ISSN: 0377 - 2969 (print), 2306 - 1448 (online)

Research Article

Common Fixed Point Theorems for Mappings Satisfying ϕ Implicit Relation in G-Metric Spaces

Rashwan A. Rashwan^{1*} and Samira M. Saleh²

¹Department of Mathematics, Faculty of Science, Assiut University, Assiut71516, Egypt ²Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

Abstract: In this paper some common fixed point theorems are established for two and four mappings satisfying ϕ -implicit relation in G-metric spaces. Also, a common fixed point theorem for T-contraction mapping is proved. our results are improve the results of Popa and Patriciu [24]. An example is given to justify some of our results.

Keywords: G-metric space, common fixed point, weak-compatible maps, ϕ -implicit relation, T-contraction

1. INTRODUCTION

Jungck [5] proved a common fixed point theorem for commuting mappings as generalizing the Banach's fixed point theorem. The concept of the commutativity has generalized in several ways. For this Sessa [25] introduced the concept of weakly commuting mappings, Jungck [6] extend this concept to compatible maps. In 1998, Jungck and Rhoades [7] introduced the notion of weak compatibility and showed that compatible maps are weakly compatible but the converse need not to be true, for example see Pathak [21].

The notion of *G*-metric space was introduced by Mustafa and Sims [17, [18] as a generalization of the notion of metric spaces. Afterwards Mustafa, Sims and others authors introduced and developed several fixed point theorems for mappings satisfying different contractive conditions in *G*-metric spaces, also extend known theorems in metric spaces to *G*-metric spaces see [4, 9-20, 26] and many other papers.

Beiranvand, Moradi, Omid and Pazandeh [3] introduce the classes of *T*-contraction and *T*-contractive mappings, which are depending on another function. Moradi in [10] introduce the *T*-Kannan contractive mapping. Morales and Rojas [11, 12] have extended the concept of *T*-contraction mappings to cone metric space by

proving fixed point theorems for *T*-Kannan, *T*-Chatterjea *T*-Zamfirescu, *T*-weakly contraction mappings. Sumitra, Rhymend Uthariaraj and Hemavathy [27] proved a fixed point theorem in the setting of cone metric space for *T*-Hardy-Rogers type contraction condition.

Karayian and Telici [8] and Shatanawi [26] proved some fixed point theorems for mappings satisfying ϕ - maps. Popa [22, 23] initiated the study of fixed points for mappings satisfying implicit relations. Altun and Turkoglu [2] introduced a new type of implicit relations satisfying ϕ -map. Popa and Patriciu [24] proved a fixed point theorem in a complete G-metric spaces for mappings satisfying ϕ -implicit relation.

The purpose of this paper is to study some common fixed point theorems for two and fourmappings satisfying ϕ -implicit relation in G-metric spaces. Also, a common fixed point theorem for T-contraction mapping is proved. our results are improve the results of Popa and Patriciu [24].

2. PRELIMINARIES

Definition 2.1. [18] Let X be a nonempty set, and let $G: X^3 \to [0, \infty)$, be a function satisfying:

$$(G_1) G(x, y, z) = 0 \text{ if } x = y = z,$$

Received, June 2012; Accepted, July 2013

 (G_2) 0 < G(x, x, y), for all $x, y \in X$, with $x \neq y$,

 (G_3) $G(x,x,y) \le G(x,y,z), \forall x,y,z \in X$, with $z \ne y$,

(G4)G(x, y, z) = G(x, z, y) = $G(y, z, x) \dots$, (symmetry in all three variables),

(G5) $G(x, y, z) \le G(x, a, a) + G(a, y, z), \forall x, y, z, a \in X$, (rectangle inequality).

Then the function G is called a generalized metric, or more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 2.2. [18] Let (X, G) be a G-metric space, a sequence (x_n) is said to be

- (i) G-convergent if for every $\varepsilon > 0$, there exists an $x \in X$, and $k \in N$ such that for all $m, n \ge k$, $G(x, x_n, x_m) < \varepsilon$.
- (ii) G-Cauchy if for every $\varepsilon > 0$, there exists an $k \in \mathbb{N}$ such that for all $m, n, p \ge k$, $G(x_m, x_n, x_p) < \varepsilon$, that is $G(x_m, x_n, x_p) \to 0$ as $m, n, p \to \infty$.
- (iii) A space (X, G) is said to be G-complete if every G-Cauchy sequence in (X, G) is G-convergent.

Definition 2.3. [18] A G metric space X is symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Lemma 2.1. [18] Let (X, G) be a G-metric space. Then the following are equivalent:

- (i) (x_n) is convergent to x,
- (ii) $G(x_n, x_n, x) \to 0$ as $n \to \infty$,
- (iii) $G(x_n, x, x) \to 0$ as $n \to \infty$,
- (iv) $G(x_n, x_m, x) \to 0$ as $n, m \to \infty$,

Lemma 2.2. [18] Let (X, G) be a G-metric space. Then the following are equivalent:

- (i) The sequence (x_n) is G-Cauchy,
- (ii) for every $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$ for $m, n \ge k$.

Lemma 2.3. Mustafa and Sims [18] Let (X, G) be a G-metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Definition 2.4.Let T and S be self maps of a

nonempty set X. If w = Tx = Sx for some $x \in X$, then x is called a coincidence point of T and S and w is called a point of coincidence of T and S.

Definition 2.5. Two self-mappings T and S are said to be weakly compatible if they commute at their coincidence points, that is, Tx = Sx implies that TSx = STx.

3. IMPLICIT RELATIONS

Definition 3.1. Popa and Patriciu [24] A function $f: [0, \infty) \to [0, \infty)$ is called a ϕ -function, $f \in \phi$, if f is a nondecreasing function such that $\sum_{n=1}^{\infty} f^n(t) < \infty$, for all f(t) < t for t > 0 and f(0) = 0.

Definition 3.2. Let F_{ϕ} be the set of all continuous functions $F(t_1, ..., t_6)$: $R_+^6 \to R$ such that:

 (F_1) : F is nonincreasing in t_5 ,

 (F_2) :there exists a function $\phi_1, \phi_2 \in \phi$ such that for all $u, v \ge 0$, with

 (F_a) : $F(u, v, v, u, u + v, 0) \le 0$ implies $u \le \phi_1(v)$,

 (F_b) : $F(u, v, u, v, 0, u + v) \le 0$ implies $u \le \phi_2(v)$,

(F3):there exists a function $\phi_3 \in \phi$ such that for all $t, t' > 0, F(t, t, 0, 0, t, t') \le 0$ implies $t \le \phi_3(t')$.

Example 3.3. $F(t_1,...,t_6) = t_1 - at_2 - bt_3 - ct_4 - dt_5 - et_6$, where a > 0, b, c, d, $e \ge 0$, a + b + c + 2d + e < 1.

 (F_1) :Obviously. $F(t_1, \ldots, t_6)$

 (F_2) : Let $u, v \ge 0$, and $F(u, v, v, u, u + v, 0) = u - av - bv - cu - d(u + v) \le 0$ which implies $u \le \frac{a+b+d}{1-c-d}v$. F_a is satisfied for $\phi_1(t) = \frac{a+b+d}{1-c-d}t$. Similarly $F(u, v, u, v, 0, u + v) = u - av - bu - cv - e(u + v) \le 0$ whichimplies $u \le \frac{a+c+e}{1-b-e}v$. F_b is satisfied for $\phi_2(t) = \frac{a+c+e}{1-b-e}t$.

(F3): Let t, t' > 0 be and $F(t, t, 0, 0, t, t') = t - at - bt - et' \le 0$ which implies

 $t \leq \frac{e}{\frac{1-(a+d)}{1-(a+d)}} t' \text{and} F_3 \quad \text{is satisfied for} \quad \phi_3(t) = \frac{e}{\frac{e}{1-(a+d)}} t.$

Example 3.4 $F(t_1,...,t_6) = t_1 - kmax\{t_2,t_3,t_4,t_5,t_6\}$, where $k \in (0,\frac{1}{2})$.

 (F_1) : Obviously.

 (F_2) : Let $u, v \ge 0$, and $F(u, v, v, u, u + v, 0) = F(u, v, u, v, 0, u + v) = u - kmax\{u, v, u + v\} \le 0$. Hence $u \le \frac{k}{1-k} v$ and F_a is satisfied for $\phi_1(t) = \frac{k}{1-k} t$. Similarly $F(u, v, u, v, 0, u + v) = u - kmax\{u, v, u + v\} \le 0$. Then $u \le \frac{k}{1-k} v$ and F_b is satisfied for $\phi_2(t) = \frac{k}{1-k} t$.

 (F_3) : Let t,t'>0 be and $F(t,t,0,0,t,t')=t-kmax\{t,t'\} \le 0$ if t>t', then $t(1-k) \le 0$, a contradiction. Hence $t \le t'$ which implies $t \le kt'$ and F_3 is satisfied for $\phi_3(t)=kt$.

Example 3.5 $F(t_1,...,t_6) = t_1 - kmax\{t_2,t_3,t_4,\frac{t_5+t_6}{2}\}$, where $k \in (0,1)$.

 (F_1) :Obviously.

 (F_2) :Let $u, v \ge 0$, and $F(u, v, v, u, u + v, 0) = F(u, v, u, v, 0, u + v) = u - kmax\{u, v, \frac{u+v}{2}\} \le 0$. If u > v, then $u(1-k) \le 0$, a contradiction. Hence $u \le v$ which implies $u \le kv$ and F_a is satisfied for $\phi_1(t) = kt$. Similarly $F(u, v, u, v, 0, u + v) = u - kmax\{u, v, \frac{u+v}{2}\} \le 0$. Then $u \le kv$ and F_b is satisfied for $\phi_2(t) = kt$.

 (F_3) : Let t,t'>0 be and $F(t,t,0,0,t,t')=t-kmax\{t,t'\} \le 0$ if t>t', then $t(1-k)\le 0$, a contradiction. Hence $t\le t'$ which implies $t\le kt'$ and F_3 is satisfied for $\phi_3(t)=kt$.

For more examples see [24], where those examples also satisfying (F_h) .

4. MAIN RESULTS

Lemma 4.1. Let (X, G) be a G-metric space and $T, f: (X, G) \to (X, G)$ two mappings such that T is one to one and

$$F(G(Tfx, Tfy, Tfy), G(Tx, Ty, Ty),$$

$$G(Tx, Tfx, Tfx), G(Ty, Tfy, Tfy),$$

$$G(Tx, Tfy, Tfy), G(Ty, Tfx, Tfx)) \le 0,$$
(1)

for all $x, y \in X$ and F satisfying property (F_3) Then, f has at most a fixed point.

Proof. Suppose that u = f u and v = f v. Then by(1) we have successively

F(G(Tfu, Tfv, Tfv), G(Tu, Tv, Tv),

$$G(Tu, Tfu, Tfu), G(Tv, Tfv, Tfv),$$

 $G(Tu, Tfv, Tfv), G(Tv, Tfu, Tfu)) \leq 0,$
by (F_3) we obtain that
 $G(Tu, Tv, Tv) \leq \phi_3(G(Tv, Tu, Tu)).$

Similarly, we obtain that

$$G(Tv,Tu,Tu) \leq \phi_3(G(Tu,Tv,Tv)).$$

Hence

$$G(Tu, Tv, Tv) \leq \phi_3(G(Tv, Tu, Tu))$$

$$\leq \phi_3^2(G(Tu, Tv, Tv))$$

$$\leq G(Tu, Tv, Tv),$$

which is a contradiction. Hence Tu = Tv, since T is one to one then u = v.

Theorem 4.1. Let(X, G) be a G-metric space. Assume that T and f are two self mappings of (X, G). Assume that T(X) is a G-complete subspace of X and T is one to one mapping. If T and f satisfying inequality (1) for all $x, y \in X$, where $F \in F_{\phi}$, then f has a unique fixed point in X. Moreover, if T and f are commuting at the fixed points of f, then T and f have a unique common fixed point.

Proof. Let x_0 be an arbitrary point of X. Define a sequence (x_n) in X such that $x_{n+1} = fx_n$ for each $n = 0,1,\cdots$. Then by (1) we have successively

$$\begin{split} &F(G(Tfx_{n-1},Tfx_n,Tfx_n),G(Tx_{n-1},Tx_n,Tx_n),\\ &G(Tx_{n-1},Tfx_{n-1},Tfx_{n-1}),G(Tx_n,Tfx_n,Tfx_n),\\ &G(Tx_{n-1},Tfx_n,Tfx_n),G(Tx_n,Tfx_{n-1},Tfx_{n-1}))\\ &\leq 0, \end{split}$$

$$F(G(Tx_{n}, Tx_{n+1}, Tx_{n+1}), G(Tx_{n-1}, Tx_{n}, Tx_{n}),$$

$$G(Tx_{n-1}, Tx_{n}, Tx_{n}), G(Tx_{n}, Tx_{n+1}, Tx_{n+1}),$$

$$G(Tx_{n-1}, Tx_{n+1}, Tx_{n+1}),$$

$$G(Tx_{n}, Tx_{n}, Tx_{n})) \leq 0.$$
By (F_{1}) and (G_{5}) we obtain
$$F(G(Tx_{n}, Tx_{n+1}, Tx_{n+1}), G(Tx_{n-1}, Tx_{n}, Tx_{n}),$$

$$G(Tx_{n-1}, Tx_{n}, Tx_{n}), G(Tx_{n}, Tx_{n+1}, Tx_{n+1}),$$

$$G(Tx_{n-1}, Tx_{n}, Tx_{n}) +$$

$$G(Tx_n, Tx_{n+1}, Tx_{n+1}), 0) \le 0.$$

By (F_a) we obtained

$$G(Tx_{n}, Tx_{n+1}, Tx_{n+1})$$

$$\leq \phi_{1}(G(Tx_{n-1}, Tx_{n}, Tx_{n}))$$

$$\leq \phi_{1}^{2}(G(Tx_{n-2}, Tx_{n-1}, Tx_{n-1}))$$

$$\vdots$$

$$\leq \phi_{1}^{n}(G(Tx_{0}, Tx_{1}, Tx_{1})).$$

Therefore

$$G(Tx_{n}, Tx_{m}, Tx_{m})$$

$$\leq G(Tx_{n}, Tx_{n+1}, Tx_{n+1}) + \dots$$

$$+G(Tx_{m-1}, Tx_{m}, Tx_{m})$$

$$\leq \phi_{1}^{n}(G(Tx_{0}, Tx_{1}, Tx_{1})) + \dots$$

$$+\phi_{1}^{m-1}(G(Tx_{0}, Tx_{1}, Tx_{1}))$$

$$= \sum_{k=x}^{m-1} \phi_{1}^{k}(G(Tx_{0}, Tx_{1}, Tx_{1})).$$

Since, $\sum_{k=n}^{\infty} \phi_1^k (G(Tx_0, Tx_1, Tx_1)) < \infty$ then for any $\varepsilon > 0$, there exists $k \in N$ such that for $m > n \ge$

 $k, \sum_{k=n}^{m-1} \phi_1^k \left(G(Tx_0, Tx_1, Tx_1) \right) < \varepsilon$. Hence by Lemma (2.2) (Tx_n) is a G-Cauchy sequence. Since T(X) is a G-complete metric subspace of X, there exists a point q in T(X) such that $\lim_{n\to\infty} Tx_n = q$. Also, we can find a point $u \in X$ such that Tu = q. Now, we prove Tu = Tfu. By (1) we have

$$F(G(Tfx_n, Tfu, Tfu), G(Tx_n, Tu, Tu), G(Tx_n, Tfx_n, Tfx_n), G(Tu, Tfu, Tfu), G(Tu, Tfu, Tfx_n))$$

$$G(Tx_n, Tfu, Tfu), G(Tu, Tfx_n, Tfx_n)) \leq 0,$$

$$F(G(Tx_{n+1}, Tfu, Tfu), G(Tx_n, Tu, Tu), G(Tx_n, Tu), G(Tx_n, Tu))$$

$$Tx_{n+1}\,,Tx_{n+1}),G(Tu,Tfu,Tfu),$$

$$G(Tx_n, Tfu, Tfu), G(Tu, Tx_{n+1}, Tx_{n+1})) \leq 0.$$

Letting n tend to infinity, we obtain

$$F(G(Tu,Tfu,Tfu),0,0,G(Tu,Tfu,Tfu),\\$$

$$G(Tu, Tfu, Tfu), 0) \leq 0$$

By (F_a) we have $G(Tu, Tf u, Tf u) \le \phi_1(0) = 0$, hence G(Tu, Tfu, Tfu) = 0, then Tu = Tfu. Since T is one to one, fu = u. By Lemma (4.1), u is the unique fixed point of f. Moreover, if T and f are commuting at the fixed points of f, then fTu = Tfu = u this implies that Tu is another fixed point of f. By uniqueness of

fixed point of f, we have Tu = u. Hence Tu = fu = u is a unique common fixed point of f and T. If we put T = I, where I is the identity mapping, we have the following Corollary.

Corollary 4.1. (Theorem 4.2 [24]) Let (X, G) be a complete G-metric space. Assume that T satisfying the condition

$$G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) \le 0$$
,

for all $x, y \in X$, where $F \in \mathbf{F}_{\phi}$, then T has a unique fixed point.

The following Lemmas are fundamental in the sequel.

Lemma 4.2. Abbas and Rhoades [1] Let T and S be weakly compatible self- mappings of nonempty set X. If T and S have a unique point of coincidence w = Tx = Sx, then w is the unique common fixed point of T and S.

Lemma 4.3. Let (X, G) be a *G*-metric space and $T, S: (X, G) \rightarrow (X, G)$ two mappings such that

$$G(Sx, Ty, Ty), G(Sy, Tx, Tx)) \le 0, \tag{2}$$

for all $x, y \in X$ and F satisfying property (F_3) . Then, T and S have at most a point of coincidence.

Proof. Suppose that u = Tp = Sp and v = Tq = Sq. Then by (2) we have successively

$$F(G(Tp, Tq, Tq), G(Sp, Sq, Sq), G(Sp, Tp, Tp),$$

$$G(Sq, Tp, Tp)) \leq 0$$

$$F(G(u, v, v), G(u, v, v), 0, 0, G(u, v, v),$$

$$G(v,u,u)) \leq 0$$

by (F_3) we obtain that

$$G(u, v, v) \leq \phi_3(G(v, u, u)).$$

Similarly, we obtain that

$$G(v, u, u) \leq \phi_3(G(u, v, v)).$$

Hence

$$G(u, v, v) \le \phi_3(G(v, u, u))$$

$$\le \phi_3^2(G(u, v, v))$$

$$< G(u, v, v),$$

which is a contradiction. Hence u = v.

Lemma 4.4. Let (X, G) be a *G*-metric space and $A, B, S, T : (X, G) \rightarrow (X, G)$ such that

$$G(Sx, By, By), G(Ay, Tx, Tx)) \le 0, \tag{3}$$

for all $x, y \in X$ and F satisfying property (F_3) . Then, A, B, S and T have at most a common fixed point.

Proof. Suppose that p = Tp = Sp = Ap = Bp and q = Tq = Sq = Aq = Bq, $p \ne q$. Then by (3) we have successively

$$F(G(Tp, Bq, Bq), G(Sp, Aq, Aq), G(Sp, Tp, Tp),$$

$$G(Aq, Tp, Tp)) \leq 0$$

$$G(p,q,q),G(q,p,p)) \leq 0,$$

by (F_3) we obtain that

$$G(p,q,q) \leq \phi_3(G(q,p,p)).$$

Similarly, we obtain that

$$G(q,p,p) \leq \phi_3(G(p,q,q)).$$

Hence

$$G(p,q,q) \le \phi_3(G(q,p,p))$$

$$\le \phi_3^2(G(p,q,q))$$

$$< G(p,q,q),$$

which is a contradiction. Hence p = q.

Theorem 4.2. Let (X,G) be a G-metric space and $T, S: (X,G) \to (X,G)$ satisfying inequality (2) for all $x,y \in X$, where $F \in \mathbf{F}_{\phi}$. If $T(X) \subseteq S(X)$ and S(X) is a G-complete metric subspace of (X,G), then T and S have a unique point of coincidence. Moreover, if T and S are weakly compatible, then T and S have a unique common fixed point.

Proof. Let x_0 be an arbitrary point of X since $T(X) \subseteq S(X)$ we can choose $x_1 \in X$ such that $Tx_0 = Sx_1$. Continuing this process, having chosen x_n in X, we obtain x_{n+1} such that $Tx_n = Sx_{n+1}$. Then, by (2) we have successively

$$F(G(Tx_{n-1},Tx_n,Tx_n),G(Sx_{n-1},Sx_n,Sx_n),$$

$$G(Sx_{n-1}, Tx_{n-1}, Tx_{n-1}), G(Sx_n, Tx_n, Tx_n),$$

$$G(Sx_{n-1}, Tx_n, Tx_n), G(Sx_n, Tx_{n-1}, Tx_{n-1})) \leq 0,$$

$$F(G(Sx_n, Sx_{n+1}, Sx_{n+1}), G(Sx_{n-1}, Sx_n, Sx_n),$$

$$G(Sx_{n-1}, Sx_n, Sx_n), G(Sx_n, Sx_{n+1}, Sx_{n+1}),$$

$$G(Sx_{n-1}, Sx_{n+1}, Sx_{n+1}), 0) \leq 0.$$
By (F_1) and (G_5) we obtain
$$F(G(Sx_n, Sx_{n+1}, Sx_{n+1}), G(Sx_{n-1}, Sx_n, Sx_n),$$

$$G(Sx_{n-1}, Sx_n, Sx_n), G(Sx_n, Sx_{n+1}, Sx_{n+1}),$$

$$G(Sx_{n-1}, Sx_n, Sx_n) +$$

$$G(Sx_n, Sx_{n+1}, Sx_{n+1}), 0) \leq 0.$$
By (F_a) we obtain
$$G(Sx_n, Sx_{n+1}, Sx_{n+1})$$

$$\leq \phi_1(G(Sx_{n-1}, Sx_n, Sx_n))$$

$$\leq \phi_1^2(G(Sx_{n-2}, Sx_{n-1}, Sx_{n-1}))$$

$$\vdots$$

$$\leq \phi_1^n(G(Sx_0, Sx_1, Sx_1)).$$
Then for $m > n$, and by G_5

$$G(Sx_n, Sx_m, Sx_m) \leq G(Sx_n, Sx_{n+1}, Sx_{n+1}) + \dots$$

$$+G(Sx_{m-1}, Sx_m, Sx_m)$$

$$\leq \phi_1^n(G(Sx_0, Sx_1, Sx_1)) + \dots$$

$$+\phi_1^{m-1}(G(Sx_0, Sx_1, Sx_1))$$

$$= \sum \phi_1^k(G(Sx_0, Sx_1, Sx_1)).$$

Since $\sum_{k=n}^{\infty} \phi_1^k \left(G(Sx_0, Sx_1, Sx_1) \right) < \infty$, then for any $\varepsilon > 0$, there exists $k \in N$ such that for $m > n \ge k$, $\sum_{k=n}^{m-1} \phi_1^k \left(G(Sx_0, Sx_1, Sx_1) \right) < \varepsilon$. Hence by Lemma (2.2) (Sx_n) is a G-Cauchy sequence. Since S(X) is a G-complete metric subspace of X, there exists a point q in S(X) such that $\lim_{n \to \infty} Sx_n = q$.

Also, we can find a point $p \in X$ such that Sp = q. We prove that Tp = Sp. By (2) we have

$$\begin{split} &F(G(T \ x_{n-1}, Tp, Tp), G(Sx_{n-1}, Sp, Sp), \\ &G(Sx_{n-1}, Tx_{n-1}, Tx_{n-1}), G(Sp, Tp, Tp), \\ &G(Sx_{n-1}, Tp, Tp), G(Sp, Tx_{n-1}, Tx_{n-1})) \leq 0, \\ &F(G(Sx_n, Tp, Tp), G(Sx_{n-1}, Sp, Sp), \end{split}$$

$$G(Sx_{n-1}, Sx_n, Sx_n), G(Sp, Tp, Tp),$$

$$G(Sx_{n-1}, Tp, Tp), G(Sp, Sx_n, Sx_n)) \leq 0.$$

Letting n tend to infinity, we obtain

$$G(Sp, Tp, Tp), 0) \leq 0,$$

By (F_a) it follows that there exists a function $\phi_1 \in \phi$ such that $G(Sp, Tp, Tp) \leq \phi_1(0) = 0$, a contradiction. Hence Tp = Sp. Then Tp = Sp = q is apoint of coincidence of T and S. By Lemma (4.3), q is the unique point of coincidence. Moreover, if T and S are weakly compatible, by Lemma (4.2), q is the unique common fixed point of T and S.

Remark 4.3. If we put S = I, where I is the identity mapping, we have the Corollary (4.1).

Now, we extend the above theorem for four mappings in *G*-metric space.

Theorem 4.4. Let (X,G) be a symmetric G-metricspace and $A,B,S,T:(X,G) \rightarrow (X,G)$ satisfying condition (3) for all $x,y \in X$, where $F \in F_{\phi}$, such that

$$(a)T(X) \subseteq A(X)$$
 and $B(X) \subseteq S(X)$,

(b) the pairs (A, B) and (T, S) are weakly compatible,

(c) one of A(X), B(x), S(X), or T(X) is a G-complete subspace of X, Then A, B, S, and T have a unique common fixed point.

Proof. Let x_0 be an arbitrary point of XFrom(a) we can choose $x_1, x_2 \in X$ such that $y_0 = Tx_0 = Ax_1$ and $y_1 = Bx_1 = Sx_2$. Continuing this process, we obtain

 $y_{2n} = Tx_{2n} = Ax_{2n+1}$, $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$, For $n = 0,1,2,\cdots$. Then, by (3) we have successively

$$F(G(T x_{2n}, B x_{2n+1}, B x_{2n+1}),$$

$$G(S x_{2n}, Ax_{2n+1}, Ax_{2n+1}), G(S x_{2n},$$

$$T x_{2n}, T x_{2n}$$
),

$$G(A x_{2n+1}, B x_{2n+1}, B x_{2n+1}), G(S x_{2n},$$

$$B x_{2n+1}, B x_{2n+1}, G(A x_{2n+1})$$

$$T x_{2n}, T x_{2n}) \le 0,$$

$$F(G(y_{2n}, y_{2n+1}, y_{2n+1}), G(y_{2n-1}, y_{2n}, y_{2n}),$$

$$G(y_{2n-1}, y_{2n}, y_{2n}), G(y_{2n}, y_{2n+1}, y_{2n+1}),$$

$$G(y_{2n-1}, y_{2n+1}, y_{2n+1}), 0) \le 0.$$

By (F_1) and (G_5) we obtain

$$F(G(y_{2n}, y_{2n+1}, y_{2n+1}), G(y_{2n-1}, y_{2n}, y_{2n}),$$

$$G(y_{2n-1}, y_{2n}, y_{2n}), G(y_{2n}, y_{2n+1}, y_{2n+1}),$$

$$G(y_{2n-1}, y_{2n}, y_{2n}) +$$

$$G(y_{2n}, y_{2n+1}, y_{2n+1}), 0) \le 0.$$

By (F_a) we obtain

$$(y_{2n}, y_{2n+1}, y_{2n+1}) \le \phi_1(G(y_{2n-1}, y_{2n}, y_{2n}))$$

$$\leq \phi_1^2 (G(y_{2n-2}, y_{2n-1}, y_{2n-1}))$$

$$\leq \phi_1^n (G(y_0, y_1, y_1)).$$

Hence, for all n even or odd we have

$$G(y_n, y_{n+1}, y_{n+1}) \le \phi_1^n (G(y_0, y_1, y_1)).$$

Then for m > n and by G_5 we obtain

$$G(y_n, y_m, y_m) \le G(y_n, y_{n+1}, y_{n+1}) + \dots + G(y_{m-1}, y_m, y_m) \le \phi_1^n (G(y_0, y_1, y_1)) + \dots + \phi_1^{m-1} (G(y_0, y_1, y_1))$$

$$= \sum_{k=n}^{m-1} \phi_1^k (G(y_0, y_1, y_1)).$$

Since $\sum_{k=n}^{\infty} \phi_1^k (G(y_0, y_1, y_1)) < \infty$, then for any $\varepsilon > 0$, there exists $k \in N$ such that for $m > n \ge k$, $\sum_{k=n}^{m-1} \phi_1^k (G(y_0, y_1, y_1)) < \varepsilon$. Hence by Lemma (2.2) (y_n) is a G-Cauchy sequence. Let A(X) is G-complete subspace of X, there exists a point g in A(X), such that

$$\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} T x_{2n} = \lim_{n \to \infty} A x_{2n+1} = q.$$

Also, we can find a point $p \in X$ such that Ap = q. Since $\lim_{n \to \infty} y_{2n} = q$, then also

 $\lim_{n\to\infty} y_{2n+1} = \lim_{n\to\infty} Bx_{2n+1} = \lim_{n\to\infty} Sx_{2n+2} = q$. We provethat Bp = Ap. By (3) we have

$$F(G(Tx_{2n}, Bp, Bp), G(Sx_{2n}, Ap, Ap), G(Sx_{2n},$$

$$Tx_{2n}$$
, Tx_{2n}), $G(Ap, Bp, Bp)$,

$$G(Sx_{2n}, Bp, Bp), G(Ap, Tx_{2n}, Tx_{2n})) \leq 0,$$

Letting n tend to infinity, we obtain

$$F(G(q, Bp, Bp), 0, 0, G(q, Bp, Bp), G(q, Bp, Bp), 0)$$

$$\leq 0.$$

By (F_a) it follows that there exists a function $\phi_1 \in \phi$ such that $G(q, Bp, Bp) \leq \phi_1(0) = 0$, a contradiction. Hence Bp = q. Then Bp = Ap = q

q is apoint of coincidence of A and B. Since (A, B) is weakly compatible then Aq = ABp = BAp = Bq. Since $B(X) \subseteq S(X)$, Bp = q then $q \in S(X)$, so there is $r \in X$ such that Sr = q. We prove Tr = q. By (3) we obtain successively

F(G(Tr, Bp, Bp), G(Sr, Ap, Ap),

G(Sr, Tr, Tr), G(Ap, Bp, Bp), G(Sr, Bp, Bp),

 $G(Ap, Tr, Tr)) \leq 0$,

F(G(Tr, q, q), 0, G(q, Tr, Tr), 0, 0,

 $G(q, Tr, Tr)) \leq 0.$

Since (X, G) is symmetric and by (F_b) there exists a function $\phi_2 \in \phi$ such that $G(Tr, q, q) \leq \phi_2(0) = 0$. So G(Tr, q, q) = 0, hence Tr = q. Therefore Tr = Sr = q. Since (S, T) is weakly compatible then Sq = STr = TSr = Tq. By (3) replacing x = q and y = q we obtain

F(G(Tq, Bq, Bq), G(Tq, Bq, Bq), 0, 0,

 $G(Tq, Bq, Bq), G(Bq, Tq, Tq)) \leq 0.$

Since (X, G) is symmetric and by (F_3) , there exists a function $\phi_3 \in \phi$ such that

$$G(Tq, Bq, Bq) \leq \phi_3(G(Bq, Tq, Tq))$$

$$= \phi_3((G(Tq, Bq, Bq))$$

$$< G(Tq, Bq, Bq),$$

a contradiction. Hence Tq = Bq. Therefor Tq = Sq = Aq = Bq. By (3) we obtain

F(G(Tq, Bp, Bp), G(Tq, Bp, Bp), 0, 0,

 $G(Tq, Bp, Bp), G(Bp, Tq, Tq)) \leq 0,$

 $G(Tq,q,q),G(q,Tq,Tq)) \leq 0.$

Since (X,G) is symmetric and by (F_3) we conclude Tq = q. Therefore Tq = Sq = Aq = Bq = q, so q is a common fixed point of A,B,T, and S. By Lemma (4.4),q is the unique common fixed point of A,B,T, and S. In the cases for B(X), S(X) or T(X) is a G-complete subspace of X the proof is similar.

Remark 4.5. If we put B = T and A = Swe have Theorem (4.2).

By Example (3.5) and theorem (4.4) we get the following corollary.

Corollary 4.2. Let (X,G) be a symmetric G-metricspace and $A,B,S,T:(X,G) \rightarrow (X,G)$ satisfying the condition

G(Tx, By, By) $\leq kmax\{G(Sx, Ay, Ay), G(Sx, Tx, Tx),$

 $G(Ay, By, By), G(Sx, By, By), G(Ay, Tx, Tx)\},$ (7)

for all $x, y \in X$, where $k \in [0, \frac{1}{2})$, such that:

- (a) $T(X) \subseteq A(X)$ and $B(X) \subseteq S(X)$,
- (b) the pairs (A, B) and (T, S) are weakly compatible,
- (c) one of A(X), B(x), S(X), or T(X) is a G-complete subspace of X.

Then A, B, S, and T have a unique common fixed point.

Remark 4.6. Also, by Examples in [24] and Examples (3.3), (3.4) we have a new results.

Example 4.7. Let $X = [0, \infty)$ with the symmetric *G*-metric space G(x, y, z) = |x - y| + |y - z| + |z - x|,

and A, B, S and T are self mappings of X defined by

$$Tx = \begin{cases} 0, & \text{if } x \in [0,1) \\ 1, & \text{if } x \in [1,\infty) \end{cases}, \qquad Sx = \begin{cases} 3, & \text{if } x \in [0,1) \\ \frac{1}{x}, & \text{if } x \in [1,\infty) \end{cases}$$

$$Ax = \begin{cases} 0, & \text{if } x \in [0,1) \\ \frac{1}{\sqrt{x}}, & \text{if } x \in [1,\infty) \end{cases}, \qquad Bx = 1, & \text{if } x \in [0,\infty), \end{cases}$$

Clearly $T(X) \subseteq A(X)$ and $B(X) \subseteq S(X)$, A(X) is G-complete subspace of X, and the pairs (T,S) and (A,B) are weakly compatible. Takethe implicit relation defined as $F(t_1,\ldots,t_6)=t_1-kmax\{t_2,t_3,t_4,t_5,t_6\}$, where $k\in \left(0,\frac{1}{2}\right)$. Then

$$t_1 = 2|Tx - By|,$$
 $t_2 = 2|Sx - Ay|,$
 $t_3 = 2|Sx - Ty|,$ $t_4 = 2|Ax - By|,$
 $t_5 = 2|Sx - By|,$ $t_6 = 2|Ay - Tx|.$

- If $x, y \in [0,1)$ we obtain that $t_2 = t_3 = max\{t_2, t_3, t_4, t_5, t_6\}$, and $t_1 \le \frac{1}{3} max\{t_2, t_3, t_4, t_5, t_6\}$.
- If $x, y \in [1, \infty)$ we obtain that $t_1 = 0$ so we done and choose $k = \frac{1}{3}$.
- If $x \in [0,1)$ and $y \in [1,\infty)$ we obtain that $t_3 = max\{t_2, t_3, t_4, t_5, t_6\}$, and $t_1 \le \frac{1}{3} max\{t_2, t_3, t_4, t_5, t_6\}$.

• If $x \in [1, \infty)$ and $y \in [0,1)$ we obtain that $t_1 = 0$ so we done and choose $k = \frac{1}{3}$,

the inequality (7) holds for all $x, y \in X$. The hypotheses of Corollary (4.2) satisfied, and 1 is the unique common fixed point of the mappings A, B, S and T.

5. CONCLUSIONS

In this paper, we introduced some common fixed point theorems for two and four mappings satisfying φ^- implicit relation in G-metric spaces and a common fixed point theorem for T-contraction is proved .The results improved the results of Popa and Patriciu [24].

6. ACKNAWLEDGEMENTS

The authors are thankful to the referees and editors for careful reading of our research article

7. REFERENCES

- 1. Abbas, M. & B. E Rhoades. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. *Applied Mathematics and Computation* 215: 262–269 (2009).
- Altun, I. & D. Turkoglu. Some fixed point theorems for weakly compatible mappings satisfying an implicit relation. *Taiwanese Journal of Mathematics* 13(4): 1291–1304 (2009).
- 3. Beiranvand, A., S. Moradi, M. Omid, & H. Pazandeh. Two fixed point theorem for special mapping. arXiv:0903.1504v1 [math. FA] (2009).
- 4. Chung, R., T. Kasian, A. Rasie &B.E. Rhoades. Property (P) in *G*-metric spaces. *Fixed Point Theory and Applications*. Art. ID 401684, p. 12 (2010).
- 5. Jungck, G. Commuting mappings and fixed points. *The American Mathematical Monthly* 73: 261–263 (1976).
- 6. Jungck, G. Compatible mappings and common fixed points. *International Journal of Mathematics and Mathematical Sciences* 9: 771–779 (1986).
- Jungck, G. & B.E. Rhoades. Fixed Points for set valued functions without continuity. *Indian Journal of Pure and Applied Mathematics* 29: 227–238 (1998).
- 8. Karayian H. &M. Telci. Common fixed points of two maps in complete *G*-metric spaces. *Scientific Studies Research Service Mathematics Information, University of Alecsandri Bac´au* 20(2): 39–48 (2010).
- Manro, S., S.S. Bhatia & S. Kumar. Expansion mappings theorems in G-metric spaces. *International Journal of Contemporary Mathematical Sciences*, 5(51): 2529–2535 (2010).
- 10. Moradi, S. Kannan fixed point theorem on complete metric spaces and on generalized metric spaces depend on another function. *ArXiv:0903.1577v1* [math. FA] (2009).

- 11. Morales, J. R. & E. Rojas. Cone metric spaces and fixed point theorems of *T*-Kannan contractive mappings. *International Journal of Mathematical Analysis* 4(4): 175–184 (2010).
- 12. Morales, J. R. & E. Rojas. *T-Zamfirescu* and *T-weak* contraction mappings on cone metric spaces. *arxiv*: 0909.1255v1. [math. FA].
- 13. Mustafa, Z. & H. Obiedat. A fixed point theorem of Reich in *G*-metric spaces. *Cubo A Mathematical Journal* 12: 83–93 (2010).
- 14. Mustafa, Z., H. Obiedat & F. Awawdeh. Some fixed point theorems for mappings on *G*-complete metric spaces. *Fixed Point Theory and Applications*, Article ID 189870, p.12 (2008).
- 15. Mustafa, Z., W. Shatanawi &M. Bataineh fixed point theorem on un-complete *G*-metric spaces. *Journal of Mathematics and Statistics* 4(4): 190–201 (2008).
- 16. Mustafa, Z., W. Shatanawi &M. Bataineh. Existence of fixed point results in *G*-metric Spaces. *International Journal of Mathematics and Mathematical Sciences* Article ID 283028, 10 pp. (2009).
- Mustafa, Z. & B. Sims. Some remarks concerning D-metric spaces. *Intern. Conf. Fixed Point. Theory and Applications, Yokohama* 189–198 (2004).
- 18. Mustafa, Z. & B. Sims. A new approach to generalized metric spaces. *Journal of Nonlinear Convex Analysis* 7: 289–297 (2006).
- 19. Mustafa, Z. & B. Sims. Fixed point theorems for contractive mappings in complete *G*-metric spaces. *Fixed Point Theory and Applications*, Article ID 917175, 10 pp. (2009).
- 20. Obiedat, H. &Z. Mustafa. Fixed point results on nonsymmetric G-metric spaces. *Jordan Journal of Mathematics and Statistics* 3(2): 39–48 (2010).
- 21. Pathak, H.K. Fixed point theorems for weak compatible multi-valued and single valued mappings. Acta *Mathematica Hungaria* 67 (1-2): 69–78 (1995).
- 22. Popa, V. Fixed point theorems for implicit contractive mappings. *Stud. Cerc. St. Ser. Mat., Univ. Bac* au, 7: 129–133 (1997).
- 23. Popa, V. Some fixed point theorems for compatible mappings satisfying implicit relations. *Demonstration Math.* 32: 157–163 (1999).
- Popa, V. & A. Patriciu. A general fixed point theorem for mappings satisfying an φ-implicit relation in complete G-metric space. Gazi University Journal of Science 25(2): 403–408 (2012).
- 25. Sessa, S. On a weak commutativity condition of mappings in fixed point considerations. *Publ. Inst. Math. (Beograd)*(N.S.) 32: 149–153 (1982).
- 26. Shatanawi, W. Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces. *Fixed Point Theory and Applications*, Article ID 181650, 9 pp. (2010).
- Sumitra, R., V. Rhymend Uthariaraj & R. Hemavathy. Common fixed point theorem for T-Hardy-Rogers contraction mapping in a cone metric space. *International Mathematical Forum* 5(30): 1495–1506 (2010).