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1. INTRODUCTION

Let 4 denote the class of functions normalized by
f(z)=z+%az", (zeD), (1)

which are analytic in the open unit disk
D={z:z|<1} on the complex plane C. For

functions f € A with f’(z)#0 (ze D), we define
the Schwarzian derivative of f/ by

2

’ 2
S(f,z) (f (Z)] —l(f (Z)j J(fe4d; f(z)20,ze D).

12 /()

Let B, denote the class of bounded functions
q(z)=qz +q,z * 4 ... analytic in the unit disk D,
for which |q (z )| <K. If g(z)€ B,, then by using
the Schwarz lemma [8], the function ¢(z) defined

V. B
by q(z) =z A (f)g(t)t %dt

is also in B, . Thus, in terms of derivatives , we
have

‘;q(z) +2q'(2)| <K = |q(z)| <K, (z€ D). ()

If we let
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We can write (2) as
Wi (z)29' )| <K =|q(z)|<K. 3)

Saitoh [11] and Millar [7] showed that (3)
holds true for functions w(u,v) in the class H

given by Definition 1.1. below.

Definition 1.1 (see [7]) Let H, be the set of
complex functions y(u,v) satisfying the following

conditions:
i. w@m,) is continuous in a domain
DcCxC;

ii. (0,0)e D and |y(0,0)<K;
iii. w(Keig,Tem)‘ >K when (Ke”,T¢%)eD, o
isrealand T 2K .

Definition 1.2 (see [6]) Let
corresponding domain D. We denote by B, (v)

e H, with

those functions
q(z)=qz +q,z > +..which are analytic in D
satisfying :

i.  (q(2),z4'(2))e D,
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ii. |w(g(2),24'(2))| < K (z D).

Many other authors also studied the geometric
properties solutions of a class of second-order
linear differential equations, for example one can
referto [1,4, 6,7, 10, 11, 12].

We now state the following result due to Miller
[7].

Theorem 1.3 (Miller [7]) Let p(z)be an analytic
function in the unit disk D with |zp(z )|<1. Let
v(z), z€ D, be the unique solution of
vi(z)+p)v(z)=0,

with v (0)=0and v’(0)=1. v

Then, 1<1

v(z
and v(z) is a starlike conformal map of the unit
disk D.

Theorem 1.3 is related rather closely to some
earlier results of Robertson [10] and Nehari [8],

which we recall Theorem 1.4 and Theorem 1.5,
respectively, as follows:

Theorem 1.4 (Robertson [10]) Let

an analytic

zp(z) be

function in D and

2
EK{zzp(z)} < %|z|2 (ze D). Then, the unique

solution v =v(z) of the following initial-value
problem:

vi(Ez)+pE)v(z)=0 (¢(0)=0,v"(0)=1)
is univalent and starlike in D. The constant z° /4
is the best possible one.

Theorem 1.5 (Nehari [8]) If f(z)ed and it
. 7 .
satisfies |S(f, z)| < e (ze D), then f(z) is

univalent.

The next theorems, which are due to Saitoh
[11,12] and Owa et al. [9], involve several
geometric properties of the solutions of the
second-order linear differential equations.

Theorem 1.6 (Saitoh [11]) Let a(z)and b(z)be

analytic in D with

1
z (b (z )—%a'(z )—%[a(z )]2] < 2 and

laz)|<1. Let v(z)(ze D) be the solution of the

following second order linear differential equation

V(2)+a(z) V'(z) +b(2) v(z) =0, v(0) = 0,'(0) =1.
Then, v (z)is starlike in D.
Theorem 1.7 (Owa et al [9]) Let the function

a(z) and b(z) Dbe D  with
R{za(z)} >-2K and

analytic  in

<K. Also, let v(z)

denote the solution of the initial- value problem
equation:

V'(z)+a(z) V(2) +b(2) v(z) =0,

v(0)=0,V/(0)=1.

;2 [b (z )—%a’(z )—i[a & )sz

Then,

e 1 a2 2v'(2)
1-K ZEK{ a( )}<EK( V(Z)]<

1+K—%§K{za(z)}, (ze D;K >0).

Theorem 1.8 (Saitoh [12]) Let p,(z) be the non-
constant  polynomial of degreen >1 with
pn(z)|<K (ze D; K>0). Let v(z) be the
solution of the initial-value problem:

vi(z)+p,(z)v(z)=0, v(0)=0;Vv'(0)=1.
Then, we have

2v'(2)

1—K<EK{ }<1+K (ze D).

v(z

The following theorem was proved by
Abubaker and Darus [1] using the third-order
linear differential equation.

Theorem 1.9 (Abubaker & Darus [1]) Let
0(z)= 5y b,z"be analytic in D  with
n=0

§O|bn| <K (ze D; K >0), and let v(z) denote the
snc_)lution of the initial-value problem

V'(2)+0(z) V() =0, zeD.

Then,

2v"(2)

1—K<ER{1+ }<1+K (ze D; K >0).

V(z2)
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Next, we state the family of concave functions
which is our main focus here.

A function f:D — C is said to belong to the

family C () if [ satisfies the following
conditions:
i. fis analytic in D with the standard

normalization f (0)=f'(0)-1=0. In addition
it satisfies f (1) = .

ii. f maps D conformally onto a set whose
complement with respect to C is convex.

iii. The opening angle of /(D) at oo is less than or
equal 7z, € (1,2].

The class C () is referred to as the class of

concave univalent functions and for a detailed
discussion about concave functions, we refer to [2,
3,5].

We recall the analytic characterization for
functions f in C,(@),ae (1,2]:f € Cy(a) if and

only if EKPf (z) >0, ze D, where

RAC )}
—1—Z P .
/(@)
Before we establish our main results, we need

to indicate to the following theorems to prove our
results.

2 a+11+z
pp(z)=

a-1 2 1-z

Theorem  1.10 (see [11]) For any
veH, B, (w)CB,,weH,;K>0).

Theorem 1.10 leads us to immediately to the
following result, which was also given by Saitoh

[11].

Theorem 1.11 (see [11]) Let we H, and b(z) be

an analytic function in D with|p(z)|<K. If the
differential equation

w(q(2),29"(2)) =b(2),q(0)=0,4'(0) =1
has a solution ¢(z ) analytic in D, then |¢(z)|< K.

The objective of the present paper is to
investigate the concavity of solutions of the
second-order linear differential equations.

2. MAIN RESULTS

We derive the following results by employing
Theorem 1.11. First, we concentrate on the
concavity of the solution of the following initial-
value problem:

q"(z)+a(z)q'(z)+b(z)q(z)=0. “4)
Theorem 2.1 Let a(z),b(z) be analytic functions
in D such that

‘zzb(z)‘ <K, (ze D;K > 0). (5)

Let g(z),ze D be the solution of the initial
value problem (4) in D. Then,

L(a_ﬂ_kj<
a—-1\ 2

ER{ 2 [0{+11+2_zq'(z))}<
a-1{ 2 1-z ¢q(z)

L.I(OHKH), 6)

where ae (1,2].

Proof. We recall f €C (&) if and only if
%Pf (z)>0 in D, where

2 (a+ll+z zg'(z)
a-1\ 2 1-z g(z)
with g(z)=zf'(z) . We note that p is analytic in

D with p(0)=1.

p (z)=
f

If we set

PREAC)
q(2)

then, r(z) is analytic in D, r(0)=0 and (4)

becomes

(ze D) (7

(r(2)) +(-za )r(z)-2r'(z) ==z b(z).  (8)
Thus (8) can be rewritten as

W)z (@) ==z "b(2),
where w(s,t)=s"+(1-za(z ))s —t.

Since

i. w(s,t) is continuous in a domain D c CxC;
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ii. (0,0)e Dand |(0,0)=0<K;

(Keig,Teia)e D, 6 is real and
T ZK,‘I//(Kei'g,Teig)‘ - ‘Kzei'g +K —T‘ ST >K.

1i. For

We conclude that w(s,t)e H, .

From the hypothesis (5) and by employing
Theorem 1.11 , we obtain that

lr(z)| <K, K>0.
Combine this with (7) we have

2q"(z)
q'(z)

This leads to the following relations
NENCaIE
a-1\ 2 1-z
R 2 [a+ll+z zq'(2) <
a-1{ 2 1-z q(2)
ezt
a-1\ 2 1-z
We find that

2[0”1_Kj<gn _2 [a+ll+z _Kj
a-1 2 a-1\ 2 1-z

and

R 2 a+11+z+K < 2 200/+1+K.
a-1\ 2 1-z a-1 2
We can simplify the last expressions and

obtain (6). This completes the proof of the
theorem.

<K, K>0.

If we take K < QTH in Theorem 2.1, then we

deduce the following corollary.

Corollary 2.2 Let a(z),b(z) be analytic functiosn
+1

in D such that ‘zzb(z)‘<a—,(ze D;ce (1,2)).
2

Let g(z) be the solution of the initial —value

problem (4). Then, g(z)e C ().

23 Let a(z)=0 andb(z)=1 in
Corollary 2.2 . Then, for z —»1 and =2, the
solution of the following initial-value problem :

Example

q"(z)+q(z)=0, q(0)=0,¢4'(0)=1
is given by

q(z)=sinz € C(2).

We next show that the following differential
equation
q"(z)+M(z)q(z)=0 ©))

has a solution ¢(z), which is concave univalent in
D.

Theorem 2.4 Let M (z) be analytic functions in
D such that

zzM(z)

<K (zeD,K >0). (10)

Let ¢g(z),z € D be the solution of the initial
value problem (9) . Then,

L[OK_H_K)<
a—1\ 2

%{ 2 {a+ll+z_zq'(z)j}<
a-1\ 2 1-z g¢q(2)

%(0[+K+1), (11)

where ae (1,2].

Proof. If we put

rz)=-1C) (e, (12)
q(2)

we see that r(z) is analytic in D, »(0)=0 and (9)

becomes

(r(z))z+r(z)—zr'(z)=—22M(z). (13)

We can write this equality as
W(r@),zr' () =2 "M (2),
where w(s,t) =s’+s—t1.

It is easy to check that the conditions of Definition
1.1 are satisfied.

Therefore from (12) and in order to apply
Theorem 1.11, we obtain

lrz)| <K, K >0,
which implies that

zq'(z)
q(z)

<K, K>0.
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Hence we conclude that

2 (a+1_K\<%{ 2 [0{+11+z_zq'(z)j}<
a-1{ 2 ) a Il 21 2z g
20

ﬁ(01+K+1)

(ze D; K>0; ae (1,2)).
Thus, the proof is complete.

Next we obtain the Corollary by following

substituting K < QTH in Theorem 2.4,

Corollary 2.5 Let M (z) be analytic functions in
1
D such that ‘ZZM(Z)‘<%, (ze D; ae(1,2]).

Let g(z) be the solution of the initial —value
problem (9) . Then, ¢(z)€ Cy(«).

3. CONCLUSIONS

The varieties of second-order linear differential
equations in the unit disk are discussed. Moreover,
we showed that the solutions of the second-order
linear differential equations are concave univalent
functions under some conditions.
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