reported in the article was supported by UKM's grant: AP-2013-009 and DIP-2013-001.

5. REFERENCES

1. Abubaker, A.A. & M. Darus. Geometric properties solutions of a class of third-order linear differential

- equations. *ISRN Applied Mathematics*, Article ID 249853, 5 pp. (2011).
- 2. Avkhadiev, F.G., C. Pommerenke & K-J. Wirths. Sharp inequalities for the coefficient of concave schlicht functions. *Commentarii Mathematici Helvetici* 81: 801-807 (2006).
- 3. Avkhadiev, F.G. & K-J. Wirths. Concave schlicht functions with bounded opening angle at infinity. *Lobachevskii Journal of Mathematics* 17: 3-10 (2005).
- 4. Boyce, W.E. Elementary differential equations. *John Willey & Sons*, 212 pp. (1977).
- 5. Cruz, L. & C. Pommerenke. On concave univalent functions. *Complex Variables and Elliptic Equations* 52: 153-159 (2007).
- Miller, S.S. & P.T. Mocanu. Second-order differential inequalities in the complex plane. *Journal of Mathematical Analysis and Applications* 65: 289-305 (1978).
- 7. Miller, S.S. A class of differential inequalities implying boundedness. *Illinois Journal of Mathematics* 20: 647-649 (1976).
- 8. Nehari, Z. The Schwarzian derivative and schlicht functions. *Bulletin of the American Mathematical Society* 55: 545-551 (1949).
- Owa, S., H. Saitoh, H.M. Srivastava & R. Yamakawa. Geometric properties of solutions of a class of differential equations. *Computers & Mathematics with Applications* 47: 1689-1696 (2004).
- 10. Robertson, M.S. Schlicht solutions of w "+ pw = 0. Transactions of the American Mathematical Society 76: 254-274(1954).
- 11. Saitoh, H. Univalence and starlikeness of solutions of w "+aw'+bw = 0 Annales Universitatis Mariae Curie Skłodowska. Sectio A. 53: 209-216(1999).
- 12. Saitoh, H. Geometric properties of solutions of a class of ordinary linear differential equations. *Applied Mathematics and Computation* 187: 408-416 (2007).