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Abstract: In this article, we consider some classes of nonlinear fractional differential equations with

singularity take the form

P 0%u(t, z)

:F(t’Z,u,a_u)’ 0<a<1’
ot” 0z

where 1€ J :=[0,1] and ze U :={z€ C:|z|<1}. Our purpose is to establish a result similar to
the k-summability known in the case of singular ordinary differential equations. It's shown that, under

some conditions, all formal solutions are Borel summable or k-summable with respect to z€ U in all

directions except at most a countable number.
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1. INTRODUCTION

Since the last decade, fractional calculus is a
rapidly growing subject of interest for physicists
and mathematicians. The reason for this is that
problems may be discussed in a much more
stringent and elegant way than using traditional
methods. Fractional differential equations have
emerged as a new branch of applied mathematics
which has been used for many mathematical
models in science and engineering. In fact,
fractional differential equations are considered as
an alternative model to nonlinear differential
equations. The class of fractional differential
equations of various types plays important roles
and tools not only in mathematics but also in
physics, control systems, dynamical systems and
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engineering to create the mathematical modeling
of many physical phenomena. Naturally, such
equations required to be solved.

The present paper deals with a nonlinear singular
fractional differential equation [1,2], in sense of
the Riemann-Liouville operators, in the analytic
category. The Riemann-Liouville fractional
derivative could hardly pose the physical
interpretation of the initial conditions required for
the initial value problems involving fractional
differential equations. One of the most frequently
used tools in the theory of fractional calculus is
furnished by the Riemann-Liouville operators [3].

Definition 1.1. The fractional (arbitrary) order
integral of the function f of order >0 is

defined by
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1rw= [0 e

F( )

When a=0, we write I f(t)=f()*¢,(2),
where (*) denoted the convolution product,

g

I(@)’

and ¢,(¢1)=0,/<0 and ¢, > () as a—0
where O(¢) is the delta function.

t>0

0, () =

Definition 1.2. The fractional (arbitrary) order
derivative of the function f of order 0 < <1 is

defined by

(t-1"

(- )f( 7)dr =

DS f(t)= j tli’“f(t)-

Remark 1.1. From Definition 1.1 and Definition
1.2, we have

D" =Mﬂ““,ﬂ >-1;0<a<l1
T(u—a+1)

and

F(u+1)
Nu+a+1)

1%t = " u>—-1;0> 0.

In the present work we consider the summability
of fractional differential equation takes the form

aau(t z) ou
F t’ 9 b b 1
e (t,z aZ) (1)
subject to the initial condition u#(0,0) =0, where
te J:=[0,1], zeU, u(t,z) is an unknown

function and F'(¢,z,u,v) is a function with
respect to the variables (¢,z,u,v)e JxUxC”.

We need the following assumptions in the
sequel:

(H1) F(¢,z,u,v) is a holomorphic function
defined in a neighborhood of the
(0,0,0,0)e JxUxC>.

origin

(H2) F(0,2,0,0)=0 near z=0.

Thus the function F(¢,z,u,v) may be
expressed in the form:

F(t,z,u,v)y=A(z)t+ B(z)u +

2
CWv+ Ry (t.2.u0.), @)
where
4)=220,2,0,0, Bz)=2E0,2,0,0),
ot ou

c(2)=2£.(0,2,0,0),
ov

and the degree of R,(t,z,u,v) with respect to
(t,z,u,v) is greater than or equal to 2.

(H3) C(2):=zc(z), c==c(0)#0.

(H4)  Denotes b:=B(0) such  that
ﬂ, VikeN".
I'k+1-o)

2. PRELIMINARIES

In the section, we give out some denotations and
preparations such as definitions and lemmas.

Definition 2.1. The majorant relations described
as: if a(x) = Za[xi and A(x)= ZA[xi, then we
say that a(x)= A(x) if and only if | a, |<| 4, | for

each 1.

Definition 2.2. [4] Let C[[t;z]] be the formal
of t,z and C{t;z} be the

convergent formal power series in some polydisc
with positive radius. For a formal power series

power series

ult,z2)= Y u, t"z"", (teJ,zeU)

m=0,n20

then the formal Borel transform order £ in z is

u

Bk(u)(t,z)—m>ozn>0—r((1+ ")/k) "gm
and
Citillz]), =t 2)e Cl[t;z]]  and

B,(u)(t,2)€ Cit;z}}, (te J,zeU).

Moreover, we say that u(t,z)e C{t} [[z]], iff



Borel Summability for Fractional Differential Equation in The Unit Disk 341

there exists a constant d > 0 such that B, (u)(,z) is
holomorphic in Jx{zeU:|z[<d <1}.

Definition 2.3. For 0€R,0>0, we define
sectorial domain by

S(0,60;1)=S5(0,0):={ze U :Jarg(z)-0 < g}.

Here 0,0 are called the direction and opening
S(9,0),
respectively. Note that the radius is equal to 1 (
| z|<1). A sectorial domain S~ is called a proper

angle of the sectorial domain

subsector of S(J,8) if its closure is contained in

S(5,0)U{0}.

Definition 2.4. Let u(f,z) be analytic on
JxS8(0,6). Then u(t,z)e C{t}[[z]], is called a
Gevery asymptotic expansion order k of u(t,z)
as z — 0€S(J,0), if for any proper subsector S’
of S(0,60) (with sufficiently small radius), there

exist positive constants K,K, and 0<r<1]

such that u(¢,z)e C{t},[[z]], and

N-1
sup|u(t,z)— >u, ()z" KK KN | z|Y,
teJ n=0

ze S',N=1,2,3,...

This relation is denoted by

u(t,z):, u(t,z).

Note that if u(t,z):, u(t,z) then u(¢,z) is
unique and it is called the k-sum of u(¢,z) in the
direction O, and u(¢,z) is said to be k-summable
in the direction O. Furthermore, 1-summable is
called Borel summable.

The k-summability of u(z,z)e C{¢}[[z]], in a
direction can be characterized as follows:

Lemma 2.1. A formal series u(t,z)e C{t}[[z]], is
k-summable in S(J,0)(6 > k) if and only if

B, (u)(t,{) is analytic in JXS(J,0— k) for all
radius and satisfies
exponential type

a growth condition of

k
sup B, (u)(t,{) K, [ £ |7 ™

fe S cS(8,0-rk) 3)

for some positive constants K, and K,.

Definition 2.5. [5] Let S=S5(5,0) and u > 0.
We denote by A

functions f in S such that there exists
satisfying

| SO+ Pe i< C, V(eS.

For positive constant M < oo, we define the

the space of holomorphic
c>0

norm || ||ﬂ in A, by the formula
[ £ 1, =Msupl £O1+ 1€ Pre .

Note that Aﬂ,

||y is a Banach algebra with

respect to the convolution product. If
Uy > 1y, A 4 can be considered as a sub-space of

Aﬂ2 and for any f € Aﬂl’

I P I P

More properties can be found in the following
results:

Lemma 2.2. [5,6]If f,ge A, then f*ge A,

and | g <] /L0 e L

Lemma2.3. Let 4, > 4, and f € Aﬂ1 ,8 € Aﬂz’

then
FEREY
| r*g |, e~ t—
2 M (,le _lul)
Proof. From definition of convolution product we
pose
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1f*e) =I[ e -z

5 (51-7)

ke
<
<l 71, H H* I M(1+T)M(1+(|§\ T))
S
H HAJZ H'“Z (1+|§‘2)—le/‘2\§ J(‘f‘ewl’ﬂz)fdz_
H S H H H/.[Z (1+ Ié,‘ ), ;lz\gl e“fl iy
Hy, —
SH f H,,,H g, &
M*(u,— ) +|{F
Nrllel,
STV '
Hence for arbitrary u, <— [{|<1 we

1

obtain the desired result.

3. EXISTENCE OF UNIQUE SOLUTION
We have the following result:

Theorem 3.1. Consider Eq.(1), the conditions
(H1)-(H4) are wvalid, then the unique formal
solution u(t,z) of Eq.(1) is a Borel summable in

all directions except the direction which passes
through any point of the set

r , @ _, G _

{1"(1— o) Ire-a) I'G-o)
c ’ c ’ c ’
r@ _
T@-a) 1 o<q-<1

c

Construction. Equation (1) can be written as

ot” 0z )
ou
+ b t"u"(z° —)".
m+7§p>2 m”p(Z) (2 82)
Now, we only need to consider the

summability of the solution u(¢,z) of Eq.(4), with
u(t,0)=u(0,z)=0. Let B u)( {):=u(t,{) be
the Borel transform of u(z,z), then equation (4) is
reduced into the following convolution product

equation:

[t“ﬁ —(b+cO)lu= A+
or”
B(O)*u+C()*(Cu)+F(Q). Q)

then u,

u(t,$) =X u(9)'s

satisfies the following equation

If we set

rg+y _ *
[7“”1_0[) b—cllui(§)= A *ui($)+
B(O) *ur(§)+C(E)*(C un( )+ F(L) ©6)
such that

I'(+1) 3 rd+1
Tisa ROt 1D @)

By Lemma 2.1, to prove the k-summability of
a formal solution, we only need to prove an
estimate (3) of its Borel transform order k.

By Lemma 2.3 and the Banach fixed point
theorem, we have

Lemma 3.1. Consider equation (6) and let o >0
as in (7). Let 4, be a sufficiently large number

such that B,Ce A uy and let
M= U, +2e[PBP, +PCP, Jo™'M. If
FeA 4 » then equation (6) has a unique solution
ure A, and
r(+1 -
| G -b=cur |s2] 7 |,
I'i+1-o) "
Proof. Consider y({)= (%— —c)u
and the operator
. 4(9) .
Py A(0)* ra+) +B(¢)
T(l+1-a)
4(9) 474(9)
IR (T A
T(l+1-a) T(+1-a)
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If functions y,p€ A | then

el 8, + ¢ |,1o"

S - -
|w-¢ |, 2eM°U B[, +]C |, lo"M"

” -9 ”,,%H v=o |,

by Lemma 2.3 and the facts that

CU+D  y rpic o
r(+1-a) B
and
¢ o
| <o
DD o
(I+1-a)

Hence, by the Banach fixed point theorem, the
equation (6) has unique solution.

Furthermore,
_ra+n o el
| Fame e 155l
_re+y o,
r(+1-a) bcbur |+ £,

which implies the inequality (8).
Proof of Theorem 3.1. Condition (H1) implies
that there exists £, >0 such that, in (5), all
coefficient functions A4,B,C, A

m,n,p

are in A u

and that
Zm+n+p22|| A’",ﬂ,p ||ﬂ0 tmunvp € C{t,u,v}.

In view of Lemma 3.1, by indiction we have
r'd+1)

(F(l +1-)

majorant series relationship we have, set

—b—cl)u€e A,. Now by using the

U@y:= w |, and W)=

1~1

]
3 D K2

s L({+1-a)

Then by Lemma 2.2 and inequality (8) yields

U@y <o Wny<207| 4|, +

> (B, 1+ 4., | U@yl

m+n+p22
Consequently, we have

Ut)y< X(t)=20"| 4 ||ﬂ0 +

Z (| Bn,m,p |+|| Am,n,p ||”0 )thn*'P]’

m+n+p=2

X(0)=0.

In virtue of implicit function theorem there is a
constant © and for all &€ J such that

sup | X(1) |< p=sup [U(#) [< p.

teJ teJ

Hence
sup| Y| u ||ﬂtl i< p,
e >

which implies the estimate (3) holds and this
completes the proof of Theorem 3.1.

Example 3.1. Assume the following equation

05
Z/{(t,Z) tOAS a M(EZ;’Z) +16ZZ au(t,z) —
1.128 ot 0z
zt+(1+2)°, te J=[0,1]

)

u(0,2) =0, inaneighborhood of z=0.

where u(t,z) is the unknown function. By putting

u(t,z)= u()t+v(t,z) (W(t,z)=0(t*))
as a formal solution. Therefore, (z) satisfies
u(z)? +162°4/(2)—1-z =0.

Now by assuming

u(z)=q+y(z),

where ¢ is a constant and W(z)=0(z) we
obtain that ¢ ==%I.
following equations:

Hence we impose the
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162’y (2)+2p(2) =z~ (2), ¢ =1

10
w(0)=0, (1o

162°y'(2) - 2w (2) = z—y*(2), g =1

11
w(0)=0. (n

where the holomorphic solution (z) exists

uniquely and converges in a neighborhood of the
origin and Borel summable.
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