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Abstract: In this paper, a new Multi-Input Multi-Output Adaptive Wavelet Neural Network based Steam 
Blow-Off System Controller (MIMO AWNN-SBOSC) is designed based on real time dynamic parametric 
plant data of steam blow-off system with conventional Single-Input Multi-Output Proportional plus Integral 
plus Derivative Controller (SIMO PIDC). The proposed MIMO AWANN-SBOSC is designed using three 
Multi-Input Single-Output Adaptive Wavelet Neural Network based Steam Blow-Off System Controllers 
(MISO AWNN-SBOSC). The hidden layer of each MISO AWNN-SBOSC is formulated using Mother 
Wavelet Transforms (MWT). Using nonlinear dynamic neural data of designed MIMO AWNN-SBOSC, a 
Multi-Input Multi-Output Adaptive Wavelet Neural Network based Steam Blow-Off System Model 
(MIMO AWNN-SBOSM) is developed in cascaded mode. MIMO AWNN-SBOSM is designed using two 
MISO AWNN-SBOSM. All training, testing and validation of MIMO AWNN-SBOSC and MIMO 
AWNN-SBOSM are carried out in MATLAB while all simulation experiments are performed in Visual C. 
The results of the new design is evaluated against conventional controller based measured data and found 
robust, fast and much better in performance.   
 
Keywords: MIMO neural modeling, wavelet transforms, MIMO neural control, steam blow-off control 
system, nuclear power plant  

 
 
1. INTRODUCTION 

In this research work, a secondary of system of a 
Nuclear Power Plant was considered called Steam 
Blow-Off System (SBOS). This steam blow-off 
system is associated with steam generator or boiler 
[1].   

A self tuning based decoupled PID controller 
has been designed using diagonal recurrent neural 
network in [2]. The dynamics of a nuclear research 
reactor has been captured by using locally 
recurrent neural network in [3]. A fuzzy logic 
based controller has been designed for pressure 
regulation in liquid zone control system for 540 
MWe PHWR in [4]. The MIMO nonlinear 

dynamics of PHWR is identified using adaptive 
feedforward neural network in [5]. Another 
adaptive feedforward neural controller has been 
designed for nonlinear systems using simultaneous 
perturbation stochastic algorithm in [6]. A first 
principles model based wavelet neural controller 
has been designed for nuclear steam generator in 
[7]. A wavelet based optimization has been 
suggested for skeletal buildings with frequency 
domain constraints in [8]. A wavelet based neural 
transforms have been proposed for transmission 
line fault detection in [9]. A spline wavelet 
transform has been suggested for identification of 
liquid zone control model of 540 MWe Indian 
PHWR in [10]. A robust wavelet neural controller 
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with sliding modes has been designed for motor 
control drive in [11]. An optimization algorithm 
has been developed for back propagation based 
wavelet neural network in [12]. An adaptive 
wavelet neural controller has been suggested for 
power converter using FPGA in [13]. A wavelet 
observer based control has been synthesized for 
uncertain time delayed systems in [14]. A first 
principles model based wavelet neural controller 
has been designed for automated generation 
control in [15]. A wavelet neural controller for 
first principles model based plant frequency 
control has been designed in [16].  

In this research, a novel multi-objective 
optimized Multi-Input Multi-Output Adaptive 
Wavelet Neural Network based Steam Blow-Off 
System Controller was synthesized using Mother 
Wavelet Transforms with strong adoptability 
features. Based on proposed control algorithm, a 
Multi-Input Multi-Output Adaptive Wavelet 
Neural Network based Steam Blow-Off System 
Model was developed in cascaded neural network 
formulation rather than first principles based 
linearized modeling approach which is considered 
in [13-16]. Also, a cascaded neural model of the 
blow-off system was developed because the neural 
blow-off controller is series configuration of 
neural steam blow-off system and hence the neural 
blow-off controller driving the three blow-off 
control valves operating in coupled neural 
configuration for the excessive release of steam 
pressure in the nuclear boiler system.         

 

2. MATERIALS AND METHODS   

2.1. Steam Blow-off System     

Steam blow-off system was associated with steam 
generators. Steam blow-off system was used in 
Pressurized Heavy Water Reactor (PHWR) type 
nuclear power plant of 137 MWe rating in which 
steam corresponding to 30 MWe was stored in the 
condenser while remaining excessive steam was 
released to the atmosphere. In contrast, the steam 
dump system was used in Pressurized Light Water 
Reactor (PLWR) type nuclear power plant in 
which 30–90% steam is dumped in the condenser 
while remaining 70–10% is released to 
atmosphere, depending on the electrical rating of 
the plant. The purpose of steam blow-off system 
was to release the excessive steam to atmosphere 
in case of grid loss, reactor trip or turbine trip. 

There were three blow-off control valves (CV1, 
CV2 and CV3) mounted on the top of steam 
generator. Three blow-off control valves were 
provided for redundancy and fast release in case of 
unexpected severe transients.  

 
2.2. Steam Blow-off Controller    

The normal steam generator pressure was 
maintained at 550 Psig but under normal transient 
conditions, the steam pressure varies from 550 
Psig and it should be with  20 Psig band. Under 
abnormal conditions, called unexpected severe 
transients, a Single-Input Multi-Output 
Proportional plus Integral plus Derivative 
Controller (SIMO PIDC) was used. This SIMO 
PID controller was used to actuate three steam 
blow-off control valves when steam pressure is 
increasing at a rate of 2 Psig/Sec and reaches to 
620 Psig. Therefore, the set-point of the steam 
blow-off controller was 620 Psig.  If the steam 
blow-off set-point is PsSET  and measured steam 
pressure is Ps then Pe would be the steam pressure 
error signal controlled by a SIMO PID controller 
as shown in Fig. 1. 

 
2.3. New Steam Blow-off Controller 

Since the new steam blow-off controller was an 
adaptive wavelet neural controller, by using the 
adaptive wavelet neural network structure [15] 
and back propagation algorithm optimized by 
steepest decent learning rate [5], the 
performance index for CV1N can be defined as: 

1 1
1

1( ) [ ( ( ), ( ),
2

p

CV N N ki k
n

J n CV W n W n


 
  

 
2

1( ), ( ), ( )) ( )]k k kW n a n b n CV n  (1) 

where CV1N (.) and CV1 (.) are neural and 
nonlinear dynamic functions for steam blow-off 
control valve CV1 respectively while kiW , kW , 

ka , kb and n are weights matrix associated with 
input layer of i nodes, weights matrix associated 
with hidden layer of k nodes, dilation factors 
associated with k nodes, translation factors 
associated with k nodes and backward step 
number (n = 1,2,3,…,p samples) respectively. 
The structure of adaptive wavelet neural 
network controller is shown in Fig. 2.  



	 Adaptive Wavelet Neuro-Controller	 179

 

 

 

 

 

 

 

                

 

 

 

   

   MI

 P

 Steam 

Ps 

            

Fig. 1. Clos

F

     + 

IMO AWNN-S

PsSET 

     _ 

m Pressure Rate

dPS

sed loop desig

Fig. 2. Design

  
eP

Ps 

SBOS Controlle

 Unit 

gn architectur

n architecture 

   PID Control

er 

     + 

     _ 

eCV

CV1N,

CV

 

re of existing 

of adaptive w

ller 

CV1, CV2, 

CV3

Sec

      MIMO
V 

 CV2N,  

and new blow

wavelet neura

SBOS
 
condary loop 

O AWNN-SB

     _ 

PR

     +

w-off control 

al network. 

  Re

BOS Model 

PR 

P

ePrPs 
     + 

PS  

   Pr

R 

+ 

P

system. 

eactor Core

PSN 

rimary loop 

PRN 

PS  



180	 Arshad H. Malik et al

  

 Similarly, the performance index for CV2N 
can be defined as: 

2 2
1

1( ) [ ( ( ),
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where all symbols have their usual meanings.  

 The performance index for CV3N can be 
defined as: 

3 3
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where all symbols have their usual meanings. 

 
2.4. Adaptive Wavelet Neural Optimization  

2.4.1. Structure of Mother Wavelet Network  

The term wavelet means little wave having 
minimum oscillations, with extremely fast 
decaying characteristics to zero. The function 
having such feature is called wavelet function. 
The wavelet function used for feed forward 
neural network is called mother wavelet 
function expressed by . The wavelet transform 
measures the relationship between inputs and 
translated mother wavelet. The mother wavelet 
transform is given as: 

1( , )( ) i k
k k i

kk

x aa b x
ba

 
 

  
   (4) 

where  xi , ak and and bk are ith input signal, kth dila-
tion factor and kth translation factor respectively.   

 
2.4.2. Steepest Decent Learning Rule and 
Wavelet Neural Network  

Using the steepest decent learning rate [5], the 
change in input weights, hidden layer weights, 
dilation factors and translations factors can be 
formulated as: 
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where  and  are learning rate and momentum 
term respectively.   

Now, the input weights, hidden layer 
weights, dilation factors and translations factors 
updating logic can be formulated as: 

( 1) ( ) ( 1)ki ki kin n n        (9) 

( 1) ( ) ( 1)k k kn n n        (10) 

( 1) ( ) ( 1)k k ka n a n a n      (11) 

( 1) ( ) ( 1)k k kb n b n b n      (12) 
 

2.5.   MIMO AWNN-SBOS Controller 

2.5.1. Choice of New Inputs  

The input of existing SIMO PID controller is 
Pe which is a function of PsSET  and P. In the new 

proposed design, instead of one input signal two 
input signals were selected. One was a previous 
steam pressure error signal ( Pe ) and second was a 
steam pressure rate signal (dPs/dt). Therefore, the 
new proposed controller is a multi-input 
controller.   
 
2.5.2. Synthesis of MIMO AWNN-SBOS 
Controller 

The configuration of inputs and outputs for MIMO 
AWAN-SBOS controller is shown in Fig. 3. The 
new proposed MIMO AWNN-SBOS controller 
was synthesized based on three MISO AWNN-
SBOS controllers. These three controllers were 
synthesized using soft parallel computing 
algorithm for estimating the valve opening 
positions of three blow-off control valves CV1N, 
CV2N and CV3N  expressed in %.  

2.6. MIMO AWNN-SBOS Model Development 

2.6.1. Choice of Neural Inputs  

The inputs and outputs of steam blow-off system and 
nuclear reactor core acting like a plant for new 
proposed controller as shown in Fig. 3. CV1, CV2 and 
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CV3 are the inputs and PR and PS are the outputs of 
steam blow-off system. Since the nonlinear model is 
developed in cascaded configuration, so in fact CV1N, 
CV2N and CV3N  are chosen as inputs and PRN and PSN 
are chosen as outputs for multivariable neural model 
development.  

2.6.2. Formulation of MIMO AWNN-SBOS 
Model 

The highly nonlinear dynamics of multivariable 
blow-off system was captured by synthesizing two 
MISO AWNN models using soft parallel 
computing algorithm. The parallel computing 
algorithm means the model is Multi-Input and 
Multi-Output (MIMO) which is designed based 
two parallel operating MISO neural models and all 
the model parameters are computed and optimized 
simultaneously. One MISO AWNN-SBOSM is 
synthesized for estimating reactor power while 
another MISO AWNN-SBOSM is synthesized for 
estimating steam pressure.   

Similar to equation (1), the performance index 
for PRN can be defined as: 

1

1( ) [ ( ( ),
2RN

p

P R ki
n

J n P W n


 
  

 
2( ), ( ), ( )) ( )]k k k RW n a n b n P n  (13) 

where PRN (.) and PR (.) are neural and nonlinear 
dynamic functions for reactor power PR 
respectively while kiW , kW , ka , kb and n are 
weights matrix associated with input layer of i 
nodes, weights matrix associated with hidden 
layer of k nodes, dilation factors associated with 
k nodes, translation factors associated with k 
nodes and backward step number (n = 1,2,3,…,p 
samples) respectively. 

 Similarly, the performance index for PS can 
be defined as: 

1

1( ) [ ( ( ),
2SN

p

P SN ki
n
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
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2( ), ( ), ( )) ( )]k k k SW n a n b n P n  (14) 

where all symbols having their usual meanings.  

 

3. RESULTS AND DISCUSSION 

The closed loop cascaded configuration of MIMO 
AWNN-SBOS controller and MIMO AWNN-
SBOS is shown in Fig. 1.  

3.1. MIMO AWNN-SBOS Controller Model 
Estimation 

100,000 data points were obtained in real time 
sampled over 0.01 Sec controller parameters under 
the severe transient prevailing sudden grid loss. 
Three sub-data points were generated from these 
100,000 data points for training, testing and 
validation purposes. The performance indices 
described in equation (1) to equation (3) were 
optimized using equation (5) to equation (12) and 
the optimized parameters of three MISO AWNN-
SBOS controllers are tabulated in Table 1 to Table 
3, respectively.  

 
Table 1. Design parameters for MISO AWNN-
SBOS Controller for CV1. 
------------------------------------------------------------------------------------ 
Network Parameter Value 
------------------------------------------------------------------------------------ 
Input Parameters eP , dPs/dt 
Output Parameter CV1 
Total Patterns (100%) 100, 000  
Number of Training Patterns (70%) 70, 000  
Number of Testing Patterns (15%) 15, 000 
Number of Validation Patterns (15%) 15, 000 
Sample Time (Sec) 0.01 
Number of Neurons in Input Layer of MISO  2 
Number of Neurons in Hidden Layer of MISO  49 
Number of Neurons in Output Layer of MISO  1 
Learning Rate 0.05 
Momentum Term 0.6 
Number of Dilation Parameters 49 
Number of Translation Parameters 49 
Total Epochs  100 
------------------------------------------------------------------------------------ 
 
Table 2. Design parameters for MISO AWNN-
SBOS Controller for CV2. 
------------------------------------------------------------------------------------ 
Network Parameter Value 
------------------------------------------------------------------------------------ 
Input Parameters eP , dPs/dt 
Output Parameter CV2 
Total Patterns (100%) 100, 000  
Number of Training Patterns (70%) 70, 000  
Number of Testing Patterns (15%) 15, 000 
Number of Validation Patterns (15%) 15, 000 
Sample Time (Sec) 0.01 
Number of Neurons in Input Layer of MISO  2 
Number of Neurons in Hidden Layer of MISO  37 
Number of Neurons in Output Layer of MISO  1 
Learning Rate 0.05 
Momentum Term 0.6 
Number of Dilation Parameters 37 
Number of Translation Parameters 37 
Total Epochs  100 
------------------------------------------------------------------------------------ 
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Table 3. Design parameters for MISO AWNN-
SBOS Controller for CV3. 
------------------------------------------------------------------------------------ 
Network Parameter Value 
------------------------------------------------------------------------------------ 
Input Parameters eP , dPs/dt 
Output Parameter CV3 
Total Patterns (100%) 100, 000  
Number of Training Patterns (70%) 70, 000  
Number of Testing Patterns (15%) 15, 000 
Number of Validation Patterns (15%) 15, 000 
Sample Time (Sec) 0.01 
Number of Neurons in Input Layer of MISO  2 
Number of Neurons in Hidden Layer of MISO  20 
Number of Neurons in Output Layer of MISO  1 
Learning Rate 0.05 
Momentum Term 0.6 
Number of Dilation Parameters 20 
Number of Translation Parameters 20 
Total Epochs  100 
------------------------------------------------------------------------------------ 
 

3.2. MIMO AWNN-BOS Model Estimation 

Since, the MIMO AWNN-BOS model was 
optimized in cascaded with MIMO AWNN-SBOS 
controller, so 100,000 data points were required to 
be utilized for model estimation. Thus, 100,000 
neural data points obtained from CV1N, CV2N and 
CV3N were used in real time sampled over 0.01 sec 
for estimating plant parameters under the same 
grid loss transient. These sub-data points were 
generated from these 100,000 neural data points 
for training, testing and validation purposes. The 
performance indices described in equation (13) 
and equation (14) were optimized using equation 
(5) to equation (12) and the optimized parameters 
of two MISO AWNN-SBOS models are tabulated 
in Table 4 and Table 5, respectively.  
 
              
Table 4. Design parameters for MISO AWNN-
SBOS Model for PR. 
------------------------------------------------------------------------------------ 
Network Parameter Value 
------------------------------------------------------------------------------------ 
Input Parameters CV1, CV2, CV3  
Output Parameter PR 
Total Patterns (100%) 100, 000  
Number of Training Patterns (70%) 70, 000  
Number of Testing Patterns (15%) 15, 000 
Number of Validation Patterns (15%) 15, 000 
Sample Time (Sec) 0.01 
Number of Neurons in Input Layer of MISO  3 
Number of Neurons in Hidden Layer of MISO  39 
Number of Neurons in Output Layer of MISO  1 
Learning Rate 0.05 
Momentum Term 0.6 
Number of Dilation Parameters 39 
Number of Translation Parameters 39 
Total Epochs  100 
------------------------------------------------------------------------------------ 

Table 5. Design parameters for MISO AWNN-
SBOS Model for PS. 
------------------------------------------------------------------------------------ 
Network Parameter Value 
------------------------------------------------------------------------------------ 
Input Parameters CV1, CV2, CV3  
Output Parameter PS 
Total Patterns (100%) 100, 000  
Number of Training Patterns (70%) 70, 000  
Number of Testing Patterns (15%) 15, 000 
Number of Validation Patterns (15%) 15, 000 
Sample Time (Sec) 0.01 
Number of Neurons in Input Layer of MISO  3 
Number of Neurons in Hidden Layer of MISO  39 
Number of Neurons in Output Layer of MISO  1 
Learning Rate 0.05 
Momentum Term 0.6 
Number of Dilation Parameters 39 
Number of Translation Parameters 39 
Total Epochs  100 
------------------------------------------------------------------------------------ 
 
3.3. Validation of Proposed Closed Loop 
AWNN Based Control Scheme 

The closed loop framework for the training and 
testing of new proposed neuro-controller 
switchover logic is shown in Fig. 4. All inputs, 
outputs and closed loop optimization scheme are 
shown in detail in Fig. 1. All three MISO AWNN-
SBOS controllers and two MISO AWNN-SBOS 
models were analyzed during training, testing and 
validation phases. Since, fourth and fifth MISO 
AWNN-SBOS models werre cascaded outputs of 
three MISO AWNN-SBOS controllers, so, a fifth 
MISO AWNN-SBOS was selected covering the 
whole performance of closed loop framework. The 
performance of MISO AWNN-SBOS model for 
predicting steam pressure during training, testing 
and validation phases is shown in Fig. 5. The 
performance curves show an excellent agreement 
in optimization. A steam pressure error signal was 
applied at input of classical SIMO PID controller 
while two input signals of steam pressure error 
signal and steam pressure rate signal were applied 
at the input of MIMO AWNN-SBOS controller for 
performance analysis purposes. Simulations of 
these signals are shown in Fig. 6-7. In Fig. 6, 
stabilization of pressure error signal is shown. 
Since the steam blow-off pressure set-point was 
610 psig and normal steam pressure was 550 psig, 
during the steam blow-off transient, the normal 
steam pressure changed from 550 psig and keep on 
increasing towards 610 psig set-point and when 
the set-point was reached then the process of 
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steam blow-off continued at the maximum rate 
and reaches a maximum attainable steam pressure 
of 620 psig which was exactly in accordance with 
the inherent design. Therefore, it stabilized at 
steam pressure error signal of -10 psig, which is 
simply the difference of 610 psig and 620 psig. 
The steam pressure signal and steam pressure rate 
took major fluctuations in first 150 seconds and 90 
seconds, respectively. The comparison of 
conventional SIMO PID controller and proposed 
new MISO controller response for CV1 is shown in 
Fig. 8. The response of MISO AWNN-SBOS 
controller was found lesser oscillatory, much 
smoother and with reduced overshoots in 
performance as compared to SIMO PID controller 
response. The comparison of conventional SIMO 
PID controller and MISO controller response for 
CV2 is shown in Fig. 9. The response of MISO 
AWNN-SBOS controller was found lesser 
oscillatory, much smoother and much faster in 
initial phase of transient in performance as 
compared to SIMO PID controller response. The 
comparison of conventional SIMO PID controller 
and MISO controller response for CV3 is shown in 
Fig. 10. The response of MISO AWNN-SBOS 
controller was found much lesser oscillatory, 
much smoother and much faster throughout the 
transient in performance as compared to SIMO 
PID controller response. 

Now, CV1 , CV2 and CV3  as three signals were 
applied at SBOS and PS as output of SBOS was 
coupled to reactor core for reactor power signal 
while CV1N , CV2N and CV3N  were applied at 
MIMO AWNN-SBOS model for performance 
analysis purposes. The comparison of 
conventional SIMO PID controller and MISO 
controller response for PR is shown in Fig. 11. The 
response of MISO AWNN-SBOS model for 
reactor power was found much lesser oscillatory 
and much smoother in performance as compared 
to SIMO PID controller based response. The 
reactor became 0% when steam blow-off transient 
was completed as shown in Fig. 11. The 
comparison of conventional SIMO PID controller 
and MISO AWNN-SBOS model for PS is shown 
in Fig. 12. The response of MISO AWNN-SBOS 
model was found extremely smoother and 
critically damped in performance as compared to 
SIMO PID controller based response. When the 
steam blow-off transient settled down, the steam 
pressure signal attained a steady value of 620 Psig 
(Fig. 12). Hence, the proposed design 

methodology using artificial intelligence proved 
highly successful in robustness and performance. 
 

4. CONCLUSIONS 

A severe transient handling steam blow-off control 
system has been considered in this research work. 
A new multivariable MIMO adaptive wavelet 
neural controller has been proposed as new 
replacement of conventional SIMO PID controller 
of steam blow-off system. The proposed data-
driven new controller has been utilized for 
capturing local fluctuations of multivariable 
adaptive wavelet neural dynamics of steam blow-
off system. The training, testing and validation of 
proposed multivariable neural model has been 
carried out in cascaded neural environment. The 
proposed new closed loop control scheme has 
been proved a successful realization through 
simulation experiments.   
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